Talk 2 : Review of $\mathrm{Sp}_{2 n}(\mathbb{R})$, root systems and Cartan involution.

Ashvni Narayanan

February 6th, 2019

0. Definition of $\mathrm{Sp}_{2 n}$ over \mathbb{C} and \mathbb{R}.

Definition. The symplectic group

$$
\mathrm{Sp}_{2 n}(\mathbb{K})=\left\{X \in \mathrm{SL}_{2 n}(\mathbb{K}): X^{T} J X=J\right\}
$$

where $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$. A block matrix $X=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \operatorname{Sp}_{2 n}(\mathbb{K})$ if and only if $A^{T} C=C^{T} A, B^{T} D=D^{T} B$, and $A^{T} D-C^{T} B=1$.

Note that this is equivalent to the orthogonal group, seen as automorphism group of the standard quadratic form, where this is the automorphism group of the standard symplectic form on $\mathrm{K}^{2 n}$ where $\left[(q, p),\left(q^{\prime}, p^{\prime}\right)\right] \mapsto p \cdot q^{\prime}-q \cdot p^{\prime}$, which has Gram matrix J.

We can also define the group of similitudes

$$
\mathrm{GSp}_{2 n}(\mathbb{K})=\left\{X \in \mathrm{SL}_{2 n}(\mathbb{K}): J X^{T} J X \in \mathbb{K}\right\}
$$

so $X \in \mathrm{GSp}_{2 n}(\mathbb{K})$ if $X^{T} J X=t(X) J$ where $t(X) \in \mathbb{K}$. The map $X \mapsto t(X)$ is the multiplier, it is a character : $\mathrm{GSp}_{2 n} \rightarrow \mathrm{GL}_{1}=$ mathbb G_{m}.
We get the corresponding Lie algebra :

$$
\mathfrak{s p}(\mathbb{K})=\left\{x \in \mathfrak{s l}_{2 n}(\mathbb{K}): X^{T} J+J X=0\right\}
$$

Note that the assumption $x \in \mathfrak{s l}_{2 n}(\mathbb{K})$ is equivalent to taking $x \in \mathfrak{g l}_{2 n}(\mathbb{K})$ when $\operatorname{char}(\mathbb{K}) \neq 2$.

Recall that

$$
\mathfrak{s l}_{2 n}(\mathbb{K})=\left\{X \in \mathfrak{g l}_{n}(\mathbb{K}): \operatorname{Tr}(X)=0\right\}
$$

The unitary group is

$$
U(n)=\left\{X \in \mathrm{GL}_{n}(\mathbb{C}): U^{\star} U=I_{n}\right\}
$$

where $U^{\star}=\bar{U}^{T}$ denotes the conjugate transpose. Again, the corresponding lie algebra is

$$
\mathfrak{u}(n)=\left\{X \in \mathfrak{g l}_{n}(\mathbb{C}): X^{\star}+X=0\right\}
$$

The special orthogonal group is

$$
\mathrm{SO}(n)=\left\{X \in \mathrm{GL}_{n}(\mathbb{R}): X^{T} X=I_{n}\right\}
$$

and its Lie algebra

$$
\mathfrak{s o}(n)=\left\{X \in \mathfrak{g l}_{n}(\mathbb{R}): X^{T}+X=0\right\}
$$

One can define $\operatorname{Sp}(n)=\operatorname{Sp}_{2 n}(\mathbb{C}) \cap U(2 n)$ the compact symplectic group, and $\mathfrak{s p}_{2 n}=\mathfrak{s p}_{2 n}(\mathbb{C}) \cap \mathfrak{u}(n)$.

We are interested in studying semisimple Lie algebras, i.e. algebras with no nontrivial bilateral ideal.

1. Root systems.

Let $G=\operatorname{Sp}_{2 n}(\mathbb{C})$ and $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$.
Let

$$
\mathfrak{h}=\left\{H \in \mathfrak{g}: H=\operatorname{diag}\left(h_{1}, \cdots, h_{n},-h_{1}, \cdots,-h_{n}\right)\right\},
$$

it is an abelian subalgebra of \mathfrak{g}.
Let $E_{i, j}$ denote the canonical basis element of $\mathfrak{g l}_{2 n}$. and $e_{i} \in \mathfrak{h}^{\star}$ as $e_{i}(H)=h_{i}$.
For $H \in \mathfrak{h}$ we have a corresponding adjoint map $\operatorname{ad} H: \mathfrak{g} \rightarrow \mathfrak{g}: X \mapsto[H, X]$ where [,] denotes the usual Lie bracket $[A, B]=A B-B A$.
For $1 \leq i, j \leq n$ we have $\operatorname{ad} H\left(E_{i, j}\right)=\left[H, E_{i j}\right]=\left(e_{j}(H)-e_{j}(H)\right) E_{i, j}$ so $E_{i, j}$ is a simultaneous eigenvector for all $\operatorname{ad} H, H \in \mathfrak{h}$, with eigenvalues $\left(e_{i}-e_{j}\right)(H)$.

