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2. Geometric Satake equivalence

2.1. Affine Grassmannians

O = C[[$]]

K = C(($))

H complex algebraic group

HO = C-group scheme which represents the functor R 7→ H(C[[$]]) ( = L+H
in Timo’s lecture). HK = C-group scheme which represents the functor R 7→
H(C(($))) ( = LH in Timo’s lecture).

From now on G is a complex connected reductive algebraic group

B is a Borel subgroup

T maximal torus

B− is the opposite Borel subgroup

N = unipotent radical of B

$Nˆ- = $ unipotent radical of B−

W Weyl group of (G,T )

X∨ = X?(T ) cocharacter of T

simple coroots = ∆∨s = ∆∨s (G,B, T ) ⊂ positive roots = ∆∨+ = ∆∨+(G,B, T ) ⊂
∆∨ = ∆∨(G,T ) coroots of (G,T )

X∨+ : dominant characters

Same for X ⊃ ∆ ⊃ ∆+ ⊃ ∆s

Dominance order on X∨. λ, µ ∈ X∨.

λ ≤ µ⇔ λ− µ ∈ Z≥0∆∨+.

ρ = halfsum of positive roots (〈ρ,−〉 : X∨ → 1
2Z)
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Affine Grassmannian GrG = ((GK/GO)et)red ind-reduced, ind-proper ind-
scheme, ind-(of finite type).

2.2 Decompositions

The embedding T ⊂ G induces a closed embedding GrT → GrG : $λTO 7→ Lλ.

GrT = X∨ via λ 7→ $λTO.

Cartan decomposition. GrG = tλ∈X∨+GrλG with GrλG = O · Lλ. (smooth
locally closed subvariety).

We have GrλG =
⊔
λ∈X∨+ µ≤λ GrµG (proj var with algebraic stratification)

dim(GrλG) = 〈3p, λ〉

P−λ = parabolic subgroup of G containing B− and associated with {α ∈
∆s|〈λ, α〉 = 0}.

Then we have GrλG → G/P−λ via Lλ 7→ P−λ . For λ ∈ X∨+ This is a Zariski locally
trivial fibration whose fibers are affine spaces.

Consequences. GrλG is simply connected (no nontrivial local systems)

Bruhat decomposition . I ⊂ G0 Iwahori subgroup → B ⊂ G via $ 7→ 0.

Then GrG =
⊔
λ∈X∨ GrG,λ with GrG,λ = I · L)λ (isom. to an affine space).

For λ ∈ X∨+ we have

GrλG =
⊔

µ∈W ·λ

GrG,µ

|

V
G/P−λ =

⊔
w∈W/Wλ

BwP−λ /P
−
λ (µ = wλ).

Iwasawa Decomposition.

GrG =
⊔
λ∈X∨ Sλ with Sλ = NK · Lλ

=
⊔
λ∈X∨ Tλ with Tλ = N−K · Lλ.

Both Sλ and Tλ are ind-varieties.

Sλ =
⊔
ν∈X∨ ν≤λ Sν

Tλ =
⊔
ν∈X∨ ν≥λ Tν
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2.3. The Satake Category

k commutative Noetherian ring of finite global dimension.

Satake Category. PervGO(GrG, k) GO-equivariant. k perverse sheaves on
GrG with respect to the stratification by G0-orbits.

Pf here. GrG is an ind-variety and not a variety. G0 is not of finite type.

One overcomes these difficulties in the following way :

if X ⊂ GrG is a finite union of G0 orbits, then X is a (proj) variety. Moreover,
the G0-action on X factors through the action of L+

i G for i >> 0.

Fact. The category PervL+
i
G(X, k) does not depend on the choice of i.

Then we set PervG0(GrG, k) = lim
→
X

PervGO(X, k) where X runs over finite

closed unions of GO-orbits.

Remark. If Xq ⊂ X2, PervGO(X1, k) → PervGO(X2, k) is fully faithful so
there are no subtleties in the colimit. Below we will ignore those subtleties.

2.4 Convolution

We consider the twisted product

GrG×̃GrG = ((GK ×GrG)/GO)et,red
we have m : GrG×̃GrG → GrG induced by (g, hGO) 7→ ghGO.

Prop (Mirkovic - Vilonen). m is stratified semismall with respect to the
stratifications (GrλG×̃GrµG)λ,µ∈X∨+ and (GrλG)λ∈X∨+ .

FOr F ,G ∈ PervGO (GrG, k) we consider p∗(F)L �k G) ∈ Perv(GK ×GrG, k).

p : GK → GrG projection. This is a GO equivariant perverse sheaf (for the
diagonal GO action). So by descent there exists a perverse sheaf F�̃G on
GrG×̃GrG whose pullback to GK ×GrG is p∗FL �k G, take

F ? G := m∗(F�̃G) textperversesheafbystratifiedsemismallness.

