CHAPTER 4

Siegel modular forms

4.1. The symplectic group and the Siegel upper half-space

4.1.1. The symplectic group. Fix a field F and a finite-dimensional vectorspace V/F. A symplectic form on V is a non-degenerate bilinear form $[\cdot, \cdot] : V \times V \to F$ such that $[\underline{v}, \underline{v}] = 0$ for all $\underline{v} \in V$. A symplectic vector space is a pair $(V, [\cdot, \cdot])$ as above.

EXERCISE 18. Let $[\cdot, \cdot] : V \times V \to F$ be a bilinear form.

(1) If the form is symplectic, it is alternating: $[\underline{u}, \underline{v}] = -[\underline{v}, \underline{u}]$.

(2) If char $F \neq 2$ and the form is alternating, it is symplectic.

PROOF. $[\underline{u} + \underline{v}, \underline{u} + \underline{v}] = [\underline{u}, \underline{u}] + [\underline{u}, \underline{v}] + [\underline{v}, \underline{u}] + [\underline{v}, \underline{v}].$

EXAMPLE 19. Let U be an *F*-vectorspace and equip $V = U \oplus U^*$ with the canonical form $\left[\left(\frac{\underline{q}}{\underline{p}}\right), \left(\frac{\underline{q}'}{\underline{p}'}\right)\right] = \langle \underline{q}, \underline{p}' \rangle - \langle \underline{q}', \underline{p} \rangle$, where the angle brackets denote the pairing between U, U^* .

Concretely, let $\{\underline{u}_i\} \subset U$ be a basis, $\{\underline{u}_i^*\} \subset U^*$ the dual basis. Then if $\underline{v} = \sum_{i=1}^n x_i \underline{u}_i + \sum_{i=1}^n x_{n+i} \underline{u}_i^*$ and $\underline{v}' = \sum_{i=1}^n y_i \underline{u}_i + \sum_{i=1}^n y_{n+i} \underline{u}_i^*$ in V we have

$$[\underline{v}, \underline{v}'] = `\underline{x}J\underline{y}$$

where $J = \begin{pmatrix} I_n \\ -I_n \end{pmatrix}$.

EXERCISE 20 (Darboux's Theorem). Show that any symplectic vector space is isomorphic to the canonical example.

Fix a symplectic vector space V.

LEMMA-DEFINITION 21. Let $L \subset V$ be a subspace, maximal under the assumption that $[\cdot, \cdot] \upharpoonright_L = 0$. Then dim $V = 2 \dim L$. Such subspaces are called Lagrangian subspaces.

PROOF. Consider the map $V/L \to L^*$ given by the symplectic form.

LEMMA-DEFINITION 22. Let $L \subset V$ be a Lagrangian subspace, and let $L^* \subset V$ be a subspace, maximal under the assumption that L^* is linearly disjoint from Land such that $[\cdot, \cdot] \upharpoonright_{L^*} = 0$. Then L^* is Lagrangian, $V = L \oplus L^*$, and the symplectic form induces a non-degenerate pairing between L, L^* . Such Lagrangian subspaces are called dual to L. A representation $V = L \oplus L^*$ is called a Lagrangian splitting of V.

NOTATION 23. Given a Lagrangian splitting $V = L \oplus L^*$ we identify L^* with the dual of L via the symplectic form. We use the notation ${}^{t}a$ to denote dual maps with respect to this duality.

EXERCISE 24 (Darboux's Theorem, again). Show that every symplectic vector space is isomorphic to the canonical example.

DEFINITION 25. Let V be a symplectic vector space. The associated symplectic group is the group

$$\operatorname{Sp}(V) = \{g \in \operatorname{GL}(V) \mid \forall \underline{v}, \underline{v}' \in V : [\underline{gv}, \underline{gv}'] = [\underline{v}, \underline{v}'] \} .$$

The group of symplectic similitudes is

$$\operatorname{GSp}(V) = \left\{ g \in \operatorname{GL}(V) \mid \exists \lambda(g) \in F^{\times} \forall \underline{v}, \underline{v}' \in V : [g\underline{v}, g\underline{v}'] = \lambda(g) [\underline{v}, \underline{v}'] \right\} \,.$$

