1 . What is an automorphic form ?

1.1. Review of mobular forms.

Fix \(\mathbb{H}= \{x+iy : y>0\}\).

Modular forms are :

Definition. Let \(g\in \mathrm{GL}_2(\mathbb{R})\) such that \(\det(g)>0\). Write \(g=\begin{pmatrix}a&b\\c&d\end{pmatrix}\). For \(z\in \mathbb{H}\) set \[ g\cdot z = \frac{az+b}{cz+d},\] (if \(\det(g)<0\) then \(g\cdot z = \frac{a\overline{z}+b}{c\overline{z}+d}\)).

For \(f : \mathbb{H}\rightarrow \mathbb{C}\) set \((f|_kg)(z) = (\det(g))^{k/2}(cz+d)^{-k}f(g\cdot z)\).

Fix \(\Gamma\subset \mathrm{SL}_2(\mathbb{R})\), lattice, and let \(\chi : \Gamma \rightarrow S^1\) be a character,

A modular forms with respect to \(k\) for \(\Gamma, \chi\) is a function \(f: \mathbb{H}\rightarrow \mathbb{C}\) such that

we say \(f\) is holomorphic at cusps if we can take \(M=0\). We say it is a cusp form if we can take \(M<0\).

Examples. \(\mathcal{O}(q) = \sum_{n\in\mathbb{Z}}q^{n^2}\).

\(\mathcal{O}^k(q) = \sum_{m}n_k(m)q^m\) where \(n_k(m)\) = number of representation of \(m\) as sum of \(k\) squares.

Set \(q=e^{2\pi z}\), if \(\mathrm{Re}(z)<0\) then \(|q|<1\), \(q(z+1)=q(z)\).

\(\mathcal{O}(z) = \sqrt{\frac{1}{2\pi z}}\mathcal{O}(-\frac{1}{4z})\).

The action of \(\Gamma\) on \(\mathbb{H}\times \mathbb{C}\) is \(\gamma\cdot (z,w)= (\gamma\cdot z, (cz+d)^kw)\).

The map \(\Gamma\backslash \mathbb{H}\times\mathbb{C} \rightarrow \Gamma\backslash \mathbb{H}\) defines the line bundle that our holomorphic form is a section of.

The PDE it is solution of comes from the Cauchy-Riemann condition.

Eisenstein series : \(\Lambda \subset \mathbb{C}\) the corresponding Eisenstein series is \(G_k(\Lambda) = \sum_{\omega\in \Lambda\backslash\{0\}}\frac{1}{\omega^k}\). \(G_{k}(r\Lambda) = r^{-k}G_k(\Lambda)\).

Representation-theoritic view

Let \(\Gamma\) be a lattice in \(\mathrm{SL}_2(\mathbb{R})\), \(f\in H_k(\Gamma,\chi)\). For \(g\in \mathrm{SL}_2(\mathbb{R})\) set \(F(g) = (f|_kg)(i)\), \(F : \mathrm{SL}_2(\mathbb{R}\rightarrow \mathbb{C})\).

where \(K_\theta=\begin{pmatrix} \cos(\theta)&\sin(\theta)\\ -\sin(\theta)& \cos(\theta)\end{pmatrix}\).

Now we explore the equivalent condition to ``\(f(z)\) harmonic'' (same as holomorphic, since we just saw we can rotate, and real harmonic = real part of holomorphic function). Define

\[\mathfrak{sl}_2(\mathbb{R}) \cong \left\lbrace X\in M_2(\mathbb{R}) : \mathrm{tr}(X)=0 \right\rbrace= \mathrm{Span}_{\mathbb{R}}(H,X_-,X_+),\] where \(H = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\), \(X_+= \begin{pmatrix}0&1\\0&0\end{pmatrix}\), and \(X_-= \begin{pmatrix}0&0\\1&0\end{pmatrix}\).

If \(X\in \mathfrak{sl}_2(\mathbb{R})\) and \(F: \mathrm{SL}_2(\mathbb{R})\rightarrow \mathbb{C}\), set \((\mathcal{R}(H)F)(g) = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} F(ge^{tX})\), then \(f\) holomorphic corresponds to \(R(H^2-2H+4X_-X_=)F = \lambda F\), where \(\lambda = \lambda(k)\).

