CHAPTER 4

Siegel modular forms

4.1. The symplectic group and the Siegel upper half-space

4.1.1. The symplectic group. Fix a field F and a finite-dimensional vectorspace V / F. A symplectic form on V is a non-degenerate bilinear form $[\cdot, \cdot]: V \times$ $V \rightarrow F$ such that $[\underline{v}, \underline{v}]=0$ for all $\underline{v} \in V$. A symplectic vector space is a pair $(V,[\cdot, \cdot])$ as above.

ExERCISE 18. Let $[\cdot, \cdot]: V \times V \rightarrow F$ be a bilinear form.
(1) If the form is symplectic, it is alternating: $[\underline{u}, \underline{v}]=-[\underline{v}, \underline{u}]$.
(2) If char $F \neq 2$ and the form is alternating, it is symplectic.

Proof. $[\underline{u}+\underline{v}, \underline{u}+\underline{v}]=[\underline{u}, \underline{u}]+[\underline{u}, \underline{v}]+[\underline{v}, \underline{u}]+[\underline{v}, \underline{v}]$.
Example 19. Let U be an F-vectorspace and equip $V=U \oplus U^{*}$ with the canonical form $\left[\left(\frac{q}{p}\right),\left(\frac{q^{\prime}}{p^{\prime}}\right)\right]=\left\langle\underline{q}, \underline{p}^{\prime}\right\rangle-\left\langle\underline{q}^{\prime}, \underline{p}\right\rangle$, where the angle brackets denote the pairing between U, U^{*}.

Concretely, let $\left\{\underline{u}_{i}\right\} \subset U$ be a basis, $\left\{\underline{u}_{i}^{*}\right\} \subset U^{*}$ the dual basis. Then if $\underline{v}=\sum_{i=1}^{n} x_{i} \underline{u}_{i}+\sum_{i=1}^{n} x_{n+i} \underline{u}_{i}^{*}$ and $\underline{v}^{\prime}=\sum_{i=1}^{n} y_{i} \underline{u}_{i}+\sum_{i=1}^{n} y_{n+i} \underline{u}_{i}^{*}$ in V we have

$$
\left[\underline{v}, \underline{v}^{\prime}\right]={ }^{\mathrm{t}} \underline{x} J \underline{y}
$$

where $J=\left(\begin{array}{ll} & I_{n} \\ -I_{n} & \end{array}\right)$.
ExErcise 20 (Darboux's Theorem). Show that any symplectic vector space is isomorphic to the canonical example.

Fix a symplectic vector space V.
Lemma-Definition 21. Let $L \subset V$ be a subspace, maximal under the assumption that $[\cdot, \cdot] \upharpoonright_{L}=0$. Then $\operatorname{dim} V=2 \operatorname{dim} L$. Such subspaces are called Lagrangian subspaces.

Proof. Consider the map $V / L \rightarrow L^{*}$ given by the symplectic form.
Lemma-Definition 22. Let $L \subset V$ be a Lagrangian subspace, and let $L^{*} \subset V$ be a subspace, maximal under the assumption that L^{*} is linearly disjoint from L and such that $[\cdot, \cdot] \upharpoonright_{L^{*}}=0$. Then L^{*} is Lagrangian, $V=L \oplus L^{*}$, and the symplectic form induces a non-degenerate pairing between L, L^{*}. Such Lagrangian subspaces are called dual to L. A representation $V=L \oplus L^{*}$ is called a Lagrangian splitting of V.

Notation 23. Given a Lagrangian splitting $V=L \oplus L^{*}$ we identify L^{*} with the dual of L via the symplectic form. We use the notation ${ }^{\text {t }} a$ to denote dual maps with respect to this duality.

Exercise 24 (Darboux's Theorem, again). Show that every symplectic vector space is isomorphic to the canonical example.