EXERCISE 26. Show that (with $2n = \dim_F V$) these are isomorphic to the groups of *F*-points of the linear algebraic groups

$$\begin{aligned} &\operatorname{Sp}_{2n} &= \left\{ g \in \operatorname{GL}_{2n} \mid {}^{\operatorname{t}} g J g = J \right\} \\ &\operatorname{GSp}_{2n} &= \left\{ g \in \operatorname{GL}_{2n} \mid \exists \lambda(g) \in \operatorname{GL}_1 : {}^{\operatorname{t}} g J g = \lambda(g) J \right\} \,. \end{aligned}$$

Show that $\lambda: \operatorname{GSp}_{2n} \to \operatorname{GL}_1$ is a group homomorphism (and that det $|_{\operatorname{GSp}_{2n}} = \lambda^n$ where det: $\operatorname{GL}_{2n} \to \operatorname{GL}_1$ is the usual determinant).

NOTATION 27. Fixing a Lagrangian splitting $V = L \oplus L^*$ we may write any $g \in \operatorname{GSp}(V)$ in the form $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a \in \operatorname{Hom}(L, L), b \in \operatorname{Hom}(L^*, L)$ etc.

EXERCISE 28. $g \in \operatorname{Sp}_{2n}(V)$ iff ${}^{\operatorname{t}}ac = {}^{\operatorname{t}}ca \in \operatorname{Hom}(L, L^*), {}^{\operatorname{t}}bd = {}^{\operatorname{t}}db \in \operatorname{Hom}(L^*, L)$ and ${}^{\operatorname{t}}ad - {}^{\operatorname{t}}bc = \operatorname{Id}_{L^*} \in \operatorname{Hom}(L^*, L^*).$

REMARK 29. In the standard example, we may think of $a, b, c, d \in M_n(F)$ and t denoting the usual transpose.

4.1.2. Distinguished subgroups and the affine patch.

EXERCISE 30 (Darboux's theorem, yet again). Show that Sp(V) acts transitively on the set of pairs (L, L^*) of dual Lagrangian subspaces.

DEFINITION 31. The Levi subgroup [of the Siegel parabolic], to be denoted M, is the point stabilizer of a pair (L, L^*) . It is necessarily a closed subgroup.

Note that we have a natural homomorphism $M \to \operatorname{GL}(L)$ by restriction.

EXERCISE 32. For $h \in \operatorname{GL}(L)$ let $m(h) = \operatorname{diag}(h, {}^{\operatorname{t}}h^{-1}) \in \operatorname{GL}(V)$. Then $m(h) \in \operatorname{Sp}(V)$ and the map $m \colon \operatorname{GL}(L) \to M$ is an isomorphism.

LEMMA-DEFINITION 33. Let $z \in \text{Hom}(L^*, L)$ be symmetric in that $z = {}^t z \in \text{Hom}(L^*, L^{**}) = \text{Hom}(L^*, L)$. Then $n(z) = \begin{pmatrix} \text{Id}_L & z \\ & \text{Id}_{L^*} \end{pmatrix} \in \text{Sp}(V)$ and $N = \{n(z) \mid z \in \text{Sym}^2 L\}$ is a subgroup of Sp(V), the unipotent radical [of the Siegel parabolic]. The map $z \mapsto n(z)$ is an isomorphism $(\text{Sym}^2 L, +) \to N$.

EXERCISE 34. Show that N is normalized by M. Show that $P = MN \simeq M \ltimes N$ (the *Siegel parabolic subgroup*) is the stabilizer of L in the transitive action of Sp(V) on the set of Lagragian subspaces of V. Show that N a closed subgroup of P, hence of Sp(V).

PROPOSITION 35. Show the set of Lagrangian subspaces is closed in Gr(n, V). In particular, Sp(V)/P is a projective variety and P is a parabolic subgroup. DEFINITION 36. Call a Lagrangian subspace \tilde{L} generic if its projection onto L^* via the decomposition $V = L \oplus L^*$ is surjective.

EXERCISE 37. A Lagrangian is generic iff it is dual to L.

LEMMA 38. The set of generic Lagrangians is exactly the N-orbit of L^* . It is an open subset of $\operatorname{Sp}(V)/P$ on which N acts freely.

PROOF. Since $\operatorname{Sp}(V)$ acts transitively on pairs of dual Lagrangians, $P = \operatorname{Stab}_G(L)$ acts transitively on Lagrangians dual to L. But P = NM where $M = \operatorname{Stab}_P(L^*)$ and the claim follows.

