Representations of complex Lie algebras and Weyl character formula. Part 1.

Nicholas Lai

October 1st, 2019

1. Representation of semisimple Lie algebras

Let \mathfrak{g} be a finite-dimensional complex Lie algebra.
Recall : by Lie's Theorem: If \mathfrak{g} is solvable, and V is a representation of \mathfrak{g} then there is $v \in V$ nonzero such that v is an eigenvector of X for all $X \in \mathfrak{g}$.

A consequence : Let $\mathfrak{g}_{s s}=\mathfrak{g} / \operatorname{Rad} \mathfrak{g}$ where $\operatorname{Rad}(\mathfrak{g})$ is the maximal sovlable subalgebra. Every irrep of \mathfrak{g} is of the form $V_{0} \otimes L$ where V_{0} is an irreducible representation of $\mathfrak{g}_{s s}$ and L is 1-dimensional.

Upshot: we can often pass representations to the semisimple part.
Question: How do we study representations of \mathfrak{g}, fix \mathfrak{g} to be semisimple.
Step 1 : Find a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$, i.e. a maximal abelian maximal diagonalizable subalgebra of \mathfrak{g}.

Step 2: \mathfrak{h} acts on \mathfrak{g} via adjoint representation, we get the Cartan decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \mathfrak{h} * \backslash\{0\}} \mathfrak{g}_{\alpha}\right) .
$$

Same for representations $V=\bigoplus_{\alpha \in \mathfrak{h}^{*}} V_{\alpha}$ (weight space decomposition).
We define

- roots of $\mathfrak{g}: \alpha \in \mathfrak{h}^{*} \backslash\{0\}$ st $\mathfrak{g}_{\alpha} \neq 0$.
- root space : \mathfrak{g}_{α}
- $R=\left\{\alpha \in \mathfrak{h}^{*}\right.$ roots $\}$
- R generate a lattice $\Lambda_{R} \subset \mathfrak{h}^{*}$ of rank $\operatorname{dim} \mathfrak{h}$. Call this root lattice.
- If V is a representation then call $\operatorname{dim} V_{\alpha}$ the multiplicity of α
- $\mathfrak{I}_{\beta}: V_{\alpha} \rightarrow V_{\alpha+\beta}$

All weights of irreps are congruent modulo Λ_{R}.
Step 3 : Find distinguished subalgebra $s_{\alpha} \simeq \mathfrak{s l}_{2} \mathbb{C} \subset \mathfrak{g}$ for each α.
set

$$
s_{\alpha}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right] \cong \mathfrak{s l}_{2}
$$

Pick a basis $X_{\alpha}, Y_{\alpha}, H_{\alpha}=\left[X_{\alpha}, Y_{\alpha}\right]$.
H_{α} is determined by X_{α}, Y_{α} and the requirement that $\alpha(H)=2$
Step 4 : A consequence based on representations of $\mathfrak{s l}_{2} \mathbb{C}$, any representation of \mathfrak{g} have integral eigenvalues at each H_{α}
Define the weight lattice

$$
\Lambda_{\omega}=\left\{\beta \in \mathfrak{h}^{*}: \beta\left(H_{\alpha}\right) \in \mathbb{Z} \forall \alpha \in R\right\}
$$

Step 5 : Account for the symmetry of $\mathfrak{s l}_{2} \mathbb{C}$ representations.
For $\alpha \in R$ and $\beta \in \mathfrak{h}^{*}$ we define

$$
\mathcal{W}_{\alpha}(\beta)=\beta-\frac{2 \beta\left(H_{\alpha}\right)}{\alpha\left(H_{\alpha}\right)} \alpha=\beta=\beta\left(H_{\alpha}\right) \alpha
$$

\mathcal{W}_{α} reflects the lines spanned by α through the hyperplane $S L_{\alpha}=\left\{\left\langle H_{\alpha}, \beta\right\rangle=0\right\}$
The Weyl group of \mathfrak{g} is

$$
\mathcal{W}=\left\langle\mathcal{W}_{\alpha}: \alpha \in R\right\rangle
$$

Fact. Set of weights of any representation and its multiplicities is invariant under \mathcal{W}.

Step 6 : Choose a "direction" in \mathfrak{h}^{*} i.e. choose a real linear funcitonal ℓ on Λ_{R} giving a decomposition $R=\underbrace{R^{+}}_{\text {positive roots }} \cup \underbrace{R^{-}}_{\text {negative roots }}$.

Define a highest weight vector of V (rep of $\mathfrak{g) ~ t o ~ b e ~ a n ~ e i g e n v e c t o r ~} v$ such that v is in the kernel of \mathfrak{g}_{α} for all $\alpha \in R^{+}$. The highest weight of v to be othe highest weight.

Fact.