Definition 25. Let V be a symplectic vector space. The associated symplectic group is the group

$$
\operatorname{Sp}(V)=\left\{g \in \mathrm{GL}(V) \mid \forall \underline{v}, \underline{v}^{\prime} \in V:\left[g \underline{v}, g \underline{v}^{\prime}\right]=\left[\underline{v}, \underline{v}^{\prime}\right]\right\} .
$$

The group of symplectic similitudes is

$$
\operatorname{GSp}(V)=\left\{g \in \operatorname{GL}(V) \mid \exists \lambda(g) \in F^{\times} \forall \underline{v}, \underline{v}^{\prime} \in V:\left[g \underline{v}, g \underline{v}^{\prime}\right]=\lambda(g)\left[\underline{v}, \underline{v}^{\prime}\right]\right\}
$$

ExERCISE 26. Show that (with $2 n=\operatorname{dim}_{F} V$) these are isomorphic to the groups of F-points of the linear algebraic groups

$$
\begin{aligned}
\mathrm{Sp}_{2 n} & =\left\{g \in \mathrm{GL}_{2 n} \mid{ }^{\mathrm{t}} g J g=J\right\} \\
\mathrm{GSp}_{2 n} & =\left\{g \in \mathrm{GL}_{2 n} \mid \exists \lambda(g) \in \mathrm{GL}_{1}:{ }^{\mathrm{t}} g J g=\lambda(g) J\right\}
\end{aligned}
$$

Show that $\lambda: \mathrm{GSp}_{2 n} \rightarrow \mathrm{GL}_{1}$ is a group homomorphism (and that det $\left\lceil_{\mathrm{GSp}_{2 n}}=\lambda^{n}\right.$ where det: $\mathrm{GL}_{2 n} \rightarrow \mathrm{GL}_{1}$ is the usual determinant).

Notation 27. Fixing a Lagrangian splitting $V=L \oplus L^{*}$ we may write any $g \in \operatorname{GSp}(V)$ in the form $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a \in \operatorname{Hom}(L, L), b \in \operatorname{Hom}\left(L^{*}, L\right)$ etc.

ExErcise 28. $g \in \operatorname{Sp}_{2 n}(V)$ iff ${ }^{\mathrm{t}} a c={ }^{\mathrm{t}} c a \in \operatorname{Hom}\left(L, L^{*}\right),{ }^{\mathrm{t}} b d={ }^{\mathrm{t}} d b \in \operatorname{Hom}\left(L^{*}, L\right)$ and ${ }^{\mathrm{t}} a d-{ }^{\mathrm{t}} b c=\operatorname{Id}_{L^{*}} \in \operatorname{Hom}\left(L^{*}, L^{*}\right)$.

REmARK 29. In the standard example, we may think of $a, b, c, d \in M_{n}(F)$ and ${ }^{\mathrm{t}}$ denoting the usual transpose.

4.1.2. Distinguished subgroups and the affine patch.

ExERCISE 30 (Darboux's theorem, yet again). Show that $\operatorname{Sp}(V)$ acts transitively on the set of pairs $\left(L, L^{*}\right)$ of dual Lagrangian subspaces.

Definition 31. The Levi subgroup [of the Siegel parabolic], to be denoted M, is the point stabilizer of a pair $\left(L, L^{*}\right)$. It is necessarily a closed subgroup.

Note that we have a natural homomorphism $M \rightarrow \mathrm{GL}(L)$ by restriction.
Exercise 32. For $h \in \operatorname{GL}(L)$ let $m(h)=\operatorname{diag}\left(h,{ }^{\mathrm{t}} h^{-1}\right) \in \mathrm{GL}(V)$. Then $m(h) \in \operatorname{Sp}(V)$ and the map $m: \mathrm{GL}(L) \rightarrow M$ is an isomorphism.

Lemma-Definition 33. Let $z \in \operatorname{Hom}\left(L^{*}, L\right)$ be symmetric in that $z={ }^{t} z \in$ $\operatorname{Hom}\left(L^{*}, L^{* *}\right)=\operatorname{Hom}\left(L^{*}, L\right)$. Then $n(z)=\left(\begin{array}{cc}\operatorname{Id}_{L} & z \\ & \operatorname{Id}_{L^{*}}\end{array}\right) \in \operatorname{Sp}(V)$ and $N=$ $\left\{n(z) \mid z \in \operatorname{Sym}^{2} L\right\}$ is a subgroup of $\operatorname{Sp}(V)$, the unipotent radical lof the Siegel parabolic]. The map $z \mapsto n(z)$ is an isomorphism $\left(\operatorname{Sym}^{2} L,+\right) \rightarrow N$.

