Representations of complex Lie algebras and Weyl character formula. Part 1.

Nicholas Lai

October 1st, 2019

1. Representation of semisimple Lie algebras

Let $\mathfrak g$ be a finite-dimensional complex Lie algebra.

Recall: by Lie's Theorem: If \mathfrak{g} is solvable, and V is a representation of \mathfrak{g} then there is $v \in V$ nonzero such that v is an eigenvector of X for all $X \in \mathfrak{g}$.

A consequence: Let $\mathfrak{g}_{ss} = \mathfrak{g}/\mathrm{Rad}\mathfrak{g}$ where $\mathrm{Rad}(\mathfrak{g})$ is the maximal sovlable subalgebra. Every irrep of \mathfrak{g} is of the form $V_0 \otimes L$ where V_0 is an irreducible representation of \mathfrak{g}_{ss} and L is 1-dimensional.

Upshot: we can often pass representations to the semisimple part.

Question: How do we study representations of \mathfrak{g} , fix \mathfrak{g} to be semisimple.

Step 1 : Find a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$, i.e. a maximal abelian maximal diagonalizable subalgebra of \mathfrak{g} .

Step 2: h acts on g via adjoint representation, we get the Cartan decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\left(igoplus_{lpha\in\mathfrak{h}^*\setminus\{0\}}\mathfrak{g}_lpha
ight).$$

Same for representations $V = \bigoplus_{\alpha \in h^*} V_{\alpha}$ (weight space decomposition).

We define

- roots of $\mathfrak{g}: \alpha \in \mathfrak{h}^* \setminus \{0\}$ st $\mathfrak{g}_{\alpha} \neq 0$.
- root space : \mathfrak{g}_{α}
- $R = \{ \alpha \in \mathfrak{h}^* \text{ roots} \}$
- R generate a lattice $\Lambda_R \subset \mathfrak{h}^*$ of rank dim \mathfrak{h} . Call this root lattice.
- If V is a representation then call dim V_{α} the multiplicity of α
- $\mathfrak{I}_{\beta}: V_{\alpha} \to V_{\alpha+\beta}$

All weights of irreps are congruent modulo Λ_R .

Step 3: Find distinguished subalgebra $s_{\alpha} \simeq \mathfrak{sl}_2\mathbb{C} \subset \mathfrak{g}$ for each α .

set

$$s_{\alpha} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \cong \mathfrak{sl}_{2}.$$

Pick a basis $X_{\alpha}, Y_{\alpha}, H_{\alpha} = [X_{\alpha}, Y_{\alpha}].$

 H_{α} is determined by X_{α}, Y_{α} and the requirement that $\alpha(H) = 2$

Step 4: A consequence based on representations of $\mathfrak{sl}_2\mathbb{C}$, any representation of \mathfrak{g} have *integral* eigenvalues at each H_{α}

Define the weight lattice

$$\Lambda_{\omega} = \{ \beta \in \mathfrak{h}^* : \beta(H_{\alpha}) \in \mathbb{Z} \ \forall \alpha \in R \}.$$

Step 5: Account for the symmetry of $\mathfrak{sl}_2\mathbb{C}$ representations.

For $\alpha \in R$ and $\beta \in \mathfrak{h}^*$ we define

$$W_{\alpha}(\beta) = \beta - \frac{2\beta(H_{\alpha})}{\alpha(H_{\alpha})}\alpha = \beta = \beta(H_{\alpha})\alpha.$$

 W_{α} reflects the lines spanned by α through the hyperplane $SL_{\alpha} = \{\langle H_{\alpha}, \beta \rangle = 0\}$ The Weyl group of \mathfrak{g} is

$$\mathcal{W} = \langle \mathcal{W}_{\alpha} : \alpha \in R \rangle$$

Fact. Set of weights of any representation and its multiplicities is invariant under W.

Step 6 : Choose a "direction" in \mathfrak{h}^* i.e. choose a real linear functional ℓ on Λ_R giving a decomposition $R = \underbrace{R^+}_{\text{positive roots}} \cup \underbrace{R^-}_{\text{negative roots}}$.

Define a highest weight vector of V (rep of \mathfrak{g}) to be an eigenvector v such that v is in the kernel of \mathfrak{g}_{α} for all $\alpha \in \mathbb{R}^+$. The highest weight of v to be othe highest weight.

Fact.

