# Talk 1: Review of modular forms 

Lior Silberman

January 30th, 2019

## 1. What is an automorphic form?

### 1.1. Review of mobular forms.

Fix $\mathbb{H}=\{x+i y: y>0\}$.
Modular forms are :

- Holomorphic functions on $\mathbb{H}$ with periodicity condition + asymptotics on the boundary.
- Generating functions/series for arithmetic functions.
- Holomorphic sections of holomorphic line bundles on 1-dimensional complex manifolds.
- Algebraic sections of algebraic line bundles on complex projective curves.
- Solutions to a PDE satisfying certain boundary conditions.
- Irreducible representations of $\mathrm{GL}_{2}(\mathbb{R})$ acting on $L^{2}\left(\Gamma \backslash \mathrm{GL}_{2}(\mathbb{R})\right)$.
- Irreducible representations of $\mathrm{GL}_{2}(\mathbb{A})$ acting on $L^{2}\left(\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{A})\right.$.
- Representations $\operatorname{Gal}(\overline{\mathbb{Q}}: \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}_{\ell}}\right)$.
- Euler products satisfying a particular functional equation.
- Cohomology classes.

Definition. Let $g \in \mathrm{GL}_{2}(\mathbb{R})$ such that $\operatorname{det}(g)>0$. Write $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. For $z \in \mathbb{H}$ set

$$
g \cdot z=\frac{a z+b}{c z+d}
$$

(if $\operatorname{det}(g)<0$ then $g \cdot z=\frac{a \bar{z}+b}{c \bar{z}+d}$ ).
For $f: \mathbb{H} \rightarrow \mathbb{C}$ set $\left(\left.f\right|_{k} g\right)(z)=(\operatorname{det}(g))^{k / 2}(c z+d)^{-k} f(g \cdot z)$.
Fix $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$, lattice, and let $\chi: \Gamma \rightarrow S^{1}$ be a character,

A modular forms with respect to $k$ for $\Gamma, \chi$ is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that

- $f$ is holomorphic
- $\left.f\right|_{k} \gamma=\chi(\gamma)$ for all $\gamma \in \Gamma$.
- at every cusp $\xi$ of $\Gamma,|f(z)| \leq C e^{M y_{\xi}(z)}$
we say $f$ is holomorphic at cusps if we can take $M=0$. We say it is a cusp form if we can take $M<0$.
Examples. $\mathcal{O}(q)=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.
$\mathcal{O}^{k}(q)=\sum_{m} n_{k}(m) q^{m}$ where $n_{k}(m)=$ number of representation of $m$ as sum of $k$ squares.
Set $q=e^{2 \pi z}$, if $\operatorname{Re}(z)<0$ then $|q|<1, q(z+1)=q(z)$.
$\mathcal{O}(z)=\sqrt{\frac{1}{2 \pi z}} \mathcal{O}\left(-\frac{1}{4 z}\right)$.
The action of $\Gamma$ on $\mathbb{H} \times \mathbb{C}$ is $\gamma \cdot(z, w)=\left(\gamma \cdot z,(c z+d)^{k} w\right)$.
The map $\Gamma \backslash \mathbb{H} \times \mathbb{C} \rightarrow \Gamma \backslash \mathbb{H}$ defines the line bundle that our holomorphic form is a section of.

The PDE it is solution of comes from the Cauchy-Riemann condition.
Eisenstein series : $\Lambda \subset \mathbb{C}$ the corresponding Eisenstein series is $G_{k}(\Lambda)=$ $\sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{k}} . G_{k}(r \Lambda)=r^{-k} G_{k}(\Lambda)$.

## Representation-theoritic view

Let $\Gamma$ be a lattice in $\mathrm{SL}_{2}(\mathbb{R}), f \in H_{k}(\Gamma, \chi)$. For $g \in \mathrm{SL}_{2}(\mathbb{R})$ set $F(g)=\left(\left.f\right|_{k} g\right)(i)$, $F: \mathrm{SL}_{2}(\mathbb{R} \rightarrow \mathbb{C})$.

- $F(\gamma g)=\left(\left.f\right|_{k} \gamma g\right)(i)=\left(\left.\left(\left.f\right|_{k} \gamma\right)\right|_{g}\right)(i)=\chi(\gamma)\left(\left.f\right|_{k} g\right)(i)=\chi(\gamma) F(g)$.
- $F\left(g K_{\theta}\right)=\left(\left.\left(\left.f\right|_{k} g\right)\right|_{k} K_{\theta}\right)(i)=\left(\left.f\right|_{k} g\right)(i)(-\sin (\theta) i+\cos (\theta))^{-k}=e^{i k \theta} F(g)$,
where $K_{\theta}=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right)$.
Now we explore the equivalent condition to " $f(z)$ harmonic" (same as holomorphic, since we just saw we can rotate, and real harmonic $=$ real part of holomorphic function). Define