Exercise 34. Show that N is normalized by M. Show that $P=M N \simeq M \ltimes N$ (the Siegel parabolic subgroup) is the stabilizer of L in the transitive action of $\operatorname{Sp}(V)$ on the set of Lagragian subspaces of V. Show that N a closed subgroup of P, hence of $\operatorname{Sp}(V)$.

Proposition 35. Show the set of Lagrangian subspaces is closed in $\operatorname{Gr}(n, V)$. In particular, $\mathrm{Sp}(V) / P$ is a projective variety and P is a parabolic subgroup.

Definition 36. Call a Lagrangian subspace \tilde{L} generic if its projection onto L^{*} via the decomposition $V=L \oplus L^{*}$ is surjective.

Exercise 37. A Lagrangian is generic iff it is dual to L.
Lemma 38. The set of generic Lagrangians is exactly the N-orbit of L^{*}. It is an open subset of $\operatorname{Sp}(V) / P$ on which N acts freely.

Proof. Since $\operatorname{Sp}(V)$ acts transitively on pairs of dual Lagrangians, $P=\operatorname{Stab}_{G}(L)$ acts transitively on Lagrangians dual to L. But $P=N M$ where $M=\operatorname{Stab}_{P}\left(L^{*}\right)$ and the claim follows.

Proof. Let \tilde{L} be a generic Lagrangian subspace. Then the inclusion $\tilde{L} \subset$ $V \simeq L \oplus L^{*}$ realises \tilde{L} as the graph of a function $z: L^{*} \rightarrow L$, and it is clear that $\tilde{L}=t(z) L^{*}$. To show that $t(z) \in \operatorname{Sp}(V)$ we need to verify that z is self-dual. For this note that ${ }^{\mathrm{t}} z$ is defined by the relation $\left[{ }^{\mathrm{t}} z(u), v\right]=[z(v), u]$ for all $u, v \in L^{*}$. However, $u+z(u), v+z(v)$ both belong to the Lagrangian subspace \tilde{L} and it follows that

$$
\begin{aligned}
0 & =[u+z(u), v+z(v)] \\
& =[u, v]+[u, z(v)]+[z(u), v]+[z(u), z(v)] \\
& =[z(u), v]+[u, z(v)]
\end{aligned}
$$

since L^{*} and L are both Lagrangian. It follows that $[z(u), v]=[z(v), u]$ for all $u, v \in L^{*}$, in other words that ${ }^{\mathrm{t}} z=z$. The action is free since $t(z) L^{*} \neq L^{*}$ whenver $z \neq 0$.

Finally, it suffices to show that if $V=L \oplus L^{*}$ then $\{\tilde{L} \in \operatorname{Gr}(n, V) \mid \tilde{L} \cap L=\emptyset\}$ is open.

Exercise 39. Let $Z=Z(M)$. Show that $Z \simeq \mathrm{GL}_{1}$ and that $Z_{\mathrm{Sp}(V)}(Z)=M$ (hint: note that $V=L \oplus L^{*}$ is exactly the eigenspace decomposition of V wrt the action of Z).

ExERCISE 40. Fix a symmetric isomorphism $I: L^{*} \rightarrow L$ (i.e. ${ }^{\mathrm{t}} I=I$) and let $w=\left({ }_{-I^{-1}} \begin{array}{l}I\end{array}\right)$. Then $w \in \operatorname{Sp}(V)$ normalizes Z, on which it acts by the non-trivial automorphism. Further, w exchanges the Lagrangian subspaces L, L^{*}.

