Talk 3 : Representations of \mathfrak{sl}_2 , \mathfrak{sp}_4 the Siegel upper-half plane

February 13th, 2019

Part 1 : Representations of \mathfrak{sl}_2 , \mathfrak{sp}_4 , by Parham.

Definition (Lie algebra representation) A representation of a Lie algebra \mathfrak{g} is a \mathbb{C} -vector space V together with a map of Lie algebras $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$.

1. Representations of $\mathfrak{sl}_2(\mathbb{C}) \cong \mathfrak{sp}_2(\mathbb{C}) \cong \mathfrak{su}(2)_{\mathbb{C}}$.

Let $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, and $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. We have [H, X] = 2X, [H, Y = -2Y], and [X, Y] = H.

If V is an irrep of $\mathfrak{sl}_2(\mathbb{C})$, on which H acts diagonally via the character decomposition $V = \bigoplus_{\alpha \in \mathbb{C}} V_{\alpha}$. In other words, on each V_{α} , H acts as $Hv = \alpha v$.

If $v \in V_{\alpha}$, then $H(X(v)) = XH(v) + [H, X]v = (\alpha + 2)X(v)$ hence X corresponds to a map $V_{\alpha} \to V_{\alpha+2}$.

Likewise, one can see that Y corresponds to a mpa $V_{\alpha} \to V_{\alpha-2}$.

If we take V finite-dimensional, there is only finitely many α such that $V_{\alpha} \neq 0$, So given any α we have a finite chain

$$0 \leftarrow \cdots \xleftarrow{Y} V_{\alpha-2} \xleftarrow{Y} V_{\alpha} \xleftarrow{Y} V_{\alpha+2} \xleftarrow{Y} V_{\alpha+4} \leftarrow \cdots \leftarrow 0$$

There are also arrows in the reverse direction given by X.

Fact : By irreducibility of V, all V_{α} are 1-dimensional.

Such a chain give a subrepresentation so by irreducibility of V, there is only one chain. We call the highest β such that $V_{\beta} \neq 0$ the highest weight of V.

Fact : $\beta \in \mathbb{Z}_{\geq 0}$. Conversely, for any $n \in \mathbb{Z}_{\geq 0}$ there exists a unique irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$ for which n is the highest weight. We denote this representation by $V^{(n)}$, it is n + 1 dimensional (look at the chain from $V_{-n}^{(n)}$ to $V_n^{(n)}$).

Representation of $\mathfrak{sl}_2(\mathbb{C})$ on itself via the adjoint representation. Consider the adjoing operator $\mathrm{ad}:\mathfrak{sl}_2 \to \mathfrak{gl}(\mathfrak{sl}_2(\mathbb{C}))$, then as seen at the start of the section, one has $\mathrm{ad}H(X) = [H, X] = 2X$, $\mathrm{ad}H(Y) = -2Y$ and $\mathrm{ad}H(H) = 0$. So

$$V^{(2)} \cong \mathfrak{sl}_2(\mathbb{C}) = \langle H \rangle \oplus \langle X \rangle \oplus \langle Y \rangle$$

The standard representation. $\mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}_2(\mathbb{C})$. Take $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ the standard basis. Then $He_1 = e_1$ and $\# \text{He}_2 = -e_2$ \$ so $\mathbb{C}^2 \cong V^{(1)}$.

2. Representations of $\mathfrak{sp}_4(\mathbb{C})$.

- 1. Find h, the maximal abelian diagonal subalgebra of $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$.
- Let V be an irreducible representation of g, we see it as a representation of h.

Fact : $V = \bigoplus_{\alpha \in \mathfrak{h}^*} V_{\alpha}$, where \mathfrak{h}^* denotes the dual of \mathfrak{h} .

Let $v \in V_{\alpha}$, we have $Hv = \alpha(H)v$ for $H \in \mathfrak{h}$.

• 3. The adjoint representation is important. It gives us symmetry and conjugacy.

We have the decomposition $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$. The subset of $\alpha \in \mathfrak{h}^*$ such that $\mathfrak{g}_{\alpha} \neq 0$ is called the *root system of* \mathfrak{g} , we denote it by R.

For the case of $\mathfrak{sp}_4(\mathbb{C})$ we have $\mathfrak{h} = \langle E_{1,1} - E_{3,3}, E_{2,2} - E_{4,4} \rangle$, the character lattice of \mathfrak{h} is \mathbb{Z}^2 . The choice of highest weight here is not unique, since we can choose any element with maximum length.

Let $e_i \in \mathfrak{h}^*$ be such that $e_i(H)$ is the *i*th diagonal entry of H, with $H \in \mathfrak{H}$ for $i \in \{1, 2\}$.