In general, if we let $1 i, j \leq 2 n$ we get $\operatorname{ad} H\left(E_{i j}\right)=\left(\pm e_{i}(H) \pm e_{j}(H)\right) E_{i j}$.
Define the set of roots $\Delta=\left\{e_{i}-e_{j}: 1 \leq i \neq j \leq n\right\} \cup\left\{2 e_{i}: 1 \leq i \leq n\right\}$.
We have a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \bigoplus\left(\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)
$$

where $\mathfrak{g}=\{X \in \mathfrak{g}:(\operatorname{ad} H)(X)=\alpha(X) X \forall H \in \mathfrak{h}\}$.
One has

$$
\left[g_{\alpha}, g_{\beta}\right]=\left\{\begin{array}{c}
\mathfrak{g}_{\alpha+\beta} \text { if } \alpha+\beta \text { is a root } \\
0 \text { if } \alpha+\beta \text { is not a root or } 0 \\
\subseteq \mathfrak{h} \text { if } \alpha+\beta=0
\end{array}\right.
$$

Figure 1: Root system for $\operatorname{sl}(2)$

2. Cartan involution.

Definition. A linear connected reductive group is a closed connected subgroup of real/complex matrices that are stable under conjugate transpose. This is equivalent to the triviality of the unipotent radical (not trivial).

Definition. A linear connected semisimple group is a linear connected reductive group with finite centre.

Examples. $\mathrm{SL}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{2 n}$ are all connected semisimple linear groups.
Cartan involution. Let G be a linear connected semisimple group, define

$$
\Theta: \begin{gathered}
G \rightarrow G \\
X \mapsto\left(X^{\star}\right)^{-1}
\end{gathered}
$$

Note that we have $\Theta^{2}=\mathrm{id}$.
The differential of Θ at the identity is denoted by θ and it gives an automorphism of \mathfrak{g}, given by $\theta(X)=-X^{\star}$. This θ is the Cartan involution, and is indeed an involution since $\theta(X Y)=\theta(Y) \theta(X), \theta(\lambda X)=\bar{\lambda} \theta(X)$ and $\theta^{2}=\mathrm{id}$.

Clearly the polynomial $t^{2}-1$ kills θ so the eigenvalues of θ are ± 1, let $\mathfrak{k}, \mathfrak{p}$ denote the eigenspaces of 1 and -1 respectively. We have the descriptions:
$\mathfrak{k}=$ Skew-Hermitian matrices and $\mathfrak{p}=$ Hermitian matrices.

This gives us the Cartan decomposition

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}
$$

We have $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$. In particular, \mathfrak{k} is a Lie subalgebra of \mathfrak{g}.

Proposition 1. If G is a linear connected semisimple group, then \mathfrak{g} is semisimple. If G is a linear connected reductive group then

$$
\mathfrak{g}=Z(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]
$$

where $Z(\mathfrak{g})$ denotes the centre of \mathfrak{g}.
Proposition 2. If G is a real linear connected reductive group then K is compact and connected and it is a maximal compact subgroup of G. Its Lie algebra is \mathfrak{k}. The map

$$
\begin{gathered}
K \times \mathfrak{p} \rightarrow G \\
(k, x) \mapsto k \exp (X)
\end{gathered}
$$

is a diffeomorphism onto G.
Idea of the proof of connectedness of SL_{n} : It acts transitively on the column vectors of $\mathbb{C}^{n} \backslash\{0\}$. The subgroup fixing the alst standard basis vector is $\left[\begin{array}{cc}S L_{n-1}(\mathbb{C}) & 0 \\ \mathbb{C}^{n-1} & 1\end{array}\right] \cong \mathrm{SL}_{n-1}(\mathbb{C}) \ltimes \mathbb{C}^{n-1}$.
We have

$$
\mathrm{SL}_{n}(\mathbb{C}) /\left(\mathrm{SL}_{n-1}(\mathbb{C}) \ltimes \mathbb{C}^{n-1}\right) \cong \mathbb{C}^{n} \backslash\{0\}
$$

Then use induction.

3. Examples.

We can consider two involutions on $\mathfrak{s l}_{2 n}(\mathbb{C})$, the fixed points under the involution $X \mapsto \bar{X}$ is simply $\mathfrak{s l}_{2 n}(\mathbb{R})$.

The fixed vectors under the Cartan involution θ are just $\mathfrak{k}=\mathfrak{s o}_{2}(\mathbb{R})$.
Both $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s u}(2) \cong \mathfrak{s o}_{3}(\mathbb{R})$ "complexify" to $\mathfrak{s l}_{2}(\mathbb{C})$, we say that the former is split.