- Every finite-dimensional representation has a highest weight vector.
- Every finite-dimensional irreducible representation has a unique highest weight up to scalar multiple.
- Subspace W of V generated by application \mathfrak{g}_{β} , $\beta \in \mathbb{R}^{-}$ on a highest weight vector is irreducible

- Every vertex of the convex hull of weights of V is conjugate to a highest weight α under W.
- $\alpha(H_{\gamma}) \geq 0$ for all $\gamma \in \mathbb{R}^+$. The locus of these inequalities is a (closed) WEyl chamber.

We get the set of weights of V as erights congruent to a highest weight α modulo Λ_R and lie in the convex hull of images of α under \mathcal{W} .

Theorem. For any α in the intersection between the Weyl chamber with Λ_{ω} , there exists a unique finite dimensional irrep Γ_{α} of \mathfrak{g} with highest weight α .

We get a bijection

Weyl chamber
$$\cap \Lambda_{\mathcal{W}} \longleftrightarrow f.d.$$
 irrep of \mathfrak{g}
 $\alpha \longmapsto \Gamma_{\alpha}$.

Question: how to get multiplicities?

For \mathfrak{sl}_n :

Step 1:
$$\mathfrak{h} = \{\sum_i a_i H_i, \sum a_i = 0\}, \, \mathfrak{h}^* = \mathbb{C}[L_1, \cdots, L_n] / \langle \sum L_i \rangle$$

$$L_i(H_i) = 1.$$

Step 2: F_{ij} are eigenvectors with root $L_i - L_j$. Roots $R = \{L_i - L_j; i \neq j\}$.

root lattice :
$$\lambda_R = \{ \sigma a_i L_i, \sum a_i = 0, a_i \in \mathbb{Z} \}$$

Step 3: $s_{L_i-L_i}$ is generated by E_{ij} , E_{ji} , and H_i-H_j .

Step 4:
$$\sum a_i L_i \in \Lambda_\omega \Leftrightarrow a_\ell \equiv a_k \mod \mathbb{Z}$$
 for all k, ℓ .

Step 5: $W_{L_i-L_j}$ switches L_i and L_j and fixes everything else. $W = S_n$.

$$R^+ = \{L_i - L_j : i < j\}$$

$$R^{-} = \{L_i - L_j : i < j\}$$

Weyl chamber = $\{\sum a_i L_i : a_1 \ge \cdots \ge a_n\}$

For \mathfrak{sl}_3 :

irrep $\Gamma_{a,b}$ weight $aL_1 - bL_3$, $a, b \in \mathbb{N}$.

$$V = \mathbb{C}^3$$
: eigenvalues $\{L_1, L_2, L_3\}$

 V^* : \$ eigenvalues are $\{-L_1, -L_2, -L_3\}$.

 $\operatorname{Sym}^2(V)$, the eigenvalues are $\{2L_i, L_i + L_i\}$.

 $\operatorname{Sym}^2(V) \otimes V^*$ eigenvalues = $\{2L_i - L_j, L_i + L_j - L_k, L_i\}$

$$\operatorname{Sym}^2(V) \otimes V^* \to \operatorname{Sym}^2(V)$$

$$vw \otimes u^* \mapsto \langle v, u^* \rangle w + \langle w, u^* \rangle v.$$

Kernel of this map is $\Gamma_{2,1}$ so $\operatorname{Sym}^2 \otimes V^* = \Gamma_{2,1} \oplus V$.

Back to $\mathfrak{sl}_n\mathbb{C}$.

$$V=\mathbb{C}^n$$

V has highest weight L_1

 $\operatorname{Sym}^m V$ has highest weight mL_1

 $\bigwedge^m V$ has highest weight $L_1 + \cdots + L_m$.

irreps of $\mathfrak{sl}_n\mathbb{C}$ are $\Gamma_{a_1,\ldots,a_{n-a}}$ with highest weight $(a_1+\cdots+a_{n-1})L_1\cdots+a_{n-1}L_{n-1}$.

$$\Gamma_{a_1,\ldots,a_{n-1}} \subset \operatorname{Sym}^{a_1} V \otimes \operatorname{Sym}^{a_2} \bigwedge^2 V \otimes \cdots \otimes \operatorname{Sym}^{a_{n-1}} \bigwedge^{n-1} V.$$

Question: How do you describe $\Gamma_{a_1,...,a_{n-1}}$?

Weyl construction

Let V be an n-dimensional \mathbb{C} -vector space. Consider the natural action of S_d on $V^{\otimes d}$.

