CHAPTER 4

Siegel modular forms

4.1. The symplectic group and the Siegel upper half-space

4.1.1. The symplectic group. Fix a field F' and a finite-dimensional vec-
torspace V/F. A symplectic form on V is a non-degenerate bilinear form [-,-] : V' x
V — F such that [v,0] = 0 for all v € V. A symplectic vector space is a pair
(V,[,]) as above.

EXERCISE 18. Let [-,-] : V x V — F be a bilinear form.

(1) If the form is symplectic, it is alternating: [u,v] = — [v,u].

(2) If char F' # 2 and the form is alternating, it is symplectic.
PROOF. [u+v,u+v] = [u,u] + [u,v] + [v, u] + [v, ], O
ExXAMPLE 19. Let U be an F-vectorspace and equip V = U @ U* with the

/
canonical form [(3)) , <Z,>} = <g, P’ > - <g’ , IZ>7 where the angle brackets denote

the pairing between U, U*.
Concretely, let {u;} C U be a basis, {uf} C U* the dual basis. Then if
v=>"" i+ Yo Tppiuy andy’ = Y0 v, + Y Ynpiug in V we have

where J = <_In I”).

EXERCISE 20 (Darboux’s Theorem). Show that any symplectic vector space is
isomorphic to the canonical example.

[v,v'] ="zJy

Fix a symplectic vector space V.

LEMMA-DEFINITION 21. Let L C V be a subspace, maximal under the assump-
tion that [-,-] [L=0. Then dimV = 2dim L. Such subspaces are called Lagrangian
subspaces.

PrOOF. Consider the map V/L — L* given by the symplectic form. O

LEMMA-DEFINITION 22. Let L C V be a Lagrangian subspace, and let L* C V
be a subspace, maximal under the assumption that L* is linearly disjoint from L
and such that [,-] [+= 0. Then L* is Lagrangian, V = L& L*, and the symplectic
form induces a mon-degenerate pairing between L, L*. Such Lagrangian subspaces
are called dual to L. A representation V = L @ L* is called a Lagrangian splitting
of V.

NoTATION 23. Given a Lagrangian splitting V' = L @ L* we identify L* with
the dual of L via the symplectic form. We use the notation *a to denote dual maps
with respect to this duality.
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EXERCISE 24 (Darboux’s Theorem, again). Show that every symplectic vector
space is isomorphic to the canonical example.

DEFINITION 25. Let V' be a symplectic vector space. The associated symplectic
group is the group
Sp(V) ={g € GL(V) | Vv, ' € V': [gu, gv'] = [v, 2]} .
The group of symplectic similitudes is
GSp(V) = {g € GL(V) | 3(g) € F*Vu,v" € V : [gu, gv'] = Ag) [, 2]}

EXERCISE 26. Show that (with 2n = dimp V') these are isomorphic to the
groups of F-points of the linear algebraic groups

Spy, = {g € GLy, | 'gJg = J}
GSp,,, = {g € GLa, | 3X(9) € GL; : 'gJg = )\(g)J} )
Show that A: GSp,,, — GL; is a group homomorphism (and that det [gsp, = A"
where det: GLg,, — GL; is the usual determinant).

NoraTION 27. Fixing a Lagrangian splitting V = L & L* we may write any

b) with @ € Hom(L, L), b € Hom(L*, L) etc.

g € GSp(V) in the form g = (CCL d

EXERCISE 28. g € Sp,,, (V) iff tac = *ca € Hom(L, L*), *bd = *db € Hom(L*, L)
and *ad — *bc = Idp« € Hom(L*, L*).

REMARK 29. In the standard example, we may think of a,b,¢,d € M, (F) and
t denoting the usual transpose.

4.1.2. Distinguished subgroups and the affine patch.

EXERCISE 30 (Darboux’s theorem, yet again). Show that Sp(V') acts transi-
tively on the set of pairs (L, L*) of dual Lagrangian subspaces.

DEFINITION 31. The Levi subgroup [of the Siegel parabolic], to be denoted M,
is the point stabilizer of a pair (L, L*). It is necessarily a closed subgroup.

Note that we have a natural homomorphism M — GL(L) by restriction.

EXERCISE 32. For h € GL(L) let m(h) = diag(h,*h™1) € GL(V). Then
m(h) € Sp(V') and the map m: GL(L) — M is an isomorphism.

LEMMA-DEFINITION 33. Let z € Hom (L*, L) be symmetric in that z = 'z €

Hom (L*, L**) = Hom(L*,L). Then n(z) = (IdL Idz ) € Sp(V) and N =
L*

{n(z) |z € SmeL} is a subgroup of Sp(V'), the unipotent radical [of the Siegel
parabolic]. The map z — n(z) is an isomorphism (Sym2 L, —i—) — N.

EXERCISE 34. Show that N is normalized by M. Show that P = M N ~ M x N
(the Siegel parabolic subgroup) is the stabilizer of L in the transitive action of Sp(V)

on the set of Lagragian subspaces of V. Show that IV a closed subgroup of P, hence
of Sp(V).