Solution. It is clear that $w L^{*}=L$ and $w L=L^{*}$. Also, $w^{2}=-\operatorname{Id}_{V}$ so $w^{-1}=-w$. If $u \in L$ and $t \in \mathrm{GL}_{1}$ then

$$
w m(t) w^{-1} u=w m(t)\left(I^{-1} u\right)=w t^{-1}\left(I^{-1} u\right)=t^{-1} I I^{-1} u=t^{-1} u=m\left(t^{-1}\right) u
$$

(since $I^{-1} u \in L^{*}$) and similarly for $v \in L^{*}$, so $w m(t) w^{-1}=m\left(t^{-1}\right)$. We still need to verify that $[w u, w v]=[u, v]$ for all $u, v \in V$, but it suffices to consider the case $u \in L, v \in L^{*}$ and then

$$
\begin{aligned}
{[w u, w v] } & =\left[-I^{-1} u, I v\right]=\left[-I^{-1} I v, u\right] \\
& =-[v, u]=[u, v]
\end{aligned}
$$

Lemma 41 (Bruhat decomposition). The "big cell" $N w P \subset \operatorname{Sp}(V)$ is open.

Proof. In terms of Exercise 28 this is the subset where c is invertible. Indeed

$$
\begin{aligned}
n(z) \cdot w \cdot m(h) \cdot n\left(z^{\prime}\right) & =\left(\begin{array}{ll}
1 & z \\
& 1
\end{array}\right)\left(\begin{array}{cc}
& I \\
-I^{-1} &
\end{array}\right)\left(\begin{array}{ll}
h & \\
& { }^{\mathrm{t}} h^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & z^{\prime} \\
& 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-z I^{-1} & I \\
-I^{-1} & 0
\end{array}\right)\left(\begin{array}{cc}
h & h z^{\prime} \\
& { }^{\mathrm{t}} h^{-1}
\end{array}\right)=\left(\begin{array}{cc}
-z I^{-1} h & -z I^{-1} h z^{\prime}+I^{\mathrm{t}} h^{-1} \\
-I^{-1} h & -I^{-1} h z^{\prime}
\end{array}\right)
\end{aligned}
$$

shows that every element of $N w P$ has invertible lower left corner, and conversely given $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we see that $h=-I c$ and $z=a c^{-1}$ are uniquely determined, and furthermore that
$w^{-1} n(-z) g=\left(\begin{array}{cc} & -I \\ I^{-1} & \end{array}\right)\left(\begin{array}{cc}1 & -a c^{-1} \\ & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}I^{-1} & -I\end{array}\right)\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \in P$.

Corollary 42. Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and let $n(z) \in N$ be such that $c z+d$ is invertible. Then

$$
g n(z) w \in n\left((a z+b)(c z+d)^{-1}\right) w \cdot m\left(I(c z+d)^{-1}\right) N .
$$

Proof. We have

$$
g n(z) w=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
-z I^{-1} & I \\
-I^{-1} & 0
\end{array}\right)=\left(\begin{array}{ll}
-(a z+b) I^{-1} & a \\
-(c z+d) I^{-1} & c
\end{array}\right)
$$

so, as noted in the lemma, if $c z+d$ is invertible we have $g n(z) w \in n\left(z^{\prime}\right) w m(h) N$ with $h=I(c z+d)^{-1} I^{-1}$ and $z^{\prime}=(a z+b)(c z+d)^{-1}$. Note that h and z^{\prime} are independent of the choice of I.

EXERCISE 43. Show that $(u, v)=[u, w v]$ is a symmetric bilinear map.
Proof. $(v, u)=[v, w u]=\left[w^{-1} v, u\right]=[-w v, u]=[u, w v]$.
Lemma-Definition 44 (Maximal tori). Let $A \subset \mathrm{GL}(L)$ be the set of all matrices diagonal wrt to a basis. Then A is a maximal abelian subgroup of $\mathrm{GL}(L)$ and $T=\{m(a) \mid a \in A\}$ is a maximal abelian subgroup of $\operatorname{Sp}(V)$, the maximal torus.

Proof. That $Z_{\mathrm{GL}(L)}(A)=A$ is well known. Next, we have $Z_{G}(T) \subset Z_{G}(Z(M))=$ M since $Z(M) \subset T$. It follows that $Z_{G}(T)=Z_{M}(A)=m\left(Z_{G L(L)}(A)\right)=m(A)=$ T.