Def. Let $\lambda = \lambda_1 \geq \cdots \geq \lambda_n$ be a partition of d

A Weyl module or Weyl contruction associated to λ of a \mathbb{C} -vector space is

$$\mathbb{S}_{\lambda}V := V^{\otimes d} \otimes_{\mathbb{C}S_d} \tilde{V}_{\lambda},$$

where \tilde{V}_{λ} is the irrep of S_d associated to λ (section 6 of Fulton-Harris).

Fact : Any endomorphism g of V lidts to an endomorphism of $\mathbb{S}_{\lambda}V$. Look at the character of $\mathbb{S}_{\lambda}V$

 $\chi_{\mathbb{S}_{\lambda}V} = \text{trace of (image of) } g$

Theorem. $\chi_{\mathbb{S}_{\lambda}V}(g) = S_{\lambda}(x_1, \dots, x_n)$ where x_i are eigenvalues of g

$$\dim \mathbb{S}_{\lambda} V = S_{\lambda}(1, \dots, 1) = \prod_{i,j} \frac{\lambda_i - \lambda_j + (j-i)}{j-i}$$

Those S_{λ} are called *Schur polynomials*.

Brief detour to symmetric polynomials

Write
$$M_{\mu}(x_1, \dots, x_n) = \sum_{\sigma \in S_n} x_{\sigma}(1)^{\mu_1} \cdots x_{\sigma(n)}^{\mu_n}$$

For example $M_{311}(x_1, x_2, x_3) = 2x_1^3x_2x_3 + 2x_1x_2^3x_3 + 2x_1x_2x_3^3$.

$$H_d = \sum_{1 \le i_1 \le \dots \le i_d \le n} x_{i_1 \dots x_{i_d}}, E_d = \sum_{1 \le j_1 < \dots < j_d \le k} x_{j_1} \dots x_{j_d}.$$

Schur polynomials are a specific basis for the algebra of symmetric functions,

 $S_{\lambda}(x_1, \dots, x_n) = \sum_{T \in SSYT(\lambda)} x^T$ where $x^T = x^{T_1} \dots x^{T_n}$ and $SSYT(\lambda)$ is the set of semistandard Young Tableau of shape λ (semistandard = can have repeated numbers).

Facts. $+ s_{\lambda} = \sum_{\mu \leq \lambda} K_{\lambda\mu} m_{\mu}.$

 $K_{\lambda\mu}$ are Kostka numbers : number of SSYT of shape λ with weightt μ .

• Jacobi bialternant formula :

$$[X^{\mu_i}] = \begin{bmatrix} X_1^{\mu_1} & \cdots & X_n^{\mu_1} \\ & \vdots & \\ X_1^{\mu_n} & \cdots & X_n^{\mu_n} \end{bmatrix}$$

Then $S_{\lambda} = \frac{\det[X^{\lambda_i - n - i}]}{\det[X^{u - i}]}$. Note that the denominator is a Vandermonde determinant.

Back to \mathfrak{sl}_n .

Try to apply Weyl's construction on $V = \mathbb{C}^n$. $\mathbb{S}_{\lambda}V$ can be seen as a rep of $\mathrm{SL}_n(\mathbb{C})$ and get a derived action of \mathfrak{sl}_n .

Prop. $\mathbb{S}_{\lambda}\mathbb{C}^n$ is the irrep of $\mathfrak{sl}_n\mathbb{C}$ if highest weight $\lambda_1L_1+\cdots+\lambda_nL_n$.

"Proof." $S_{\lambda} = \sum_{\mu \leq \lambda} K_{\lambda\mu} m_{\mu}$ where $K_{\lambda\lambda} = 1$ and m_{μ} corresponds to weight $\sum \lambda_i L_i$.

Rem: $\mathbb{S}_{\lambda}V \approx \mathbb{S}_{\mu}V$ if and only if $\lambda_i - \mu_i = C$.

So $\Lambda_{a_1,\ldots,a_{n-1}} \to \mathbb{S}_{a_1+\cdots+a_{n-1}},\ldots,a_{n-1}$

Cor. dim $\Gamma_{a_1,\cdots,a_{n-1}} = \prod_{1 \leq i < j \leq n} \frac{a_i + \cdots a_{j-1} + (j-i)}{j-i}$.

Facts

• $\mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu}V = \bigoplus_{\nu} c_{\lambda\mu}^{\nu} \mathbb{S}_{\nu} \mathbb{S}_{\nu}(V)$ where $C_{\lambda\mu}^{v}$ is the Littlewood-Richardson coefficient.