$$
\mathfrak{s l}_{2}(\mathbb{R}) \cong\left\{X \in M_{2}(\mathbb{R}): \operatorname{tr}(X)=0\right\}=\operatorname{Span}_{\mathbb{R}}\left(H, X_{-}, X_{+}\right)
$$

where $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), X_{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, and $X_{-}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
If $X \in \mathfrak{s l}_{2}(\mathbb{R})$ and $F: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{C}$, set $(\mathcal{R}(H) F)(g)=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} F\left(g e^{t X}\right)$, then $f$ holomorphic corresponds to $R\left(H^{2}-2 H+4 X_{-} X_{=}\right) F=\lambda F$, where $\lambda=\lambda(k)$.
$W=X_{+}-X_{-}$generator of $\operatorname{Lie}(\mathrm{SO}(2)) . \mathcal{R}(W) f=i k f$.

For $g \in \mathrm{SL}_{2}(\mathbb{R}) F: \Gamma \backslash \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{C}, x \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})$ set the right-translation action

$$
(R(g) F)(x)=F(x g)
$$

$R(g)=$ functions on $g \in \Gamma \backslash \mathbb{C}$ is linear $R\left(g_{1} g_{2}\right)=R\left(g_{1}\right) R\left(g_{2}\right)$
Check: $\omega$ commutes with group $g \in \mathrm{SL}_{2}(\mathbb{R})$, i.e. $\operatorname{Ad}_{g} \omega=\omega$ for all $g \in \mathrm{SL}_{2}(\mathbb{R})$.
Here $\operatorname{Ad}$ is defined for $g \in \mathrm{SL}_{2}(\mathbb{R}), X \in \mathfrak{s l}_{2}(\mathbb{R})$ as $\operatorname{Ad}_{g} X=g X g^{-1}$
We have a function $F: \Gamma \backslash \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{C}$ where

- $F\left(x K_{\theta}\right)=e^{i k \theta} F(x)$
- $\mathcal{R}(\omega) \stackrel{\text { def }}{=} \mathcal{R}(H) \mathcal{R}(H) F-2 \mathcal{R}(H) F+4 \mathcal{R}\left(X_{+}\right) \mathcal{R}\left(X_{-}\right) F$,
- and $R(\omega) R(g) F=R(g) R(\omega) F$

Corollary. $\operatorname{span}_{\mathbb{C}}\{R(g) F\}_{g \in \mathrm{SL}_{2}(\mathbb{R})}$ consists of eigenfunctions of $\omega$ with eigenvector $\lambda$. FACT : the representation it defines is irreducible.
Note : Have here irreducible subrepresentations of regular representations of $\mathrm{SL}_{2}(\mathbb{R})$ on $\left\{\right.$ functions on $\left.\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})\right\}$.

Definition. Say $F: \Gamma \backslash \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{C}$ has "weight $k$ " if $F\left(X . K_{\theta}\right)=e^{i k \theta} F(x)$.
Fact : If $F$ has weight $k$, this subrepresentation contains vectors of weights $k, k+2, k+4, \cdots$, each with multiplicity 1 .

Definition. A modular form of weight $k$ is the lowest weight vector in an irreducible representation as above, $\lambda=\lambda(k)$.
Aside. Let $G$ be a group, $K$ a (compact) subgroup.
$\sigma: K \rightarrow \mathrm{GL}(V)$ a finite-dimensional $\mathbb{C}$-representation.
Consider $\epsilon=\Gamma \backslash G / K \times_{K} V=\{(\Gamma g, v): g \in G v \in V\} / K \rightarrow B=\Gamma \backslash G / K$ this define a line bundle. Our form arise as section of this type of line bundle.
$f$ is a cusp form $\Rightarrow f$ decays exponentially at cusps.
$y\left(\gamma_{z}\right)=\frac{y(z)}{|c z+d|^{2}} \Rightarrow y^{k / 2}(z)|f(z)|$ is $\Gamma$-invariant.
$\|f\|_{\text {peterson }}^{2}=\int_{\Gamma \backslash \mathbb{H}} y^{k}|f(z)|^{2} \frac{\mathrm{~d} x \mathrm{~d} y}{y^{2}}<\infty$.
$\|F\|_{L^{2}\left(\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})\right)}=\|f\|_{\text {peterson }}$.
Suppose $\Gamma(N) \subset \Gamma \subset \mathrm{SL}_{2}(\mathbb{Z}), \Gamma(N)=\operatorname{Ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right)$.

$$
T_{p} f(\Lambda)=\sum_{p \Lambda<\Lambda^{\prime}<\Lambda} f\left(\Lambda^{\prime}\right)
$$

1.2. Automorphic forms on $\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})$.
1.3 Automorphic forms on $\mathrm{SL}_{2}(\mathbb{Q}) \backslash \mathrm{SL}_{2}(\mathbb{A})$