\(W = X_+-X_-\) generator of \(\mathrm{Lie}(\mathrm{SO}(2))\). \(\mathcal{R}(W) f = ikf\).

For \(g\in \mathrm{SL}_2(\mathbb{R})\) \(F : \Gamma\backslash \mathrm{SL}_2(\mathbb{R})\rightarrow \mathbb{C}\), \(x\in \Gamma\backslash\mathrm{SL}_2(\mathbb{R})\) set the right-translation action \[ (R(g) F)(x) = F(xg).\]

\(R(g)\)= functions on \(g\in\Gamma\backslash \mathbb{C}\) is linear \(R(g_1g_2) = R(g_1)R(g_2)\)

Check : \(\omega\) commutes with group \(g\in \mathrm{SL}_2(\mathbb{R})\), i.e. \(\mathrm{Ad}_g\omega=\omega\) for all \(g\in\mathrm{SL}_2(\mathbb{R})\).

Here \(\mathrm{Ad}\) is defined for \(g\in\mathrm{SL}_2(\mathbb{R}),\ X\in\mathfrak{sl}_2(\mathbb{R})\) as \(\mathrm{Ad}_g X = gXg^{-1}\)

We have a function \(F:\Gamma\backslash \mathrm{SL}_2(\mathbb{R})\rightarrow \mathbb{C}\) where

Corollary. \(\mathrm{span}_\mathbb{C}\left\lbrace R(g)F\right\rbrace_{g\in \mathrm{SL}_2(\mathbb{R})}\) consists of eigenfunctions of \(\omega\) with eigenvector \(\lambda\). FACT : the representation it defines is irreducible.

Note : Have here irreducible subrepresentations of regular representations of \(\mathrm{SL}_2(\mathbb{R})\) on \(\left\lbrace \text{functions on }\Gamma\backslash \mathrm{SL}_2(\mathbb{R}) \right\rbrace\).

Definition. Say \(F : \Gamma\backslash \mathrm{SL}_2(\mathbb{R})\rightarrow \mathbb{C}\) has ``weight \(k\)'' if \(F(X.K_\theta)=e^{ik\theta}F(x)\).

Fact : If \(F\) has weight \(k\), this subrepresentation contains vectors of weights \(k, k+2,k+4,\cdots\), each with multiplicity \(1\).

Definition. A modular form of weight \(k\) is the lowest weight vector in an irreducible representation as above, \(\lambda=\lambda(k)\).

Aside. Let \(G\) be a group, \(K\) a (compact) subgroup.

\(\sigma : K \rightarrow \mathrm{GL}(V)\) a finite-dimensional \(\mathbb{C}\)-representation.

Consider \(\epsilon = \Gamma\backslash G/K\times_K V = \{(\Gamma g,v) : g\in G\ v\in V\}/K \rightarrow B = \Gamma\backslash G/K\) this define a line bundle. Our form arise as section of this type of line bundle.

\(f\) is a cusp form \(\Rightarrow\) \(f\) decays exponentially at cusps.

\(y(\gamma_z) = \frac{y(z)}{|cz+d|^2}\ \Rightarrow\ y^{k/2}(z) |f(z)|\) is \(\Gamma\)-invariant.

\(\|f\|_{\text{peterson}}^2 = \int_{\Gamma\backslash \mathbb{H}}y^k|f(z)|^2 \frac{\mathrm{d}x\mathrm{d}y}{y^2}<\infty\).

\(\|F\|_{L^2(\Gamma\backslash\mathrm{SL}_2(\mathbb{R}))} = \|f\|_{\text{peterson}}\).

Suppose \(\Gamma(N)\subset\Gamma\subset \mathrm{SL}_2(\mathbb{Z})\), \(\Gamma(N) = \mathrm{Ker}(\mathrm{SL}_2(\mathbb{Z})\rightarrow \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z}))\).

\[T_pf(\Lambda) = \sum_{p\Lambda<\Lambda'<\Lambda}f(\Lambda') \]

1.2. Automorphic forms on \(\Gamma \backslash \mathrm{SL}_2(\mathbb{R})\).

1.3 Automorphic forms on \(\mathrm{SL}_2(\mathbb{Q})\backslash \mathrm{SL}_2(\mathbb{A})\)