PROPOSITION 35. Show the set of Lagrangian subspaces is closed in Gr (n,V).
In particular, Sp(V)/P is a projective variety and P is a parabolic subgroup.
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DEFINITION 36. Call a Lagrangian subspace L generic if its projection onto
L* via the decomposition V = L @ L* is surjective.

EXERCISE 37. A Lagrangian is generic iff it is dual to L.

LEMMA 38. The set of generic Lagrangians is exactly the N-orbit of L*. It is
an open subset of Sp(V')/P on which N acts freely.

PROOF. Since Sp(V) acts transitively on pairs of dual Lagrangians, P = Stabg(L)
acts transitively on Lagrangians dual to L. But P = NM where M = Stabp(L*)
and the claim follows. O

PROOF. Let L be a generic Lagrangian subspace. Then the inclusion L c
V >~ L & L* realises L as the graph of a function z: L* — L, and it is clear that
L = t(z)L*. To show that t(z) € Sp(V) we need to verify that z is self-dual. For
this note that 'z is defined by the relation [*z(u),v] = [2(v),u] for all u,v € L*.
However, u+ z(u), v+ z(v) both belong to the Lagrangian subspace L and it follows
that
0=[u+z(u),v+ z(v))
= [u, v] + [u, 2(v)] + [z(w), v] + [2(u), 2(v)]
= [2(u),v] + [u, 2(v)]

since L* and L are both Lagrangian. It follows that [z(u),v] = [z(v),u] for all
u,v € L*, in other words that *z = z. The action is free since ¢(z)L* # L* whenver
z #0.

Finally, it suffices to show that if V' = L& L* then {INJ €eGr(n,V)|LNL= [Z)}
is open.

EXERCISE 39. Let Z = Z(M). Show that Z ~ GL; and that Zs,v)(Z) = M
(hint: note that V = L & L* is exactly the eigenspace decomposition of V' wrt the
action of 7).

EXERCISE 40. Fix a symmetric isomorphism I: L* — L (i.e. *I = I) and

let w = <—I‘1 I). Then w € Sp(V) normalizes Z, on which it acts by the

non-trivial automorphism. Further, w exchanges the Lagrangian subspaces L, L*.

SOLUTION. It is clear that wL* = L and wL = L*. Also, w? = —Idy so
w = —w. If w € L and ¢t € GL; then

wm(t)w tu = wm(t) (I u) = wt™ () =t T u=t" u=m(t Hu

(since I~1u € L*) and similarly for v € L*, so wm(t)w™! = m(t~1). We still need
to verify that [wu,wv] = [u,v] for all u,v € V, but it suffices to consider the case
u € L, v € L* and then

[wu, wv] = [—I_lqu] = [—I_llvm]

=—[v,u] = [u,?] .

LEMMA 41 (Bruhat decomposition). The “big cell” NwP C Sp(V) is open.
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PROOF. In terms of Exercise 28 this is the subset where c¢ is invertible. Indeed

n_ (1 =z I\ (h 1 7
n(z).w.m(h)n(z") = ( 1) <—I‘1 > ( th_1> ( 1
(=27t I\ (h R\  [—2l"'h —2I'hy 4+ I'h7!
"It o0 th=1) — \ —-I"'h —I~thy
shows that every element of NwP has invertible lower left corner, and conversely

given g = Ccl Z) we see that h = —Ic and z = ac™! are uniquely determined, and

furthermore that

e [ S [P R AR [ R P

O

COROLLARY 42. Let g = (Z Z) and let n(z) € N be such that cz + d is
invertible. Then
gn(z)w € n ((az +b)(cz +d)" ") wm (I(cz+d)"") N.
Proor. We have
a b\ (-2t I —(az+b) I a
gn(z)jw = (c d> <—I‘1 O) - <—(cz—|—d)]‘1 c)
so, as noted in the lemma, if ¢z + d is invertible we have gn(z)w € n(z")wm(h)N

with h = I(cz +d)"'I7! and 2/ = (az + b)(cz + d)~'. Note that h and 2’ are
independent of the choice of I. O

EXERCISE 43. Show that (u,v) = [u,wv] is a symmetric bilinear map.

PROOF. (v,u) = [v,wu] = [w™v,u] = [~wv,u] = [u, wo]. O

LEMMA-DEFINITION 44 (Maximal tori). Let A C GL(L) be the set of all ma-
trices diagonal wrt to a basis. Then A is a mazximal abelian subgroup of GL(L) and
T ={m(a) | a € A} is a mazximal abelian subgroup of Sp(V'), the maximal torus.

PrOOF. That Zgy,1)(A) = Ais well known. Next, we have Zg(T) C Za(Z(M
M since Z(M) C T. It follows that Zg(T) = Za(A) = m (Zarw)(A)) = m(A)
T.

~—

)=

Ol

LEMMA 45. sp,, = LieSp,, = {X € My, | ' XJ+ JX =0}. LieSp(V)
{X € End(V) | Vu,0' € Vi [Xv,0']+ [v, X2v'] = 0}.

a b

EXERCISE 46. X = (c d> € sp,, iff d = —ta, 'c = ¢, 'b = b. In particular,

dim sp,,, = 2n% + n.