Facts.

• Convolution is associative (i.e. there eists a canonical isom (− ?−) ?− =
− ? (− ?−) functorial in each entry).

• The object δGr := skyscraper sheaf at L0 ∈ GrG is a unit object (i.e. there
are canonical isom δGr ×− ' id, d ' − ? δGr)

So it is a monoidal category.
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2.5. Statement

G∨k = “Langlands dual reductive k-group” = Spec(k)×Spec(Z) G
∨
Z where G∨Z is

the unique split reductive group over Z whose base change to C whose root
datum is (X∨,X,∆∨,∆) (exchange roots and coroots).

Rep(G∨k )= cat of algebraic G∨k -modules (O(G∨k )-comodule) which are finitely
generated as k-modules.

Theorem. There exists an equivalence of monoidal categories (PervG0(GrG, k), ?) '
(Rep(G∨k ),⊗) under which the forgetful functor Rep(G∨k )→ Modfgk corresponds
to H∗(GrG,−) : PervGO (GrG, k)→Modfgk .

Remarks.

• (1.1) Simple objects (in case k is an algebraically closed field) in Rep(G∨k )
are classified by highest weights (in X∨+).

• (1.2) In PervG0(Gr, k) : classified by pairs (GrλG,L). Here L must be k.
The simple objects are parametrized by X∨+.

• (2) Assume further that char(k) = 0. Then we will see later that
PervGO (GrG, k) is semisimple. The same is true for Rep(G∨k ).

The existence of an equivalence Rep(G∨k ) ' PervGO(GrG, k) is obvious. The
main content of the theorem is then the compatibility with monoidal structures.

• (3) We will do slightly better. We will construct a group scheme G̃k
for any k and an equivalence PervG0(GrG, k) ' Rep(G̃k) such that
G̃k′ ' Spec(k′) ×Speck G̃k for any k → k′ and show that G̃Z is split
reductive (with a canonical maximal torus) with appropriate root
datum.

#### 2.6. Commutativity

The tensor product in Rep(G∨k ) is commutative, i.e. for M,N ∈ Rep(G∨k ) we
have a canonical isomorphism M ⊗k N

∼→ N ⊗kM so if the theorem is true, the
same should hold for PervGO (Gr, k).

In fac tthe proof will require to construct such an isomorphism before proving
the theorem.

Idea of the construction. (Drinfeld) Use the moduli representation of GrG.
We set G = A1

C, C× = Z1
C\{0}. Recall from Timo’s lecture that GrG represents

the functor R 7→ {(E , β)|E G−bundle on CR = C×SpecR β : E◦
C×
R

∼→ E|C×
R
}/ '.

“global” version. GrG,C → C ind-scheme which represents the functor

R 7→
{

(y, E , β)|y ∈ C(R) E G-bundle on CR β : E◦CR\Γy∼→ECR\Γy
}
.

But one can do that also over C2 : one gets the Beilinson-Drinfeld Grassmannian
GrG,G2 : ind-scheme over C2 which represents
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R 7→
{

(y1, y2, E , C)|y!, y2 ∈ C(R) E G-bundle over CR β : E◦CR\(Γy1∪Γy2 )
∼→ ECR\(Γy1∪Γy2 )

}
.

Facts.

• (1) This functor is represented by and ind-proper ind-scheme over C2

• (2) GrG,C2 ×C2 ∆C = GrG,C ×C ∆C = GrG ×∆C

• (3) GrG,C2 ×C2 (C2\∆C) = (GrG,C × GrG,C)|C2\∆C ' GrG × GrG ×
(C2\∆C).

To E one associates the pair (E1, E2) where Ei is the G-bundle obtained by glueing
E◦CR\Γyi using the trivialization β (j 6= i).

We set i : GrG ×∆C → GrG,C2 (closed embedding)

j : GrG ×GrG × C2\∆C → GrG,C2 (open embedding)

Theorem (Belinson - Drinfeld). There exists an isomorphism

i∗
(
j!∗

pH0
(
F1

L �k F2
L �k kC2\∆C [2]

))[−1]
' (F1 ×F2)L �k k∆C2 [1].

The construction on the left handside is called the fusion product.

Application. We have σ : GrG,C2
∼→ GrG,C2 obtained by switching y1 and y2.

Restrict trivially to ∆C and to (gGO, hGO, y1, y2) 7→ (hGO, gGO, y1, y2) over
C2\∆C. Using the fact that i∗ ' i∗σ∗ (because σi = i) one obtains a canonical
isomorphism F1 ? F2

∼→ F2 ? F1.

Remark. On fact one needs to twist this isomorphism by a sign depending on
the connected component supporting F1 and F2 to get the actual commutativity
contraint.
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