- Every finite-dimensional representation has a highest weight vector.
- Every finite-dimensional irreducible representation has a unique highest weight up to scalar multiple.
- Subspace W of V generated by application $\mathfrak{g}_{\beta}, \beta \in R^{-}$on a highest weight vector is irreducible
- Every vertex of the convex hull of weights of V is conjugate to a highest weight α under \mathcal{W}.
- $\alpha\left(H_{\gamma}\right) \geq 0$ for all $\gamma \in R^{+}$. The locus of these inequalities is a (closed) WEyl chamber.

We get the set of weights of V as erights congruent to a highest weight α modulo Λ_{R} and lie in the convex hull of images of α under \mathcal{W}.

Theorem. For any α in the intersection between the Weyl chamber with Λ_{ω}, there exists a unique finite dimensional irrep Γ_{α} of \mathfrak{g} with highest weight α.

We get a bijection

$$
\text { Weyl chamber } \cap \Lambda_{\mathcal{W}} \longleftrightarrow \text { f.d. irrep of } \mathfrak{g}
$$

$$
\alpha \longmapsto \Gamma_{\alpha} .
$$

Question : how to get multiplicities ?
For $\mathfrak{s l}_{n}$:
Step 1: $\mathfrak{h}=\left\{\sum_{i} a_{i} H_{i}, \sum a_{i}=0\right\}, \mathfrak{h}^{*}=\mathbb{C}\left[L_{1}, \cdots, L_{n}\right] /\left\langle\sum L_{i}\right\rangle$
$L_{i}\left(H_{i}\right)=1$.
Step 2: $F_{i j}$ are eigenvectors with root $L_{i}-L_{j}$. Roots $R=\left\{L_{i}-L_{j} ; i \neq j\right\}$.
root lattice : $\lambda_{R}=\left\{\sigma a_{i} L_{i}, \sum a_{i}=0, a_{i} \in \mathbb{Z}\right\}$
Step 3: $s_{L_{i}-L_{j}}$ is generated by $E_{i j}, E_{j i}$, and $H_{i}-H_{j}$.
Step 4: $\sum a_{i} L_{i} \in \Lambda_{\omega} \Leftrightarrow a_{\ell} \equiv a_{k} \bmod \mathbb{Z}$ for all k, ℓ.
Step 5: $\mathcal{W}_{L_{i}-L_{j}}$ switches L_{i} and L_{j} and fixes everything else. $\mathcal{W}=S_{n}$.
$R^{+}=\left\{L_{i}-L_{j}: i<j\right\}$
$R^{-}=\left\{L_{i}-L_{j}: i<j\right\}$
Weyl chamber $=\left\{\sum a_{i} L_{i}: a_{1} \geq \cdots \geq a_{n}\right\}$
For $\mathfrak{s l}_{3}$:
irrep $\Gamma_{a, b}$ weight $a L_{1}-b L_{3}, a, b \in \mathbb{N}$.
$V=\mathbb{C}^{3}$: eigenvalues $\left\{L_{1}, L_{2}, L_{3}\right\}$
$\$ \mathrm{~V}^{\wedge} *: \$$ eigenvalues are $\left\{-L_{1},-L_{2},-L_{3}\right\}$.
$\operatorname{Sym}^{2}(V)$, the eigenvalues are $\left\{2 L_{i}, L_{i}+L_{j}\right\}$.
$\operatorname{Sym}^{2}(V) \otimes V^{*}$ eigenvalues $=\left\{2 L_{i}-L_{j}, L_{i}+L_{j}-L_{k}, L_{i}\right\}$

$$
\operatorname{Sym}^{2}(V) \otimes V^{*} \rightarrow \operatorname{Sym}^{2}(V)
$$

$$
v w \otimes u^{*} \mapsto\left\langle v, u^{*}\right\rangle w+\left\langle w, u^{*}\right\rangle v
$$

Kernel of this map is $\Gamma_{2,1}$ so $\operatorname{Sym}^{2} \otimes V^{*}=\Gamma_{2,1} \oplus V$.
Back to $\mathfrak{s l}_{n} \mathbb{C}$.
$V=\mathbb{C}^{n}$
V has highest weight L_{1}
Sym $^{m} V$ has highest weight $m L_{1}$
$\bigwedge^{m} V$ has highest weight $L_{1}+\cdots+L_{m}$.
irreps of $\mathfrak{s l}_{n} \mathbb{C}$ are $\Gamma_{a_{1}, \ldots, a_{n-a}}$ with highest weight $\left(a_{1}+\cdots+a_{n-1}\right) L_{1} \cdots+$ $a_{n-1} L_{n-1}$.
$\Gamma_{a_{1}, \ldots, a_{n-1}} \subset \operatorname{Sym}^{a_{1}} V \otimes \operatorname{Sym}^{a_{2}} \bigwedge^{2} V \otimes \cdots \otimes \operatorname{Sym}^{a_{n-1}} \bigwedge^{n-1} V$.
Question : How do you describe $\Gamma_{a_{1}, \ldots, a_{n-1}}$?