EXERCISE 47. Let {e;};_, : A — GL; be the eigenvalues with respect to our
fixed basis of W, thought of as functions T — GL;. Then the joint eigenval-
ues a: T — GLy acting on LieSp(V) are {e; £e;},,; U {+2e;} U{0}. The zero
eigenspace is LieT" and each other eigenspace is one-dimensional.

SoLUTION. Note that Lie Sp(V) = Lie M @ Lie N @ Lie N where N = wNw™!,
and analyze the action of T" in each case.
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4.1.3. Real symplectic spaces and Siegel upper half-space. Suppose
now that V is a real symplectic vector space and fix a Lagrangian splitting V' =
Lo L*. Let G = Sp(V), G(C) = Sp(V®rC). We similar have subgroups
M,M(C),N,N(C),P,P(C),T,T(C). Let w be the long Weyl element from the

previous section.

EXERCISE 48. For ( =a+ib € C and z € V set ( -z = ax + bwz. This endows
V' with the structure of a complex vector space.

SOLUTION. We have w? = —Idy .

EXERCISE 49. Suppose that I: L* — L is negative definite. Then the real-
valued pairing (z,y) = [z, wy] is the real part of a hermitian pairing on V.

SoLUTION. We already know that this is R-bilinear. To check definiteness let

x=¢q+pwith ¢ € L and p € L*, in which case
(z,2) = [z,wz] = [q+p,Ip—1"'q] = [p, Ip] = [0, 1" 'q]
= —[p.p] [0, 17'p] .

Finally, (iz,y) = (wz,y) = [wz,wy] = [z, y] is symplectic.

EXERCISE 50. The unitary group K associated to this Hermitian pairing is a
subgroup of G.

SOLUTION. The unitary group preserves the complex part of the Hermitian
pairing.

PRrOPOSITION 51. K is a mazimal closed subgroup of G.

PrOOF. The representation of K on spV decomposes as the direct sum Lie K ®
p where p is irreducible, so K is a maximal connected subgroup. It follows that any
subgroup containing K is contained in the normalizer of K. But if ¢ € G normalizes
K then g maps the inner product (-, -) to another one fixed by K. By Schur’s Lemma
g is scalar and since Sp(V') € SL(V) this implies g = +1dy € K. O

COROLLARY 52. Let Z(K) be the centre of the group K (recall that the centre
of U(n) is isomorphic to U(1)). Then Zg(Z(K)) = K.

EXERCISE 53. Let U(1) = {# € C| |2|] =1}. Then Z ~ Hom(U(1),U(1)) via
the map n — (z — 2") where Hom (U (1), U(1)) is either in the category of compact
Lie groups or of real alegbraic groups.

COROLLARY 54. There are exactly two isomorphisms p: U(1) — Z(K).

EXERCISE 55. There are two eigenspaces Ly of p in Vo = V ®g C (on which
U(1) acts by its two isomorphic representations). These spaces are Lagrangian,
generic with respect to L¢ C V.

LEMMA 56. Stabg(Ly) =K.

PrROOF. Since K centralizes its center, it acts on each eigenspace and K C
Stabg(L4). Equality follows since K is a maximal closed subgroup. O

DEFINITION 57. The image of G/K in G(C)/P(C) as the orbit of L, is called
Siegel upper halfspace and denoted H.

LEMMA 58. Let g € G and z € H. Then cz + d is invertible.
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ProoF. The Lagrangian gL, is one of the Lagrangians corresponding to the
maximal compact subgroup gK ¢!, so it is also generic. ([

PROPOSITION 59. G/K is open in the affine patch NcwPc/Fc.

PROOF. dimg G/K = 2n?+n—n? =n(n+1). dimg N¢ = 2dim¢ N¢ = 2(3) =
n(n + 1) since N is the space of symmetric matrices. O

COROLLARY 60. G/K has a complex structure, compatible with its manifold
structure.

4.1.4. Vector bundles and factors of automorphy. In terms of the first
section, if W is an F-vectorspace, any finite-dimensional representation ¢: M —
GL(W) induces a vector bundle G xp W — G/P. The restriction to the affine
patch Nw C G/P is isomorphic to N x W. Our explicit G-action then reads:

g- (n(x)wP,w) = (n((az+b)(cz+d) " YwP,6 (I(cz+d) ' I7")) .
Returning to the case of real scalars, any finite-dimensional complex represen-
tation (o, W) of K induces the vector bundle G xx P — G/K. Now K C GL(L})
is a maximal compact subgroup; by the Weyl unitary trick we can extend ¢ to a

holomorphic representation 6: GL(Ly) — GL(W), equivalently to a representation
&: Mc — GL(W), which we can also pull back to a representation : Pc — GL(W).

PROPOSITION 61. The inclusions G xg W C Nw x W C G¢ xXp. W are
compatible with the bundle structures. In particular, G X W is a holomorphic
vector bundle over G/K.



