Talk 3 : Representations of $\mathfrak{s l}_{2}, \mathfrak{s p}_{4}$ the Siegel upper-half plane

February 13th, 2019

Part 1 : Representations of $\mathfrak{s l}_{2}, \mathfrak{s p}_{4}$, by Parham.

Definition (Lie algebra representation) A representation of a Lie algebra \mathfrak{g} is a \mathbb{C}-vector space V together with a map of Lie algebras $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$.

1. Representations of $\mathfrak{s l}_{2}(\mathbb{C}) \cong \mathfrak{s p}_{2}(\mathbb{C}) \cong \mathfrak{s u}(2)_{\mathbb{C}}$.

Let $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, and $Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. We have $[H, X]=2 X$, $[H, Y=-2 Y]$, and $[X, Y]=H$.
If V is an irrep of $\mathfrak{s l}_{2}(\mathbb{C})$, on which H acts diagonally via the character decomposition $V=\bigoplus_{\alpha \in \mathbb{C}} V_{\alpha}$. In other words, on each V_{α}, H acts as $H v=\alpha v$.

If $v \in V_{\alpha}$, then $H(X(v))=X H(v)+[H, X] v=(\alpha+2) X(v)$ hence X corresponds to a map $V_{\alpha} \rightarrow V_{\alpha+2}$.

Likewise, one can see that Y corresponds to a mpa $V_{\alpha} \rightarrow V_{\alpha-2}$.
If we take V finite-dimensional, there is only finitely many α such that $V_{\alpha} \neq 0$, So given any α we have a finite chain

$$
0 \leftarrow \cdots \stackrel{Y}{\leftarrow} V_{\alpha-2} \stackrel{Y}{\leftarrow} V_{\alpha} \stackrel{Y}{\leftarrow} V_{\alpha+2} \stackrel{Y}{\leftarrow} V_{\alpha+4} \leftarrow \cdots \leftarrow 0
$$

There are also arrows in the reverse direction given by X.
Fact: By irreducibility of V, all V_{α} are 1-dimensional.
Such a chain give a subrepresentation so by irreducibility of V, there is only one chain. We call the highest β such that $V_{\beta} \neq 0$ the highest weight of V.
Fact : $\beta \in \mathbb{Z}_{\geq 0}$. Conversely, for any $n \in \mathbb{Z}_{\geq 0}$ there exists a unique irreducible representation of $\mathfrak{s l}_{2}(\mathbb{C})$ for which n is the highest weight. We denote this representation by $V^{(n)}$, it is $n+1$ dimensional (look at the chain from $V_{-n}^{(n)}$ to $\left.V_{n}^{(n)}\right)$.

Representation of $\mathfrak{s l}_{2}(\mathbb{C})$ on itself via the adjoint representation. Consider the adjoing operator ad : $\mathfrak{s l}_{2} \rightarrow \mathfrak{g l}\left(\mathfrak{s l}_{2}(\mathbb{C})\right)$, then as seen at the start of the section, one has $\operatorname{ad} H(X)=[H, X]=2 X, \operatorname{ad} H(Y)=-2 Y$ and $\operatorname{ad} H(H)=0$. So

$$
V^{(2)} \cong \mathfrak{s l}_{2}(\mathbb{C})=\langle H\rangle \oplus\langle X\rangle \oplus\langle Y\rangle
$$

The standard representation. $\mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}_{2}(\mathbb{C})$. Take $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$ the standard basis. Then $H e_{1}=e_{1}$ and $\# \mathrm{He}_{_} 2=-\mathrm{e} _2 \$$ so $\mathbb{C}^{2} \cong V^{(1)}$.

2. Representations of $\mathfrak{s p}_{4}(\mathbb{C})$.

- 1. Find h, the maximal abelian diagonal subalgebra of $\mathfrak{g}=\mathfrak{s p}_{4}(\mathbb{C})$.
- 2. Let V be an irreducible representation of \mathfrak{g}, we see it as a representation of \mathfrak{h}.

Fact : $\quad V=\bigoplus_{\alpha \in \mathfrak{h}^{\star}} V_{\alpha}$, where \mathfrak{h}^{\star} denotes the dual of \mathfrak{h}.
Let $v \in V_{\alpha}$, we have $H v=\alpha(H) v$ for $H \in \mathfrak{h}$.

- 3. The adjoint representation is important. It gives us symmetry and conjugacy.

We have the decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \mathfrak{h}^{\star}} \mathfrak{g}_{\alpha}$. The subset of $\alpha \in \mathfrak{h}^{\star}$ such that $\mathfrak{g}_{\alpha} \neq 0$ is called the root system of \mathfrak{g}, we denote it by R.
For the case of $\mathfrak{s p}_{4}(\mathbb{C})$ we have $\mathfrak{h}=\left\langle E_{1,1}-E_{3,3}, E_{2,2}-E_{4,4}\right\rangle$, the character lattice of \mathfrak{h} is \mathbb{Z}^{2}. The choice of highest weight here is not unique, since we can choose any element with maximum length.

Let $e_{i} \in \mathfrak{h}^{\star}$ be such that $\$ \mathrm{e} _\mathrm{i}(\mathrm{H}) \$$ is the i th diagonal entry of H, with $H \in \mathfrak{H}$ for $i \in\{1,2\}$.

