
CHAPTER 4

Siegel modular forms

4.1. The symplectic group and the Siegel upper half-space

4.1.1. The symplectic group. Fix a field F and a finite-dimensional vec-
torspace V/F . A symplectic form on V is a non-degenerate bilinear form [·, ·] : V ×
V → F such that [v, v] = 0 for all v ∈ V . A symplectic vector space is a pair
(V, [·, ·]) as above.

Exercise 18. Let [·, ·] : V × V → F be a bilinear form.
(1) If the form is symplectic, it is alternating: [u, v] = − [v, u].
(2) If charF 6= 2 and the form is alternating, it is symplectic.

Proof. [u+ v, u+ v] = [u, u] + [u, v] + [v, u] + [v, v]. �

Example 19. Let U be an F -vectorspace and equip V = U ⊕ U∗ with the

canonical form
[(
q
p

)
,

(
q′

p′

)]
=
〈
q, p′

〉
−
〈
q′, p

〉
, where the angle brackets denote

the pairing between U,U∗.
Concretely, let {ui} ⊂ U be a basis, {u∗i } ⊂ U∗ the dual basis. Then if

v =
∑n
i=1 xiui +

∑n
i=1 xn+iu

∗
i andv′ =

∑n
i=1 yiui +

∑n
i=1 yn+iu

∗
i in V we have

[v, v′] = txJy

where J =

(
In

−In

)
.

Exercise 20 (Darboux’s Theorem). Show that any symplectic vector space is
isomorphic to the canonical example.

Fix a symplectic vector space V .

Lemma-Definition 21. Let L ⊂ V be a subspace, maximal under the assump-
tion that [·, ·] �L= 0. Then dimV = 2 dimL. Such subspaces are called Lagrangian
subspaces.

Proof. Consider the map V/L→ L∗ given by the symplectic form. �

Lemma-Definition 22. Let L ⊂ V be a Lagrangian subspace, and let L∗ ⊂ V
be a subspace, maximal under the assumption that L∗ is linearly disjoint from L
and such that [·, ·] �L∗= 0. Then L∗ is Lagrangian, V = L⊕L∗, and the symplectic
form induces a non-degenerate pairing between L,L∗. Such Lagrangian subspaces
are called dual to L. A representation V = L⊕L∗ is called a Lagrangian splitting
of V .

Notation 23. Given a Lagrangian splitting V = L ⊕ L∗ we identify L∗ with
the dual of L via the symplectic form. We use the notation ta to denote dual maps
with respect to this duality.
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Exercise 24 (Darboux’s Theorem, again). Show that every symplectic vector
space is isomorphic to the canonical example.

Definition 25. Let V be a symplectic vector space. The associated symplectic
group is the group

Sp(V ) = {g ∈ GL(V ) | ∀v, v′ ∈ V : [gv, gv′] = [v, v′]} .

The group of symplectic similitudes is

GSp(V ) =
{
g ∈ GL(V ) | ∃λ(g) ∈ F×∀v, v′ ∈ V : [gv, gv′] = λ(g) [v, v′]

}
.

Exercise 26. Show that (with 2n = dimF V ) these are isomorphic to the
groups of F -points of the linear algebraic groups

Sp2n =
{
g ∈ GL2n | tgJg = J

}
GSp2n =

{
g ∈ GL2n | ∃λ(g) ∈ GL1 : tgJg = λ(g)J

}
.

Show that λ : GSp2n → GL1 is a group homomorphism (and that det �GSp2n
= λn

where det : GL2n → GL1 is the usual determinant).

Notation 27. Fixing a Lagrangian splitting V = L ⊕ L∗ we may write any

g ∈ GSp(V ) in the form g =

(
a b
c d

)
with a ∈ Hom(L,L), b ∈ Hom(L∗, L) etc.

Exercise 28. g ∈ Sp2n(V ) iff tac = tca ∈ Hom(L,L∗), tbd = tdb ∈ Hom(L∗, L)
and tad− tbc = IdL∗ ∈ Hom(L∗, L∗).

Remark 29. In the standard example, we may think of a, b, c, d ∈Mn(F ) and
t denoting the usual transpose.