Lemma 45. $\mathfrak{s p}_{2 n}=\operatorname{Lie}^{\operatorname{Sp}}{ }_{2 n}=\left\{X \in M_{2 n} \mid{ }^{t} X J+J X=0\right\} . \quad \operatorname{Lie} \operatorname{Sp}(V)=$ $\left\{X \in \operatorname{End}(V) \mid \forall \underline{v}, \underline{v}^{\prime} \in V:\left[X \underline{v}, \underline{v}^{\prime}\right]+\left[\underline{v}, X \underline{v}^{\prime}\right]=0\right\}$.

ExERCISE 46. $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathfrak{s p}_{2 n}$ iff $d=-{ }^{\mathrm{t}} a,{ }^{\mathrm{t}} c=c,{ }^{\mathrm{t}} b=b$. In particular, $\operatorname{dim} \mathfrak{s p}_{2 n}=2 n^{2}+n$.

EXERCISE 47. Let $\left\{e_{i}\right\}_{i=1}^{n}: A \rightarrow \mathrm{GL}_{1}$ be the eigenvalues with respect to our fixed basis of W, thought of as functions $T \rightarrow \mathrm{GL}_{1}$. Then the joint eigenvalues $\alpha: T \rightarrow \mathrm{GL}_{1}$ acting on $\operatorname{Lie} \operatorname{Sp}(V)$ are $\left\{e_{i} \pm e_{j}\right\}_{i \neq j} \cup\left\{ \pm 2 e_{i}\right\} \cup\{0\}$. The zero eigenspace is Lie T and each other eigenspace is one-dimensional.

Solution. Note that Lie $\operatorname{Sp}(V)=\operatorname{Lie} M \oplus \operatorname{Lie} N \oplus \operatorname{Lie} \bar{N}$ where $\bar{N}=w N w^{-1}$, and analyze the action of T in each case.
4.1.3. Real symplectic spaces and Siegel upper half-space. Suppose now that V is a real symplectic vector space and fix a Lagrangian splitting $V=$ $L \oplus L^{*}$. Let $G=\operatorname{Sp}(V), G(\mathbb{C})=\operatorname{Sp}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)$. We similar have subgroups $M, M(\mathbb{C}), N, N(\mathbb{C}), P, P(\mathbb{C}), T, T(\mathbb{C})$. Let w be the long Weyl element from the previous section.

EXERCISE 48. For $\zeta=a+i b \in \mathbb{C}$ and $x \in V$ set $\zeta \cdot x=a x+b w x$. This endows V with the structure of a complex vector space.

Solution. We have $w^{2}=-\mathrm{Id}_{V}$.
Exercise 49. Suppose that $I: L^{*} \rightarrow L$ is negative definite. Then the realvalued pairing $(x, y)=[x, w y]$ is the real part of a hermitian pairing on V.

Solution. We already know that this is \mathbb{R}-bilinear. To check definiteness let $x=q+p$ with $q \in L$ and $p \in L^{*}$, in which case

$$
\begin{aligned}
(x, x) & =[x, w x]=\left[q+p, I p-I^{-1} q\right]=[p, I p]-\left[q, I^{-1} q\right] \\
& =-[I p, p]-\left[q, I^{-1} p\right] .
\end{aligned}
$$

Finally, $(i x, y)=(w x, y)=[w x, w y]=[x, y]$ is symplectic.
Exercise 50. The unitary group K associated to this Hermitian pairing is a subgroup of G.

Solution. The unitary group preserves the complex part of the Hermitian pairing.

Proposition 51. K is a maximal closed subgroup of G.
Proof. The representation of K on $\mathfrak{s p} V$ decomposes as the direct sum Lie $K \oplus$ \mathfrak{p} where \mathfrak{p} is irreducible, so K is a maximal connected subgroup. It follows that any subgroup containing K is contained in the normalizer of K. But if $g \in G$ normalizes K then g maps the inner product (\cdot, \cdot) to another one fixed by K. By Schur's Lemma g is scalar and since $\operatorname{Sp}(V) \subset \mathrm{SL}(V)$ this implies $g= \pm \mathrm{Id}_{V} \in K$.

