Geometric Satake equivalence

Simon Riche

September 3rd, 2019

2. Geometric Satake equivalence

2.1. Affine Grassmannians

 $\mathcal{O} = \mathbb{C}[[\varpi]]$

 $\mathcal{K}=\mathbb{C}((\varpi))$

H complex algebraic group

 $H_{\mathcal{O}} = \mathbb{C}$ -group scheme which represents the functor $R \mapsto H(\mathbb{C}[[\varpi]])$ ($= L^+H$ in Timo's lecture). $H_{\mathcal{K}} = \mathbb{C}$ -group scheme which represents the functor $R \mapsto H(\mathbb{C}((\varpi)))$ (= LH in Timo's lecture).

From now on G is a complex connected reductive algebraic group

B is a Borel subgroup

T maximal torus

 B^- is the opposite Borel subgroup

N = unipotent radical of B

 $N^- =$ unipotent radical of B^-

W Weyl group of (G, T)

 $\mathbb{X}^{\vee} = \mathbf{X}_{\star}(T)$ cocharacter of T

 $\begin{array}{l} \text{simple coroots} = \Delta_s^{\vee} = \Delta_s^{\vee}(G,B,T) \ \subset \text{positive roots} = \Delta_+^{\vee} = \Delta_+^{\vee}(G,B,T) \subset \Delta^{\vee} = \Delta^{\vee}(G,T) \text{ coroots of } (G,T) \end{array}$

 \mathbb{X}^{\vee}_{+} : dominant characters

Same for $\mathbb{X} \supset \Delta \supset \Delta_+ \supset \Delta_s$

Dominance order on \mathbb{X}^{\vee} **.** $\lambda, \mu \in \mathbb{X}^{\vee}$.

 $\lambda \leq \mu \Leftrightarrow \lambda - \mu \in \mathbb{Z}_{\geq 0} \Delta_+^{\vee}.$

 $\rho = \text{halfsum of positive roots } (\langle \rho, - \rangle : \mathbb{X}^{\vee} \to \frac{1}{2}\mathbb{Z})$

Affine Grassmannian $\operatorname{Gr}_G = ((G_{\mathcal{K}}/G_{\mathcal{O}})_{et})_{red}$ ind-reduced, ind-proper ind-scheme, ind-(of finite type).

2.2 Decompositions

The embedding $T \subset G$ induces a closed embedding $\operatorname{Gr}_T \to \operatorname{Gr}_G : \varpi^{\lambda} T_{\mathcal{O}} \mapsto L_{\lambda}$. $\operatorname{Gr}_T = \mathbb{X}^{\vee}$ via $\lambda \mapsto \varpi^{\lambda} T_{\mathcal{O}}$.

Cartan decomposition. $\operatorname{Gr}_G = \sqcup_{\lambda \in \mathbb{X}_+^{\vee}} \operatorname{Gr}_G^{\lambda}$ with $\operatorname{Gr}_G^{\lambda} = \mathcal{O} \cdot L_{\lambda}$. (smooth locally closed subvariety).

We have $\overline{\operatorname{Gr}_G^{\lambda}} = \bigsqcup_{\lambda \in \mathbb{X}_+^{\vee}} \underset{\mu < \lambda}{\operatorname{Gr}_G^{\mu}}$ (proj var with algebraic stratification)

 $\dim(\operatorname{Gr}_G^{\lambda}) = \langle 3p, \lambda \rangle$

 $P_{\lambda}^{-} = \text{parabolic subgroup of } G \text{ containing } B^{-} \text{ and associated with } \{\alpha \in \Delta_{s} | \langle \lambda, \alpha \rangle = 0 \}.$

Then we have $\operatorname{Gr}_{G}^{\lambda} \to G/P_{\lambda}^{-}$ via $L_{\lambda} \mapsto P_{\lambda}^{-}$. For $\lambda \in \mathbb{X}_{+}^{\vee}$ This is a Zariski locally trivial fibration whose fibers are affine spaces.

Consequences. $\operatorname{Gr}_{G}^{\lambda}$ is simply connected (no nontrivial local systems)

Bruhat decomposition . $I \subset G_0$ Iwahori subgroup $\rightarrow B \subset G$ via $\varpi \mapsto 0$.