4.1.2. Distinguished subgroups and the affine patch.

Exercise 30 (Darboux’s theorem, yet again). Show that Sp(V ) acts transi-
tively on the set of pairs (L,L∗) of dual Lagrangian subspaces.

Definition 31. The Levi subgroup [of the Siegel parabolic], to be denoted M ,
is the point stabilizer of a pair (L,L∗). It is necessarily a closed subgroup.

Note that we have a natural homomorphism M → GL(L) by restriction.

Exercise 32. For h ∈ GL(L) let m(h) = diag(h, th−1) ∈ GL(V ). Then
m(h) ∈ Sp(V ) and the map m : GL(L)→M is an isomorphism.

Lemma-Definition 33. Let z ∈ Hom (L∗, L) be symmetric in that z = tz ∈

Hom (L∗, L∗∗) = Hom(L∗, L). Then n(z) =

(
IdL z

IdL∗

)
∈ Sp(V ) and N ={

n(z) | z ∈ Sym2 L
}

is a subgroup of Sp(V ), the unipotent radical [of the Siegel
parabolic]. The map z 7→ n(z) is an isomorphism

(
Sym2 L,+

)
→ N .

Exercise 34. Show that N is normalized byM . Show that P = MN 'MnN
(the Siegel parabolic subgroup) is the stabilizer of L in the transitive action of Sp(V )
on the set of Lagragian subspaces of V . Show that N a closed subgroup of P , hence
of Sp(V ).

Proposition 35. Show the set of Lagrangian subspaces is closed in Gr (n, V ).
In particular, Sp(V )/P is a projective variety and P is a parabolic subgroup.



4.1. THE SYMPLECTIC GROUP AND THE SIEGEL UPPER HALF-SPACE 10

Definition 36. Call a Lagrangian subspace L̃ generic if its projection onto
L∗ via the decomposition V = L⊕ L∗ is surjective.

Exercise 37. A Lagrangian is generic iff it is dual to L.

Lemma 38. The set of generic Lagrangians is exactly the N -orbit of L∗. It is
an open subset of Sp(V )/P on which N acts freely.

Proof. Since Sp(V ) acts transitively on pairs of dual Lagrangians, P = StabG(L)
acts transitively on Lagrangians dual to L. But P = NM where M = StabP (L∗)
and the claim follows. �

Proof. Let L̃ be a generic Lagrangian subspace. Then the inclusion L̃ ⊂
V ' L ⊕ L∗ realises L̃ as the graph of a function z : L∗ → L, and it is clear that
L̃ = t(z)L∗. To show that t(z) ∈ Sp(V ) we need to verify that z is self-dual. For
this note that tz is defined by the relation [tz(u), v] = [z(v), u] for all u, v ∈ L∗.
However, u+z(u), v+z(v) both belong to the Lagrangian subspace L̃ and it follows
that

0 = [u+ z(u), v + z(v)]

= [u, v] + [u, z(v)] + [z(u), v] + [z(u), z(v)]

= [z(u), v] + [u, z(v)]

since L∗ and L are both Lagrangian. It follows that [z(u), v] = [z(v), u] for all
u, v ∈ L∗, in other words that tz = z. The action is free since t(z)L∗ 6= L∗ whenver
z 6= 0.

Finally, it suffices to show that if V = L⊕L∗ then
{
L̃ ∈ Gr (n, V ) | L̃ ∩ L = ∅

}
is open. �

Exercise 39. Let Z = Z(M). Show that Z ' GL1 and that ZSp(V )(Z) = M
(hint: note that V = L⊕ L∗ is exactly the eigenspace decomposition of V wrt the
action of Z).

Exercise 40. Fix a symmetric isomorphism I : L∗ → L (i.e. tI = I) and

let w =

(
I

−I−1

)
. Then w ∈ Sp(V ) normalizes Z, on which it acts by the

non-trivial automorphism. Further, w exchanges the Lagrangian subspaces L,L∗.