Corollary 52. Let $Z(K)$ be the centre of the group K (recall that the centre of $U(n)$ is isomorphic to $U(1))$. Then $Z_{G}(Z(K))=K$.

Exercise 53. Let $U(1)=\{z \in \mathbb{C}| | z \mid=1\}$. Then $\mathbb{Z} \simeq \operatorname{Hom}(U(1), U(1))$ via the map $n \mapsto\left(z \mapsto z^{n}\right)$ where $\operatorname{Hom}(U(1), U(1))$ is either in the category of compact Lie groups or of real alegbraic groups.

Corollary 54. There are exactly two isomorphisms $\rho: U(1) \rightarrow Z(K)$.
EXERCISE 55. There are two eigenspaces $L_{ \pm}$of ρ in $V_{\mathbb{C}}=V \otimes_{\mathbb{R}} \mathbb{C}$ (on which $U(1)$ acts by its two isomorphic representations). These spaces are Lagrangian, generic with respect to $L_{\mathbb{C}} \subset V_{\mathbb{C}}$.

Lemma 56. $\operatorname{Stab}_{G}\left(L_{+}\right)=K$.
Proof. Since K centralizes its center, it acts on each eigenspace and $K \subset$ $\operatorname{Stab}_{G}\left(L_{+}\right)$. Equality follows since K is a maximal closed subgroup.

Definition 57. The image of G / K in $G(\mathbb{C}) / P(\mathbb{C})$ as the orbit of L_{+}is called Siegel upper halfspace and denoted \mathbb{H}.

Lemma 58. Let $g \in G$ and $z \in \mathbb{H}$. Then $c z+d$ is invertible.

Proof. The Lagrangian $g L_{+}$is one of the Lagrangians corresponding to the maximal compact subgroup $g K g^{-1}$, so it is also generic.

Proposition 59. G / K is open in the affine patch $N_{\mathbb{C}} w P_{\mathbb{C}} / P_{\mathbb{C}}$.
Proof. $\operatorname{dim}_{\mathbb{R}} G / K=2 n^{2}+n-n^{2}=n(n+1) . \operatorname{dim}_{\mathbb{R}} N_{\mathbb{C}}=2 \operatorname{dim}_{\mathbb{C}} N_{\mathbb{C}}=2\binom{n}{2}=$ $n(n+1)$ since $N_{\mathbb{C}}$ is the space of symmetric matrices.

Corollary 60. G/K has a complex structure, compatible with its manifold structure.
4.1.4. Vector bundles and factors of automorphy. In terms of the first section, if W is an F-vectorspace, any finite-dimensional representation $\tilde{\sigma}: M \rightarrow$ $\mathrm{GL}(W)$ induces a vector bundle $G \times{ }_{P} W \rightarrow G / P$. The restriction to the affine patch $N w \subset G / P$ is isomorphic to $N \times W$. Our explicit G-action then reads:

$$
g \cdot(n(z) w P, \omega)=\left(n\left((a z+b)(c z+d)^{-1}\right) w P, \tilde{\sigma}\left(I(c z+d)^{-1} I^{-1}\right)\right) .
$$

Returning to the case of real scalars, any finite-dimensional complex representation (σ, W) of K induces the vector bundle $G \times_{K} P \rightarrow G / K$. Now $K \subset \operatorname{GL}\left(L_{+}\right)$ is a maximal compact subgroup; by the Weyl unitary trick we can extend σ to a holomorphic representation $\tilde{\sigma}: \mathrm{GL}\left(L_{+}\right) \rightarrow \mathrm{GL}(W)$, equivalently to a representation $\tilde{\sigma}: M_{\mathbb{C}} \rightarrow \mathrm{GL}(W)$, which we can also pull back to a representation $\tilde{\sigma}: P_{\mathbb{C}} \rightarrow \mathrm{GL}(W)$.

Proposition 61. The inclusions $G \times_{K} W \subset N w \times W \subset G_{\mathbb{C}} \times_{P_{\mathrm{C}}} W$ are compatible with the bundle structures. In particular, $G \times_{K} W$ is a holomorphic vector bundle over G / K.