Then $\operatorname{Gr}_G = \bigsqcup_{\lambda \in \mathbb{X}^{\vee}} \operatorname{Gr}_{G,\lambda}$ with $\operatorname{Gr}_{G,\lambda} = I \cdot L \lambda$ (isom. to an affine space). For $\lambda \in \mathbb{X}_+^{\vee}$ we have

$$\operatorname{Gr}_{G}^{\lambda} = \bigsqcup_{\mu \in W \cdot \lambda} \operatorname{Gr}_{G,\mu}$$

| V

$$G/P_{\lambda}^{-} = \bigsqcup_{w \in W/W_{\lambda}} BwP_{\lambda}^{-}/P_{\lambda}^{-} \ (\mu = w\lambda).$$

Iwasawa Decomposition.

 $\begin{aligned} \operatorname{Gr}_{G} &= \bigsqcup_{\lambda \in \mathbb{X}^{\vee}} S_{\lambda} \text{ with } S_{\lambda} = N_{\mathcal{K}} \cdot L_{\lambda} \\ &= \bigsqcup_{\lambda \in \mathbb{X}^{\vee}} T_{\lambda} \text{ with } T_{\lambda} = N_{\mathcal{K}}^{-} \cdot L_{\lambda}. \\ \text{Both } S_{\lambda} \text{ and } T_{\lambda} \text{ are ind-varieties.} \\ &\overline{S_{\lambda}} = \bigsqcup_{\nu \in \mathbb{X}^{\vee}} \sum_{\nu \leq \lambda} S_{\nu} \\ &\overline{T_{\lambda}} = \bigsqcup_{\nu \in \mathbb{X}^{\vee}} \sum_{\nu \geq \lambda} T_{\nu} \end{aligned}$

2.3. The Satake Category

k commutative Noetherian ring of finite global dimension.

Satake Category. Perv_{$G_{\mathcal{O}}$} (Gr_G, k) $G_{\mathcal{O}}$ -equivariant. k perverse sheaves on Gr_G with respect to the stratification by G_0 -orbits.

Pf here. Gr_G is an ind-variety and not a variety. G_0 is not of finite type.

One overcomes these difficulties in the following way :

if $X \subset \operatorname{Gr}_G$ is a finite union of G_0 orbits, then X is a (proj) variety. Moreover, the G_0 -action on X factors through the action of L_i^+G for i >> 0.

Fact. The category $\operatorname{Perv}_{L^+G}(X,k)$ does not depend on the choice of *i*.

Then we set $\operatorname{\mathbf{Perv}}_{G_0}(\operatorname{Gr}_G, k) = \lim_{\stackrel{\rightarrow}{x}} \operatorname{\mathbf{Perv}}_{G_{\mathcal{O}}}(X, k)$ where X runs over finite closed unions of $G_{\mathcal{O}}$ -orbits.

Remark. If $X_q \subset X_2$, $\operatorname{Perv}_{G_{\mathcal{O}}}(X_1, k) \to \operatorname{Perv}_{G_{\mathcal{O}}}(X_2, k)$ is fully faithful so there are no subtleties in the colimit. Below we will ignore those subtleties.

2.4 Convolution

We consider the twisted product

$$\operatorname{Gr}_{G} \times \operatorname{Gr}_{G} = ((G_{\mathcal{K}} \times \operatorname{Gr}_{G})/G_{\mathcal{O}})_{et,red}$$

we have $m : \operatorname{Gr}_G \times \operatorname{Gr}_G \to \operatorname{Gr}_G$ induced by $(g, hG_{\mathcal{O}}) \mapsto ghG_{\mathcal{O}}$.

Prop (Mirkovic - Vilonen). m is stratified semismall with respect to the stratifications $(\operatorname{Gr}_{G}^{\lambda} \times \operatorname{Gr}_{G}^{\mu})_{\lambda,\mu \in \mathbb{X}_{+}^{\vee}}$ and $(\operatorname{Gr}_{G}^{\lambda})_{\lambda \in \mathbb{X}_{+}^{\vee}}$.

FOr $\mathcal{F}, \mathcal{G} \in \mathbf{Perv}_{G_{\mathcal{O}}}(\mathrm{Gr}_G, k)$ we consider $p^*(\mathcal{F})^L \boxtimes_k \mathcal{G}) \in \mathbf{Perv}(G_{\mathcal{K}} \times \mathrm{Gr}_G, k)$.