Solution. It is clear that wL∗ = L and wL = L∗. Also, w2 = − IdV so
w−1 = −w. If u ∈ L and t ∈ GL1 then

wm(t)w−1u = wm(t)(I−1u) = wt−1(I−1u) = t−1II−1u = t−1u = m(t−1)u

(since I−1u ∈ L∗) and similarly for v ∈ L∗, so wm(t)w−1 = m(t−1). We still need
to verify that [wu,wv] = [u, v] for all u, v ∈ V , but it suffices to consider the case
u ∈ L, v ∈ L∗ and then

[wu,wv] =
[
−I−1u, Iv

]
=
[
−I−1Iv, u

]
= − [v, u] = [u, v] .

Lemma 41 (Bruhat decomposition). The “big cell” NwP ⊂ Sp(V ) is open.
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Proof. In terms of Exercise 28 this is the subset where c is invertible. Indeed

n(z).w.m(h).n(z′) =

(
1 z

1

)(
I

−I−1

)(
h

th−1

)(
1 z′

1

)
=

(
−zI−1 I
−I−1 0

)(
h hz′

th−1

)
=

(
−zI−1h −zI−1hz′ + Ith−1

−I−1h −I−1hz′

)
shows that every element of NwP has invertible lower left corner, and conversely

given g =

(
a b
c d

)
we see that h = −Ic and z = ac−1 are uniquely determined, and

furthermore that

w−1n(−z)g =

(
−I

I−1

)(
1 −ac−1

1

)(
a b
c d

)
=

(
−I

I−1

)(
0 ∗
∗ ∗

)
=

(
∗ ∗
0 ∗

)
∈ P .

�

Corollary 42. Let g =

(
a b
c d

)
and let n(z) ∈ N be such that cz + d is

invertible. Then

gn(z)w ∈ n
(
(az + b)(cz + d)−1

)
w.m

(
I(cz + d)−1

)
N .

Proof. We have

gn(z)w =

(
a b
c d

)(
−zI−1 I
−I−1 0

)
=

(
−(az + b)I−1 a
−(cz + d)I−1 c

)
so, as noted in the lemma, if cz + d is invertible we have gn(z)w ∈ n(z′)wm(h)N
with h = I(cz + d)−1I−1 and z′ = (az + b)(cz + d)−1. Note that h and z′ are
independent of the choice of I. �

Exercise 43. Show that (u, v) = [u,wv] is a symmetric bilinear map.

Proof. (v, u) = [v, wu] =
[
w−1v, u

]
= [−wv, u] = [u,wv]. �

Lemma-Definition 44 (Maximal tori). Let A ⊂ GL(L) be the set of all ma-
trices diagonal wrt to a basis. Then A is a maximal abelian subgroup of GL(L) and
T = {m(a) | a ∈ A} is a maximal abelian subgroup of Sp(V ), the maximal torus.

Proof. That ZGL(L)(A) = A is well known. Next, we have ZG(T ) ⊂ ZG(Z(M)) =

M since Z(M) ⊂ T . It follows that ZG(T ) = ZM (A) = m
(
ZGL(L)(A)

)
= m(A) =

T . �

Lemma 45. sp2n = Lie Sp2n = {X ∈M2n | tXJ + JX = 0}. Lie Sp(V ) =
{X ∈ End(V ) | ∀v, v′ ∈ V : [Xv, v′] + [v,Xv′] = 0}.

Exercise 46. X =

(
a b
c d

)
∈ sp2n iff d = −ta, tc = c, tb = b. In particular,

dim sp2n = 2n2 + n.

Exercise 47. Let {ei}ni=1 : A → GL1 be the eigenvalues with respect to our
fixed basis of W , thought of as functions T → GL1. Then the joint eigenval-
ues α : T → GL1 acting on Lie Sp(V ) are {ei ± ej}i 6=j ∪ {±2ei} ∪ {0}. The zero
eigenspace is LieT and each other eigenspace is one-dimensional.

Solution. Note that Lie Sp(V ) = LieM ⊕LieN ⊕Lie N̄ where N̄ = wNw−1,
and analyze the action of T in each case.
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4.1.3. Real symplectic spaces and Siegel upper half-space. Suppose
now that V is a real symplectic vector space and fix a Lagrangian splitting V =
L ⊕ L∗. Let G = Sp(V ), G(C) = Sp (V ⊗R C). We similar have subgroups
M,M(C), N,N(C), P, P (C), T, T (C). Let w be the long Weyl element from the
previous section.