The roots are $R=\left\{ \pm e_{1}, \pm e_{2}, \pm e_{1} \pm e_{2}\right\}$. Identify e_{1} with $(1,0)$ and e_{2} with $(0,1)$ in \mathbb{R}^{2}, call the Weyl chamber the cone between $2 e_{1}$ and $e_{1}+e_{2}$. Each point on the lattice generated by $2 e_{1}, e_{1}+e_{2}$ inside this chamber corresponds to a unique finite-dimensional irreducible representation of $\mathrm{sp}_{4}(\mathbb{C})$ on which this point corresponds to the highest weight. This sublattice generated by $2 e_{1}$ and $e_{1}+e_{2}$ is the root lattice, here it is an index 2 sublattice of the weight lattice which is \mathbb{Z} seens as the character of \mathfrak{h}.

Denote this representation by $\Gamma_{a, b}=\Gamma_{a\left(2 e_{1}\right)+b\left(e_{1}+e_{2}\right)}$.
$\Gamma_{0,0}$ is the trivial representation.

Part 2 : The Siegel upper-half plane, understand the complex structure on $\mathrm{Sp}_{2 g}(\mathbb{R}) / \mathcal{U}(g)$, by Stephen

** Definition** A manifold (Riemannian, complex) is homogeneous if its automorphism group acts transitively on M.

We say M is symmetric if it is homogeneous and there is a point $p \in M$ and an automorphism $s_{p}: M \rightarrow M$ such that

- $s_{p}^{2}=1$
- p is the only fixed point of s_{p}

Definition A Hermitian metric on a complex manifold M is a Riemann metric g together with a complex structure J (acts as complex structure, i.e. $J^{2}=-1$ on the tangent spaces, defines a J-integrable notion) such that $g_{p}(J x, J y)=g_{p}(x, y)$ for all tangent vectors.

A Hermitian manifold (M, g) is a complex manifold with Hermitian metric g.
Fact For any Hermitian symmetric space (Hermitian manifold, symmetric as a complex manifold) M, we can write $M=M_{e} \times M_{c} \times M_{n c}$ where M_{e} is of Euclidean type (zero curvature), of the form \mathbb{C}^{n} / Λ for some lattice, M_{c} is of compact type (nonnegative curvature), e.g. $\mathbb{P}^{1}(\mathbb{C})$, and $M_{n c}$ of non-compact type (nonpositive curvature).
** Main example : ** Siegel upper-half plane.
Define the upper-half plane by

$$
\mathbb{H}_{g}=\left\{Z \in M_{n}(\mathbb{C}): Z^{T}=Z, \operatorname{Im}(Z)>0\right\} \subset \mathbb{C}^{g(g+1) / 2}
$$

We define the transitive action of $\mathrm{Sp}_{2 g}(\mathbb{R})$ on \mathbb{H}_{g} by

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \mathrm{Sp}_{2 g}: Z \mapsto(A Z+B)(C Z+D)^{-1}
$$

Fact. $\operatorname{Aut}\left(\mathbb{H}_{g}\right)=\operatorname{Sp}_{2 g+1}(\mathbb{R}) /\{ \pm 1\}$. As a \mathbb{C}-manifold, \mathbb{H}_{g} is homogeneous. The matrix $\left(\begin{array}{cc}0 & -I_{g} \\ I_{g} & 0\end{array}\right)$ is an involution of \mathbb{H}_{g} with $i I_{g}$ as isolated fixed point, this gives us that \mathbb{H}_{g} is symmetric.
We have a map $\mathbb{H}_{g} \rightarrow \mathbb{D}_{g}$, the open unit ball in $\mathbb{C}^{g(g+1) / 2}$, is is a bounded symmetric domain. It has a canonical hermitian metric called the Bergman metric.

There is a diffeomorphism $\mathrm{Sp}_{2 g} / \mathcal{U}(g) \rightarrow \mathbb{H}_{g}$ where $\mathcal{U}(g)$ is the stabilizer of $i I_{g}$.
Goal : Give $\mathrm{Sp}_{2 g}(\mathbb{R}) / \mathcal{U}(g)$ the structure of a Hermitian Symmetric Domain such that this diffeomorphism is a holomorphism. We want to do it without just pulling back the structure of \mathbb{H}_{g}, but define it intrinsically.
$\mathrm{Sp}_{2 g}$ is a symmetric space as a Riemannian manifold with the Poincaré metric.
Cartan Decomposition $\mathfrak{s l}_{2 g}(\mathbb{R})=\mathfrak{h} \oplus \mathfrak{p}$ where $\mathfrak{p}=T_{e}\left(\operatorname{Sp}_{2 g}(\mathbb{R}) / \mathcal{U}(g)\right)$. We want $J_{e}: \mathfrak{p} \rightarrow \mathfrak{p}$ st $\mathrm{J}_{e}^{2}=-1$. Consider the homomorphism $u: S^{1} \rightarrow \mathrm{Sp}_{2 g}(\mathbb{R})$ defined by $x+i y \mapsto\left(\begin{array}{cc}x I_{g} & -y I_{g} \\ y I_{g} & x I_{g}\end{array}\right)$, we have $U(i)=\left(\begin{array}{cc}0 & -I_{g} \\ I_{g} & 0\end{array}\right)$ is the multiplication by i.

