Talk 1 : Review of modular forms

Lior Silberman

January 30th, 2019

1. What is an automorphic form ?

1.1. Review of mobular forms.

Fix $\mathbb{H} = \{x + iy : y > 0\}.$

Modular forms are :

- Holomorphic functions on $\mathbb H$ with periodicity condition + asymptotics on the boundary.
- Generating functions/series for arithmetic functions.
- Holomorphic sections of holomorphic line bundles on 1-dimensional complex manifolds.
- Algebraic sections of algebraic line bundles on complex projective curves.
- Solutions to a PDE satisfying certain boundary conditions.
- Irreducible representations of $\operatorname{GL}_2(\mathbb{R})$ acting on $L^2(\Gamma \setminus \operatorname{GL}_2(\mathbb{R}))$.
- Irreducible representations of $\operatorname{GL}_2(\mathbb{A})$ acting on $L^2(\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A}))$.
- Representations $\operatorname{Gal}(\overline{\mathbb{Q}}:\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell}).$
- Euler products satisfying a particular functional equation.
- Cohomology classes.

Definition. Let $g \in \operatorname{GL}_2(\mathbb{R})$ such that $\det(g) > 0$. Write $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. For $z \in \mathbb{H}$ set

$$g \cdot z = \frac{az+b}{cz+d},$$

(if det(g) < 0 then $g \cdot z = \frac{a\overline{z}+b}{c\overline{z}+d}$). For $f : \mathbb{H} \to \mathbb{C}$ set $(f|_k g)(z) = (\det(g))^{k/2}(cz+d)^{-k}f(g \cdot z)$. Fix $\Gamma \subset \mathrm{SL}_2(\mathbb{R})$, lattice, and let $\chi : \Gamma \to S^1$ be a character, A modular forms with respect to k for Γ, χ is a function $f : \mathbb{H} \to \mathbb{C}$ such that

- f is holomorphic
- $f|_k \gamma = \chi(\gamma)$ for all $\gamma \in \Gamma$.
- at every cusp ξ of Γ , $|f(z)| \leq C e^{My_{\xi}(z)}$

we say f is holomorphic at cusps if we can take M = 0. We say it is a cusp form if we can take M < 0.

Examples. $\mathcal{O}(q) = \sum_{n \in \mathbb{Z}} q^{n^2}$.

 $\mathcal{O}^k(q) = \sum_m n_k(m)q^m$ where $n_k(m)$ = number of representation of m as sum of k squares.

Set
$$q = e^{2\pi z}$$
, if $\text{Re}(z) < 0$ then $|q| < 1$, $q(z+1) = q(z)$.

$$\mathcal{O}(z) = \sqrt{\frac{1}{2\pi z}} \mathcal{O}(-\frac{1}{4z}).$$

The action of Γ on $\mathbb{H} \times \mathbb{C}$ is $\gamma \cdot (z, w) = (\gamma \cdot z, (cz+d)^k w).$

The map $\Gamma \setminus \mathbb{H} \times \mathbb{C} \to \Gamma \setminus \mathbb{H}$ defines the line bundle that our holomorphic form is a section of.

The PDE it is solution of comes from the Cauchy-Riemann condition.

Eisenstein series : $\Lambda \subset \mathbb{C}$ the corresponding Eisenstein series is $G_k(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^k} \cdot G_k(r\Lambda) = r^{-k} G_k(\Lambda).$

Representation-theoritic view

Let Γ be a lattice in $\mathrm{SL}_2(\mathbb{R})$, $f \in H_k(\Gamma, \chi)$. For $g \in \mathrm{SL}_2(\mathbb{R})$ set $F(g) = (f|_k g)(i)$, $F : \mathrm{SL}_2(\mathbb{R} \to \mathbb{C})$.

• $F(\gamma g) = (f|_k \gamma g)(i) = ((f|_k \gamma)||_g)(i) = \chi(\gamma)(f|_k g)(i) = \chi(\gamma)F(g).$

•
$$F(gK_{\theta}) = ((f|_kg)|_kK_{\theta})(i) = (f|_kg)(i)(-\sin(\theta)i + \cos(\theta))^{-k} = e^{ik\theta}F(g),$$

where $K_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$.