Exercise 48. For ζ = a+ ib ∈ C and x ∈ V set ζ ·x = ax+ bwx. This endows
V with the structure of a complex vector space.

Solution. We have w2 = − IdV .

Exercise 49. Suppose that I : L∗ → L is negative definite. Then the real-
valued pairing (x, y) = [x,wy] is the real part of a hermitian pairing on V .

Solution. We already know that this is R-bilinear. To check definiteness let
x = q + p with q ∈ L and p ∈ L∗, in which case

(x, x) = [x,wx] =
[
q + p, Ip− I−1q

]
= [p, Ip]−

[
q, I−1q

]
= − [Ip, p]−

[
q, I−1p

]
.

Finally, (ix, y) = (wx, y) = [wx,wy] = [x, y] is symplectic.

Exercise 50. The unitary group K associated to this Hermitian pairing is a
subgroup of G.

Solution. The unitary group preserves the complex part of the Hermitian
pairing.

Proposition 51. K is a maximal closed subgroup of G.

Proof. The representation of K on spV decomposes as the direct sum LieK⊕
p where p is irreducible, so K is a maximal connected subgroup. It follows that any
subgroup containingK is contained in the normalizer ofK. But if g ∈ G normalizes
K then g maps the inner product (·, ·) to another one fixed byK. By Schur’s Lemma
g is scalar and since Sp(V ) ⊂ SL(V ) this implies g = ± IdV ∈ K. �

Corollary 52. Let Z(K) be the centre of the group K (recall that the centre
of U(n) is isomorphic to U(1)). Then ZG(Z(K)) = K.

Exercise 53. Let U(1) = {z ∈ C | |z| = 1}. Then Z ' Hom(U(1), U(1)) via
the map n 7→ (z 7→ zn) where Hom (U(1), U(1)) is either in the category of compact
Lie groups or of real alegbraic groups.

Corollary 54. There are exactly two isomorphisms ρ : U(1)→ Z(K).

Exercise 55. There are two eigenspaces L± of ρ in VC = V ⊗R C (on which
U(1) acts by its two isomorphic representations). These spaces are Lagrangian,
generic with respect to LC ⊂ VC.

Lemma 56. StabG(L+) = K.

Proof. Since K centralizes its center, it acts on each eigenspace and K ⊂
StabG(L+). Equality follows since K is a maximal closed subgroup. �

Definition 57. The image of G/K in G(C)/P (C) as the orbit of L+ is called
Siegel upper halfspace and denoted H.

Lemma 58. Let g ∈ G and z ∈ H. Then cz + d is invertible.
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Proof. The Lagrangian gL+ is one of the Lagrangians corresponding to the
maximal compact subgroup gKg−1, so it is also generic. �

Proposition 59. G/K is open in the affine patch NCwPC/PC.

Proof. dimRG/K = 2n2 +n−n2 = n(n+1). dimRNC = 2 dimCNC = 2
(
n
2

)
=

n(n+ 1) since NC is the space of symmetric matrices. �

Corollary 60. G/K has a complex structure, compatible with its manifold
structure.

4.1.4. Vector bundles and factors of automorphy. In terms of the first
section, if W is an F -vectorspace, any finite-dimensional representation σ̃ : M →
GL(W ) induces a vector bundle G ×P W → G/P . The restriction to the affine
patch Nw ⊂ G/P is isomorphic to N ×W . Our explicit G-action then reads:

g · (n(z)wP, ω) =
(
n
(
(az + b)(cz + d)−1

)
wP, σ̃

(
I(cz + d)−1I−1

))
.

Returning to the case of real scalars, any finite-dimensional complex represen-
tation (σ,W ) of K induces the vector bundle G×K P → G/K. Now K ⊂ GL(L+)
is a maximal compact subgroup; by the Weyl unitary trick we can extend σ to a
holomorphic representation σ̃ : GL(L+)→ GL(W ), equivalently to a representation
σ̃ : MC → GL(W ), which we can also pull back to a representation σ̃ : PC → GL(W ).

Proposition 61. The inclusions G ×K W ⊂ Nw × W ⊂ GC ×PC W are
compatible with the bundle structures. In particular, G ×K W is a holomorphic
vector bundle over G/K.