 $p: G_{\mathcal{K}} \to \operatorname{Gr}_G$ projection. This is a $G_{\mathcal{O}}$ equivariant perverse sheaf (for the diagonal $G_{\mathcal{O}}$ action). So by descent there exists a perverse sheaf $\mathcal{F} \widetilde{\boxtimes} \mathcal{G}$ on $\operatorname{Gr}_G \widetilde{\times} \operatorname{Gr}_G$ whose pullback to $G_{\mathcal{K}} \times \operatorname{Gr}_G$ is $p^* \mathcal{F}^L \boxtimes_k \mathcal{G}$, take

 $\mathcal{F} \star \mathcal{G} := m_*(\mathcal{F} \tilde{\boxtimes} \mathcal{G}) \ textperverses heaf by stratified semismallness.$

Facts.

- Convolution is associative (i.e. there exists a canonical isom $(-\star -) \star = -\star (-\star -)$ functorial in each entry).
- The object $\delta_{Gr} :=$ skyscraper sheaf at $L_0 \in Gr_G$ is a unit object (i.e. there are canonical isom $\delta_{Gr} \times \simeq \operatorname{id}, d \simeq \star \delta_{Gr}$)

So it is a *monoidal* category.

2.5. Statement

 G_k^{\vee} = "Langlands dual reductive k-group" = Spec(k) $\times_{\text{Spec}(\mathbb{Z})} G_{\mathbb{Z}}^{\vee}$ where $G_{\mathbb{Z}}^{\vee}$ is the unique split reductive group over \mathbb{Z} whose base change to \mathbb{C} whose root datum is $(\mathbb{X}^{\vee}, \mathbb{X}, \Delta^{\vee}, \Delta)$ (exchange roots and coroots).

 $\operatorname{Rep}(G_k^{\vee}) = \operatorname{cat}$ of algebraic G_k^{\vee} -modules ($\mathcal{O}(G_k^{\vee})$ -comodule) which are finitely generated as k-modules.

Theorem. There exists an equivalence of monoidal categories ($\mathbf{Perv}_{G_0}(\mathrm{Gr}_G, k), \star$) \simeq ($\mathrm{Rep}(G_k^{\vee}), \otimes$) under which the forgetful functor $\mathrm{Rep}(G_k^{\vee}) \to \mathrm{Mod}_k^{fg}$ corresponds to $\mathbb{H}^*(\mathrm{Gr}_G, -): \mathbf{Perv}_{G_{\mathcal{O}}}(\mathrm{Gr}_G, k) \to \mathbf{Mod}_k^{fg}$.

Remarks.

- (1.1) Simple objects (in case k is an algebraically closed field) in Rep(G[∨]_k) are classified by highest weights (in X[∨]₊).
- (1.2) In $\operatorname{Perv}_{G_0}(\operatorname{Gr}, k)$: classified by pairs $(\operatorname{Gr}_G^{\lambda}, \mathcal{L})$. Here \mathcal{L} must be \underline{k} . The simple objects are parametrized by \mathbb{X}_+^{\vee} .
- (2) Assume further that $\operatorname{char}(k) = 0$. Then we will see later that $\operatorname{\mathbf{Perv}}_{G_{\mathcal{O}}}(\operatorname{Gr}_{G}, k)$ is semisimple. The same is true for $\operatorname{Rep}(G_{k}^{\vee})$.

The existence of an equivalence $\operatorname{Rep}(G_k^{\vee}) \simeq \operatorname{Perv}_{G_{\mathcal{O}}}(\operatorname{Gr}_G, k)$ is obvious. The main content of the theorem is then the compatibility with monoidal structures.

(3) We will do slightly better. We will construct a group scheme \tilde{G}_k for any k and an equivalence $\operatorname{Perv}_{G_0}(\operatorname{Gr}_G, k) \simeq \operatorname{Rep}(\tilde{G}_k)$ such that $\tilde{G}_{k'} \simeq \operatorname{Spec}(k') \times_{\operatorname{Spec} k} \tilde{G}_k$ for any $k \to k'$ and show that $\tilde{G}_{\mathbb{Z}}$ is split reductive (with a canonical maximal torus) with appropriate root datum.

2.6. Commutativity

The tensor product in $\operatorname{Rep}(G_k^{\vee})$ is commutative, i.e. for $M, N \in \operatorname{Rep}(G_k^{\vee})$ we have a canonical isomorphism $M \otimes_k N \xrightarrow{\sim} N \otimes_k M$ so if the theorem is true, the same should hold for $\operatorname{Perv}_{G_{\mathcal{O}}}(\operatorname{Gr}, k)$.

In fac the proof will require to construct such an isomorphism before proving the theorem.