Weyl construction

Let V be an n-dimensional \mathbb{C}-vector space. Consider the natural action of S_{d} on $V^{\otimes d}$.

Def. Let $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{n}$ be a partition of d
A Weyl module or Weyl contruction associated to λ of a \mathbb{C}-vector space is

$$
\mathbb{S}_{\lambda} V:=V^{\otimes d} \otimes_{\mathbb{C} S_{d}} \tilde{V}_{\lambda}
$$

where \tilde{V}_{λ} is the irrep of S_{d} associated to λ (section 6 of Fulton-Harris).
Fact: Any endomorphism g of V lidts to an endomorphism of $\mathbb{S}_{\lambda} V$. Look at the character of $\mathbb{S}_{\lambda} V$
$\chi_{\mathbb{S}_{\lambda} V}=$ trace of (image of) g
Theorem. $\chi_{\mathbb{S}_{\lambda} V}(g)=S_{\lambda}\left(x_{1}, \cdots, x_{n}\right)$ where x_{i} are eigenvalues of g

$$
\operatorname{dim} \mathbb{S}_{\lambda} V=S_{\lambda}(1, \cdots, 1)=\prod_{i, j} \frac{\lambda_{i}-\lambda_{j}+(j-i)}{j-i}
$$

Those S_{λ} are called Schur polynomials.
Brief detour to symmetric polynomials
Write $M_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} x_{\sigma}(1)^{\mu_{1}} \cdots x_{\sigma(n)}^{\mu_{n}}$.
For example $M_{311}\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{3} x_{2} x_{3}+2 x_{!} x_{2}^{3} x_{3}+2 x_{1} x_{2} x_{3}^{3}$.
$H_{d}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d} \leq n} x_{i_{1} \cdots x_{i_{d}}}, E_{d}=\sum_{1 \leq j_{1}<\cdots<j_{d} \leq k} x_{j_{1}} \cdots x_{j_{d}}$.
Schur polynomials are a specific basis for the algebra of symmetric functions,
$S_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=\sum_{T \in S S Y T(\lambda)} x^{T}$ where $x^{T}=x^{T_{1}} \cdots x^{T_{n}}$ and $\operatorname{SSY}(\lambda)$ is the set of semistandard Young Tableau of shape λ (semistandard $=$ can have repeated numbers).

Facts. $+s_{\lambda}=\sum_{\mu \leq \lambda} K_{\lambda \mu} m_{\mu}$.
$K_{\lambda \mu}$ are Kostka numbers : number of SSYT of shape λ with weightt μ.

- Jacobi bialternant formula :

$$
\left[X^{\mu_{i}}\right]=\left[\begin{array}{ccc}
X_{1}^{\mu_{1}} & \cdots & X_{n}^{\mu_{1}} \\
& \vdots & \\
X_{1}^{\mu_{n}} & \cdots & X_{n}^{\mu_{n}}
\end{array}\right]
$$

Then $S_{\lambda}=\frac{\operatorname{det}\left[X^{\lambda_{i}-n-i}\right]}{\operatorname{det}\left[X^{u-i}\right]}$. Note that the denominator is a Vandermonde determinant.

Back to $\mathfrak{s l}_{n}$.
Try to apply Weyl's construction on $V=\mathbb{C}^{n} . \mathbb{S}_{\lambda} V$ can be seen as a rep of $\mathrm{SL}_{n}(\mathbb{C})$ and get a derived action of $\mathfrak{s l}_{n}$.

Prop. $\mathbb{S}_{\lambda} \mathbb{C}^{n}$ is the irrep of $\mathfrak{s l}_{n} \mathbb{C}$ if highest weight $\lambda_{1} L_{1}+\cdots+\lambda_{n} L_{n}$.
"Proof." $S_{\lambda}=\sum_{\mu \leq \lambda} K_{\lambda \mu} m_{\mu}$ where $K_{\lambda \lambda}=1$ and m_{μ} corresponds to weight $\sum \lambda_{i} L_{i}$.

Rem : $\mathbb{S}_{\lambda} V \approx \mathbb{S}_{\mu} V$ if and only if $\lambda_{i}-\mu_{i}=C$.
So $\Lambda_{a_{1}, \ldots, a_{n-1}} \rightarrow \mathbb{S}_{a_{1}+\cdots+a_{n-1}}, \ldots, a_{n-1}$
Cor. $\operatorname{dim} \Gamma_{a_{1}, \cdots, a_{n-1}}=\prod_{1 \leq i<j \leq n} \frac{a_{i}+\cdots a_{j-1}+(j-i)}{j-i}$.
Facts.

- $\mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu} V=\oplus_{\nu} c_{\lambda \mu}^{\nu} \mathbb{S}_{\nu} \mathbb{S}_{\nu}(V)$ where $C_{\lambda \mu}^{v}$ is the Littlewood-Richardson coefficient.