PROOF. Let \tilde{L} be a generic Lagrangian subspace. Then the inclusion $\tilde{L} \subset V \simeq L \oplus L^*$ realises \tilde{L} as the graph of a function $z \colon L^* \to L$, and it is clear that $\tilde{L} = t(z)L^*$. To show that $t(z) \in \operatorname{Sp}(V)$ we need to verify that z is self-dual. For this note that ${}^{\mathrm{t}}z$ is defined by the relation $[{}^{\mathrm{t}}z(u), v] = [z(v), u]$ for all $u, v \in L^*$. However, u + z(u), v + z(v) both belong to the Lagrangian subspace \tilde{L} and it follows that

$$0 = [u + z(u), v + z(v)]$$

= $[u, v] + [u, z(v)] + [z(u), v] + [z(u), z(v)]$
= $[z(u), v] + [u, z(v)]$

since L^* and L are both Lagrangian. It follows that [z(u), v] = [z(v), u] for all $u, v \in L^*$, in other words that ${}^{t}z = z$. The action is free since $t(z)L^* \neq L^*$ whenver $z \neq 0$.

Finally, it suffices to show that if $V = L \oplus L^*$ then $\left\{ \tilde{L} \in \operatorname{Gr}(n, V) \mid \tilde{L} \cap L = \emptyset \right\}$ is open.

EXERCISE 39. Let Z = Z(M). Show that $Z \simeq \operatorname{GL}_1$ and that $Z_{\operatorname{Sp}(V)}(Z) = M$ (hint: note that $V = L \oplus L^*$ is exactly the eigenspace decomposition of V wrt the action of Z).

EXERCISE 40. Fix a symmetric isomorphism $I: L^* \to L$ (i.e. ${}^{t}I = I$) and let $w = \begin{pmatrix} I \\ -I^{-1} \end{pmatrix}$. Then $w \in \operatorname{Sp}(V)$ normalizes Z, on which it acts by the non-trivial automorphism. Further, w exchanges the Lagrangian subspaces L, L^* .

SOLUTION. It is clear that $wL^* = L$ and $wL = L^*$. Also, $w^2 = -\operatorname{Id}_V$ so $w^{-1} = -w$. If $u \in L$ and $t \in \operatorname{GL}_1$ then

$$wm(t)w^{-1}u = wm(t)(I^{-1}u) = wt^{-1}(I^{-1}u) = t^{-1}II^{-1}u = t^{-1}u = m(t^{-1})u$$

(since $I^{-1}u \in L^*$) and similarly for $v \in L^*$, so $wm(t)w^{-1} = m(t^{-1})$. We still need to verify that [wu, wv] = [u, v] for all $u, v \in V$, but it suffices to consider the case $u \in L, v \in L^*$ and then

$$[wu, wv] = [-I^{-1}u, Iv] = [-I^{-1}Iv, u]$$

= - [v, u] = [u, v].

LEMMA 41 (Bruhat decomposition). The "big cell" $NwP \subset Sp(V)$ is open.

PROOF. In terms of Exercise 28 this is the subset where c is invertible. Indeed

$$n(z).w.m(h).n(z') = \begin{pmatrix} 1 & z \\ & 1 \end{pmatrix} \begin{pmatrix} & I \\ -I^{-1} & I \end{pmatrix} \begin{pmatrix} h & & \\ & th^{-1} \end{pmatrix} \begin{pmatrix} 1 & z' \\ & 1 \end{pmatrix} \\ = \begin{pmatrix} -zI^{-1} & I \\ -I^{-1} & 0 \end{pmatrix} \begin{pmatrix} h & hz' \\ & th^{-1} \end{pmatrix} = \begin{pmatrix} -zI^{-1}h & -zI^{-1}hz' + I^{t}h^{-1} \\ -I^{-1}h & -I^{-1}hz' \end{pmatrix}$$

shows that every element of NwP has invertible lower left corner, and conversely given $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we see that h = -Ic and $z = ac^{-1}$ are uniquely determined, and furthermore that

$$w^{-1}n(-z)g = \begin{pmatrix} & -I \\ I^{-1} & \end{pmatrix} \begin{pmatrix} 1 & -ac^{-1} \\ & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} & -I \\ I^{-1} & \end{pmatrix} \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in P.$$

COROLLARY 42. Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and let $n(z) \in N$ be such that cz + d is invertible. Then

$$gn(z)w \in n\left((az+b)(cz+d)^{-1}\right)w.m\left(I(cz+d)^{-1}\right)N.$$

PROOF. We have

$$gn(z)w = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -zI^{-1} & I \\ -I^{-1} & 0 \end{pmatrix} = \begin{pmatrix} -(az+b)I^{-1} & a \\ -(cz+d)I^{-1} & c \end{pmatrix}$$

so, as noted in the lemma, if cz + d is invertible we have $gn(z)w \in n(z')wm(h)N$ with $h = I(cz + d)^{-1}I^{-1}$ and $z' = (az + b)(cz + d)^{-1}$. Note that h and z' are independent of the choice of I.