The roots are $R = \{\pm e_1, \pm e_2, \pm e_1 \pm e_2\}$. Identify e_1 with (1,0) and e_2 with (0,1) in \mathbb{R}^2 , call the *Weyl chamber* the cone between $2e_1$ and $e_1 + e_2$. Each point on the lattice generated by $2e_1, e_1 + e_2$ inside this chamber corresponds to a unique finite-dimensional irreducible representation of $\operatorname{sp}_4(\mathbb{C})$ on which this point corresponds to the highest weight. This sublattice generated by $2e_1$ and $e_1 + e_2$ is the *root lattice*, here it is an index 2 sublattice of the *weight lattice* which is \mathbb{Z} seens as the character of \mathfrak{h} .

Denote this representation by $\Gamma_{a,b} = \Gamma_{a(2e_1)+b(e_1+e_2)}$.

 $\Gamma_{0,0}$ is the trivial representation.

Part 2 : The Siegel upper-half plane, understand the complex structure on $\operatorname{Sp}_{2g}(\mathbb{R})/\mathcal{U}(g)$, by Stephen

** Definition** A manifold (Riemannian, complex) is *homogeneous* if its automorphism group acts transitively on M.

We say M is symmetric if it is homogeneous and there is a point $p \in M$ and an automorphism $s_p : M \to M$ such that

•
$$s_n^2 = 1$$

• p is the only fixed point of s_p

Definition A Hermitian metric on a complex manifold M is a Riemann metric g together with a complex structure J (acts as complex structure, i.e. $J^2 = -1$ on the tangent spaces, defines a J-integrable notion) such that $g_p(Jx, Jy) = g_p(x, y)$ for all tangent vectors.

A Hermitian manifold (M, g) is a complex manifold with Hermitian metric g.

Fact For any Hermitian symmetric space (Hermitian manifold, symmetric as a complex manifold) M, we can write $M = M_e \times M_c \times M_{nc}$ where M_e is of *Euclidean type* (zero curvature), of the form \mathbb{C}^n/Λ for some lattice, M_c is of *compact type* (nonnegative curvature), e.g. $\mathbb{P}^1(\mathbb{C})$, and M_{nc} of *non-compact type* (nonpositive curvature).

** Main example : ** Siegel upper-half plane.

Define the upper-half plane by

$$\mathbb{H}_q = \left\{ Z \in M_n(\mathbb{C}) : Z^T = Z, \operatorname{Im}(Z) > 0 \right\} \subset \mathbb{C}^{g(g+1)/2}$$

We define the transitive action of $\operatorname{Sp}_{2q}(\mathbb{R})$ on \mathbb{H}_q by

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_{2g} : Z \mapsto (AZ + B)(CZ + D)^{-1}$$

Fact. Aut $(\mathbb{H}_g) = \operatorname{Sp}_{2g+1}(\mathbb{R})/\{\pm 1\}$. As a \mathbb{C} -manifold, \mathbb{H}_g is homogeneous. The matrix $\begin{pmatrix} 0 & -I_g \\ I_g & 0 \end{pmatrix}$ is an involution of \mathbb{H}_g with iI_g as isolated fixed point, this gives us that \mathbb{H}_g is symmetric.

We have a map $\mathbb{H}_g \to \mathbb{D}_g$, the open unit ball in $\mathbb{C}^{g(g+1)/2}$, is is a bounded symmetric domain. It has a canonical hermitian metric called the Bergman metric.

There is a diffeomorphism $\operatorname{Sp}_{2g}/\mathcal{U}(g) \to \mathbb{H}_g$ where $\mathcal{U}(g)$ is the stabilizer of iI_g .

Goal : Give $\operatorname{Sp}_{2g}(\mathbb{R})/\mathcal{U}(g)$ the structure of a Hermitian Symmetric Domain such that this diffeomorphism is a holomorphism. We want to do it without just pulling back the structure of \mathbb{H}_g , but define it intrinsically.

 Sp_{2g} is a symmetric space as a Riemannian manifold with the Poincaré metric.

Cartan Decomposition $\mathfrak{sl}_{2g}(\mathbb{R}) = \mathfrak{h} \oplus \mathfrak{p}$ where $\mathfrak{p} = T_e(\operatorname{Sp}_{2g}(\mathbb{R})/\mathcal{U}(g))$. We want $J_e : \mathfrak{p} \to \mathfrak{p}$ st $J_e^2 = -1$. Consider the homomorphism $u : S^1 \to \operatorname{Sp}_{2g}(\mathbb{R})$ defined by $x + iy \mapsto \begin{pmatrix} xI_g & -yI_g \\ yI_g & xI_g \end{pmatrix}$, we have $U(i) = \begin{pmatrix} 0 & -I_g \\ I_g & 0 \end{pmatrix}$ is the multiplication by i.