In $\mathfrak{s p}_{2 n}(\mathbb{R})$, the maximum compact subalgebra is isomorphic to $\mathfrak{u}(n)$.
In $\mathfrak{s p}_{2 n}(\mathbb{R})$, take $X=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, the condition

$$
\left[\begin{array}{ll}
A^{T} & C^{T} \\
B^{T} & D^{T}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]
$$

becomes

$$
\left[\begin{array}{cc}
-C^{T} & A^{T} \\
D^{T} & B^{T}
\end{array}\right]=\left[\begin{array}{cc}
-C & -D \\
A & B
\end{array}\right]
$$

so we get $C=C^{T}, B=B^{T}$ and $A^{T}=-D$.
And we have

$$
\left[\begin{array}{cc}
A & B \\
C & -A^{T}
\end{array}\right]=\left[\begin{array}{cc}
-A^{T} & -C^{T} \\
=B^{T} & A
\end{array}\right]
$$

so the matrix is of the form $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right], A, B$ being real matrices, which by considering the embedding \mathbb{C} into $\mathfrak{g l}_{2}(\mathbb{R})$, we identify $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]=A+i B$ which identifies our subalgebra of fixed points with $\mathfrak{u}(n)$.

5. Follow up.

Let $G \rightarrow \mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ defined by $(X, Y)=\operatorname{Tr}_{\mathfrak{g}}\left(\operatorname{ad}_{x} \operatorname{ad}_{Y}\right)$.
Restriction to $\mathfrak{k}, \mathfrak{p}$ is definite (so $K \subset \mathcal{O}_{(\dot{)} \text { or } k}$).
Restriction to \mathfrak{p} is K-invariant so \mathfrak{p} can be identified with the tangent space $T_{e}(G / K)$ with K-invariant inner product. So G / K has a G-invariant metric. $G=K \exp (\mathfrak{p})$ so $G / K \cong \exp (\mathfrak{p})$.
We have $\left.\theta\right|_{\mathfrak{p}}=-\mathrm{id}_{\mathfrak{p}}$.
The map $\Theta: G / K \rightarrow G / K$ is an isometry, it reverses geodesics through $e K$.
G / K is the space of Cartan involutions of G, it is a "symmetric space".
$L \subset G$ is compact then L contains a fixed point $g K$ so $L \subset g K g^{-1}$, hence K is a maximal compact subgroup and all maximal compact subgroups are conjugate.

$$
P_{n}=\left\{Q \in M_{n}(\mathbb{R}): Q \text { summetric positive definite with } \operatorname{det}(Q)=1\right\} .
$$

The space $\mathrm{SL}_{n}(\mathbb{R})$ acts on P_{n} via $g \cdot Q=g Q g^{T}$. This action is transitive, the stabilizer of I_{n} is $\mathrm{SO}(n)$ hence $P_{n} \cong \mathrm{SL}_{n}(\mathbb{R}) / \mathbb{S O}(n)$. With a Q we define $g_{Q}(X, Y)=\operatorname{Tr}\left(Q^{-1} X Q^{-1} Y\right)$.
$\mathrm{SL}_{2}(\mathbb{R})$ acts on $\{x+i y>0\}$ via $g \dot{z}=\frac{a x+b}{c z+d}$. We have $y\left(\frac{a z+b}{c z+d}\right)=\frac{y(z)}{|c z+d|^{2}}>0$ where $y(z)=\operatorname{Im}(z)$ and $\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{R})}(i)=\mathrm{SO}(2)$.

More generally, we can define this upper-half plane as

$$
\mathbb{H}_{n}=\left\{Z \in M_{n}(\mathbb{C}): Z \text { symmetric and } y(Z)=\operatorname{Im}(Z) \text { is positive definite }\right\} .
$$

Let $g=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \mathrm{GL}_{2 n}(\mathbb{R})$ try setting $g \cdot Z=(A Z+B)(C Z+D)^{-1}$
Check : This is \mathbb{H}_{n} if and only if $g \in \operatorname{Sp}_{2 n}(\mathbb{R})$. We get a transitive ation of $\mathrm{Sp}_{2 n}(\mathbb{B})$ on \mathbb{H}_{n}, the stabilizer of $i I_{n}$ is $\mathrm{U}(n)$.
In the 2 -dimensional case, we know that we can send the upper-half plane to a circle via the Cayley transform $z \mapsto \frac{1+z}{1-z}$. Here again we have a corresponding bounded symmetric domain : Open bounded subset $D \subset \mathbb{C}^{n}$ where the group of biholomorphism is "large enough". In the general case, it's also probably the map $Z \mapsto(I+Z)(I-Z)^{-1}$.

On is there is a canonical metric called Bargmann metric, invariant by $\operatorname{Aut}(D)$. This with Cauchy formula lets us ling purely geometric volumes to algbraic quantities.