EXERCISE 43. Show that (u, v) = [u, wv] is a symmetric bilinear map.

PROOF.
$$(v, u) = [v, wu] = [w^{-1}v, u] = [-wv, u] = [u, wv].$$

LEMMA-DEFINITION 44 (Maximal tori). Let $A \subset GL(L)$ be the set of all matrices diagonal wrt to a basis. Then A is a maximal abelian subgroup of GL(L) and $T = \{m(a) \mid a \in A\}$ is a maximal abelian subgroup of Sp(V), the maximal torus.

PROOF. That $Z_{\mathrm{GL}(L)}(A) = A$ is well known. Next, we have $Z_G(T) \subset Z_G(Z(M)) = M$ since $Z(M) \subset T$. It follows that $Z_G(T) = Z_M(A) = m(Z_{\mathrm{GL}(L)}(A)) = m(A) = T$.

LEMMA 45. $\mathfrak{sp}_{2n} = \operatorname{Lie} \operatorname{Sp}_{2n} = \{X \in M_{2n} \mid {}^{t}XJ + JX = 0\}.$ Lie $\operatorname{Sp}(V) = \{X \in \operatorname{End}(V) \mid \forall \underline{v}, \underline{v}' \in V : [X \underline{v}, \underline{v}'] + [\underline{v}, X \underline{v}'] = 0\}.$

EXERCISE 46. $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{sp}_{2n}$ iff d = -ta, tc = c, tb = b. In particular, $\dim \mathfrak{sp}_{2n} = 2n^2 + n$.

EXERCISE 47. Let $\{e_i\}_{i=1}^n : A \to \operatorname{GL}_1$ be the eigenvalues with respect to our fixed basis of W, thought of as functions $T \to \operatorname{GL}_1$. Then the joint eigenvalues $\alpha : T \to \operatorname{GL}_1$ acting on $\operatorname{Lie} \operatorname{Sp}(V)$ are $\{e_i \pm e_j\}_{i \neq j} \cup \{\pm 2e_i\} \cup \{0\}$. The zero eigenspace is Lie T and each other eigenspace is one-dimensional.

SOLUTION. Note that $\operatorname{Lie} \operatorname{Sp}(V) = \operatorname{Lie} M \oplus \operatorname{Lie} N \oplus \operatorname{Lie} \overline{N}$ where $\overline{N} = wNw^{-1}$, and analyze the action of T in each case.

4.1.3. Real symplectic spaces and Siegel upper half-space. Suppose now that V is a *real* symplectic vector space and fix a Lagrangian splitting $V = L \oplus L^*$. Let $G = \operatorname{Sp}(V)$, $G(\mathbb{C}) = \operatorname{Sp}(V \otimes_{\mathbb{R}} \mathbb{C})$. We similar have subgroups $M, M(\mathbb{C}), N, N(\mathbb{C}), P, P(\mathbb{C}), T, T(\mathbb{C})$. Let w be the long Weyl element from the previous section.

EXERCISE 48. For $\zeta = a + ib \in \mathbb{C}$ and $x \in V$ set $\zeta \cdot x = ax + bwx$. This endows V with the structure of a complex vector space.

SOLUTION. We have $w^2 = -\operatorname{Id}_V$.

EXERCISE 49. Suppose that $I: L^* \to L$ is negative definite. Then the real-valued pairing (x, y) = [x, wy] is the real part of a hermitian pairing on V.

SOLUTION. We already know that this is \mathbb{R} -bilinear. To check definiteness let x = q + p with $q \in L$ and $p \in L^*$, in which case

$$(x,x) = [x,wx] = [q+p, Ip - I^{-1}q] = [p, Ip] - [q, I^{-1}q]$$

= - [Ip, p] - [q, I^{-1}p] .

Finally, (ix, y) = (wx, y) = [wx, wy] = [x, y] is symplectic.

EXERCISE 50. The unitary group K associated to this Hermitian pairing is a subgroup of G.