Idea of the construction. (Drinfeld) Use the moduli representation of Gr_G . We set $G = \mathbb{A}^1_{\mathbb{C}}, C^{\times} = \mathbb{Z}^1_{\mathbb{C}} \setminus \{0\}$. Recall from Timo's lecture that Gr_G represents the functor $R \mapsto \{(\mathcal{E}, \beta) | \mathcal{E} G$ -bundle on $C_R = C \times \operatorname{Spec}_R \beta : \mathcal{E}^{\circ}_{C_R} \xrightarrow{\sim} \mathcal{E}|_{C_R^{\times}} \} / \simeq$.

"global" version. $\operatorname{Gr}_{G,C} \to C$ ind-scheme which represents the functor

$$R \mapsto \left\{ (y, \mathcal{E}, \beta) | y \in C(\mathbb{R}) \ \mathcal{E} \ G\text{-bundle on } C_R \ \beta : \mathcal{E}_{C_R \setminus \Gamma_y}^{\circ} \overline{\sim} \to \mathcal{E}_{C_R \setminus \Gamma_y} \right\}$$

But one can do that also over C^2 : one gets the Beilinson-Drinfeld Grassmannian ${\rm Gr}_{G,G^2}$: ind-scheme over C^2 which represents

$$R \mapsto \left\{ (y_1, y_2, \mathcal{E}, C) | y_!, y_2 \in C(R) \ \mathcal{E} \ G\text{-bundle over } C_R \ \beta : \mathcal{E}^{\circ}_{C_R \setminus (\Gamma_{y_1} \cup \Gamma_{y_2})} \xrightarrow{\sim} \mathcal{E}_{C_R \setminus (\Gamma_{y_1} \cup \Gamma_{y_2})} \right\}.$$

Facts.

- (1) This functor is represented by and ind-proper ind-scheme over C^2
- (2) $\operatorname{Gr}_{G,C^2} \times_{C^2} \Delta C = \operatorname{Gr}_{G,C} \times_C \Delta C = \operatorname{Gr}_G \times \Delta C$
- (3) $\operatorname{Gr}_{G,C^2} \times_{C^2} (C^2 \setminus \Delta C) = (\operatorname{Gr}_{G,C} \times \operatorname{Gr}_{G,C})|_{C^2 \setminus \Delta C} \simeq \operatorname{Gr}_G \times \operatorname{Gr}_G \times (C^2 \setminus \Delta C).$

To \mathcal{E} one associates the pair $(\mathcal{E}_1, \mathcal{E}_2)$ where \mathcal{E}_i is the *G*-bundle obtained by glueing $\mathcal{E}_{C_R \setminus \Gamma_{y_i}}^{\circ}$ using the trivialization β $(j \neq i)$.

We set $i : \operatorname{Gr}_G \times \Delta C \to \operatorname{Gr}_{G,C^2}$ (closed embedding)

 $j: \operatorname{Gr}_G \times \operatorname{Gr}_G \times C^2 \setminus \Delta C \to \operatorname{Gr}_{G,C^2}$ (open embedding)

Theorem (Belinson - Drinfeld). There exists an isomorphism

$$i^* \left(j_{!*}{}^p \mathcal{H}^0 \left(\mathcal{F}_1{}^L \boxtimes_k \mathcal{F}_2{}^L \boxtimes_k \underline{k}_{C^2 \setminus \Delta C}[2] \right) \right)^{[-1]} \simeq (\mathcal{F}_1 \times \mathcal{F}_2)^L \boxtimes_k \underline{k}_{\Delta C^2}[1].$$

The construction on the left handside is called the *fusion product*.

Application. We have $\sigma : \operatorname{Gr}_{G,C^2} \xrightarrow{\sim} \operatorname{Gr}_{G,C^2}$ obtained by switching y_1 and y_2 . Restrict trivially to ΔC and to $(gG_{\mathcal{O}}, hG_{\mathcal{O}}, y_1, y_2) \mapsto (hG_{\mathcal{O}}, gG_{\mathcal{O}}, y_1, y_2)$ over $C^2 \setminus \Delta C$. Using the fact that $i^* \simeq i^* \sigma^*$ (because $\sigma_i = i$) one obtains a canonical isomorphism $\mathcal{F}_1 \star \mathcal{F}_2 \xrightarrow{\sim} \mathcal{F}_2 \star \mathcal{F}_1$.

Remark. On fact one needs to twist this isomorphism by a sign depending on the connected component supporting \mathcal{F}_1 and \mathcal{F}_2 to get the actual commutativity contraint.