Now we explore the equivalent condition to "f(z) harmonic" (same as holomorphic, since we just saw we can rotate, and real harmonic = real part of holomorphic function). Define

$$\mathfrak{sl}_2(\mathbb{R}) \cong \{ X \in M_2(\mathbb{R}) : \operatorname{tr}(X) = 0 \} = \operatorname{Span}_{\mathbb{R}}(H, X_-, X_+),$$

where $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \text{ and } X_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$

If $X \in \mathfrak{sl}_2(\mathbb{R})$ and $F : \operatorname{SL}_2(\mathbb{R}) \to \mathbb{C}$, set $(\mathcal{R}(H)F)(g) = \frac{d}{dt}\Big|_{t=0} F(ge^{tX})$, then f holomorphic corresponds to $R(H^2 - 2H + 4X_-X_=)F = \lambda F$, where $\lambda = \lambda(k)$. $W = X_+ - X_-$ generator of Lie(SO(2)). $\mathcal{R}(W)f = ikf$. For $g \in \mathrm{SL}_2(\mathbb{R})$ $F : \Gamma \backslash \mathrm{SL}_2(\mathbb{R}) \to \mathbb{C}$, $x \in \Gamma \backslash \mathrm{SL}_2(\mathbb{R})$ set the right-translation action

$$(R(g)F)(x) = F(xg).$$

R(g) = functions on $g \in \Gamma \setminus \mathbb{C}$ is linear $R(g_1g_2) = R(g_1)R(g_2)$

Check : ω commutes with group $g \in \mathrm{SL}_2(\mathbb{R})$, i.e. $\mathrm{Ad}_g \omega = \omega$ for all $g \in \mathrm{SL}_2(\mathbb{R})$. Here Ad is defined for $g \in \mathrm{SL}_2(\mathbb{R})$, $X \in \mathfrak{sl}_2(\mathbb{R})$ as $\mathrm{Ad}_g X = g X g^{-1}$

We have a function $F: \Gamma \backslash \mathrm{SL}_2(\mathbb{R}) \to \mathbb{C}$ where

- $F(xK_{\theta}) = e^{ik\theta}F(x)$
- $\mathcal{R}(\omega) \stackrel{\text{def}}{=} \mathcal{R}(H)\mathcal{R}(H)F 2\mathcal{R}(H)F + 4\mathcal{R}(X_+)\mathcal{R}(X_-)F,$
- and $R(\omega)R(g)F = R(g)R(\omega)F$

Corollary. $\operatorname{span}_{\mathbb{C}} \{R(g)F\}_{g \in \operatorname{SL}_2(\mathbb{R})}$ consists of eigenfunctions of ω with eigenvector λ . FACT : the representation it defines is irreducible.

Note : Have here irreducible subrepresentations of regular representations of $SL_2(\mathbb{R})$ on {functions on $\Gamma \setminus SL_2(\mathbb{R})$ }.

Definition. Say $F : \Gamma \backslash SL_2(\mathbb{R}) \to \mathbb{C}$ has "weight k" if $F(X, K_\theta) = e^{ik\theta} F(x)$.

Fact : If F has weight k, this subrepresentation contains vectors of weights $k, k+2, k+4, \cdots$, each with multiplicity 1.

Definition. A modular form of weight k is the lowest weight vector in an irreducible representation as above, $\lambda = \lambda(k)$.

Aside. Let G be a group, K a (compact) subgroup.

 $\sigma: K \to \operatorname{GL}(V)$ a finite-dimensional $\mathbb C\text{-representation}.$

Consider $\epsilon = \Gamma \backslash G/K \times_K V = \{(\Gamma g, v) : g \in G \ v \in V\}/K \to B = \Gamma \backslash G/K$ this define a line bundle. Our form arise as section of this type of line bundle.

f is a cusp form $\Rightarrow f$ decays exponentially at cusps.

 $y(\gamma_z) = \frac{y(z)}{|cz+d|^2} \Rightarrow y^{k/2}(z)|f(z)|$ is Γ -invariant.

 $\|f\|_{\text{peterson}}^2 = \int_{\Gamma \setminus \mathbb{H}} y^k |f(z)|^2 \frac{\mathrm{d}x \mathrm{d}y}{y^2} < \infty.$

 $||F||_{L^2(\Gamma \setminus \mathrm{SL}_2(\mathbb{R}))} = ||f||_{\mathrm{peterson}}.$

Suppose $\Gamma(N) \subset \Gamma \subset \mathrm{SL}_2(\mathbb{Z}), \, \Gamma(N) = \mathrm{Ker}(\mathrm{SL}_2(\mathbb{Z}) \to \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})).$

$$T_p f(\Lambda) = \sum_{p\Lambda < \Lambda' < \Lambda} f(\Lambda')$$

1.2. Automorphic forms on $\Gamma \backslash SL_2(\mathbb{R})$.

1.3 Automorphic forms on $\mathrm{SL}_2(\mathbb{Q})\backslash\mathrm{SL}_2(\mathbb{A})$