SOLUTION. The unitary group preserves the complex part of the Hermitian pairing.

PROPOSITION 51. K is a maximal closed subgroup of G.

PROOF. The representation of K on $\mathfrak{sp}V$ decomposes as the direct sum Lie $K \oplus \mathfrak{p}$ where \mathfrak{p} is irreducible, so K is a maximal connected subgroup. It follows that any subgroup containing K is contained in the normalizer of K. But if $g \in G$ normalizes K then g maps the inner product (\cdot, \cdot) to another one fixed by K. By Schur's Lemma g is scalar and since $\operatorname{Sp}(V) \subset \operatorname{SL}(V)$ this implies $g = \pm \operatorname{Id}_V \in K$.

COROLLARY 52. Let Z(K) be the centre of the group K (recall that the centre of U(n) is isomorphic to U(1)). Then $Z_G(Z(K)) = K$.

EXERCISE 53. Let $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$. Then $\mathbb{Z} \simeq \text{Hom}(U(1), U(1))$ via the map $n \mapsto (z \mapsto z^n)$ where Hom (U(1), U(1)) is either in the category of compact Lie groups or of real algebraic groups.

COROLLARY 54. There are exactly two isomorphisms $\rho: U(1) \to Z(K)$.

EXERCISE 55. There are two eigenspaces L_{\pm} of ρ in $V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$ (on which U(1) acts by its two isomorphic representations). These spaces are Lagrangian, generic with respect to $L_{\mathbb{C}} \subset V_{\mathbb{C}}$.

LEMMA 56. $\operatorname{Stab}_G(L_+) = K.$

PROOF. Since K centralizes its center, it acts on each eigenspace and $K \subset \operatorname{Stab}_G(L_+)$. Equality follows since K is a maximal closed subgroup.

DEFINITION 57. The image of G/K in $G(\mathbb{C})/P(\mathbb{C})$ as the orbit of L_+ is called Siegel upper halfspace and denoted \mathbb{H} .

LEMMA 58. Let $g \in G$ and $z \in \mathbb{H}$. Then cz + d is invertible.

PROOF. The Lagrangian gL_+ is one of the Lagrangians corresponding to the maximal compact subgroup gKg^{-1} , so it is also generic.

PROPOSITION 59. G/K is open in the affine patch $N_{\mathbb{C}}wP_{\mathbb{C}}/P_{\mathbb{C}}$.

PROOF. dim_{\mathbb{R}} $G/K = 2n^2 + n - n^2 = n(n+1)$. dim_{\mathbb{R}} $N_{\mathbb{C}} = 2 \dim_{\mathbb{C}} N_{\mathbb{C}} = 2\binom{n}{2} = n(n+1)$ since $N_{\mathbb{C}}$ is the space of symmetric matrices.

COROLLARY 60. G/K has a complex structure, compatible with its manifold structure.

4.1.4. Vector bundles and factors of automorphy. In terms of the first section, if W is an F-vectorspace, any finite-dimensional representation $\tilde{\sigma}: M \to \operatorname{GL}(W)$ induces a vector bundle $G \times_P W \to G/P$. The restriction to the affine patch $Nw \subset G/P$ is isomorphic to $N \times W$. Our explicit G-action then reads:

 $g \cdot (n(z)wP, \omega) = \left(n \left((az+b)(cz+d)^{-1} \right) wP, \tilde{\sigma} \left(I(cz+d)^{-1}I^{-1} \right) \right) \,.$

Returning to the case of real scalars, any finite-dimensional complex representation (σ, W) of K induces the vector bundle $G \times_K P \to G/K$. Now $K \subset \operatorname{GL}(L_+)$ is a maximal compact subgroup; by the Weyl unitary trick we can extend σ to a *holomorphic* representation $\tilde{\sigma} \colon \operatorname{GL}(L_+) \to \operatorname{GL}(W)$, equivalently to a representation $\tilde{\sigma} \colon M_{\mathbb{C}} \to \operatorname{GL}(W)$, which we can also pull back to a representation $\tilde{\sigma} \colon P_{\mathbb{C}} \to \operatorname{GL}(W)$.

PROPOSITION 61. The inclusions $G \times_K W \subset Nw \times W \subset G_{\mathbb{C}} \times_{P_{\mathbb{C}}} W$ are compatible with the bundle structures. In particular, $G \times_K W$ is a holomorphic vector bundle over G/K.