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2. Geometric Satake equivalence

2.1. Affine Grassmannians
0 = C[[=]]

K =C((w))

H complex algebraic group

Ho = C-group scheme which represents the functor R — H(C[[w]]) (= LTH
in Timo’s lecture). Hx = C-group scheme which represents the functor R +—
H(C((w))) ( = LH in Timo’s lecture).

From now on G is a complex connected reductive algebraic group
B is a Borel subgroup

T maximal torus

B~ is the opposite Borel subgroup

N = unipotent radical of B

$N"- = § unipotent radical of B~

W Weyl group of (G,T)

XY = X,(T) cocharacter of T

simple coroots = AY = AY(G,B,T) C positive roots = AY = AY(G,B,T) C
AY = AY(G,T) coroots of (G,T)

XY : dominant characters

Same for X DA D AL DA,
Dominance order on XV. )\, u € XV.
A< pe XN—pe LAY

p = halfsum of positive roots ({p, —) : XV — 17)



Affine Grassmannian Grg = ((Gx/Go)et)red ind-reduced, ind-proper ind-
scheme, ind-(of finite type).

2.2 Decompositions
The embedding 7' C G induces a closed embedding Gry — Grg : @w*Tp +— L.
Gry = XY via A = w'To.

Cartan decomposition. Grg = UAEvarGré; with Grg = O - Ly. (smooth
locally closed subvariety).

We have Gryy = | | AEXY u<A Grf. (proj var with algebraic stratification)

dim(Gryy) = (3p, \)

P = parabolic subgroup of G containing B~ and associated with {a €
Agl(A, @) = 0}.

Then we have Gryy — G/Py via Ly — Py, . For A\ € XY This is a Zariski locally
trivial fibration whose fibers are affine spaces.

Consequences. Grg is simply connected (no nontrivial local systems)
Bruhat decomposition . [ C Gy Iwahori subgroup — B C G via w > 0.
Then Grg = | |, cxv Gra,n with Grg,x = I - L) (isom. to an affine space).

For A € XY we have

GI‘?;: |_| GI“G#

pneW-A

G/Py = || BwPy /Py (n=wh).
weW /Wi

Iwasawa Decomposition.

Grg = | Jyexv Sx with Sy = Nic - Ly
= yexv Th with Ty = N - L.
Both S, and T are ind-varieties.
Sy =yexv verSv

T\ = |—|V€XV v>A T,



2.3. The Satake Category
k commutative Noetherian ring of finite global dimension.

Satake Category. Pervg, (Grg, k) Go-equivariant. k perverse sheaves on
Grg with respect to the stratification by Gg-orbits.

Pf here. Grg is an ind-variety and not a variety. Gg is not of finite type.
One overcomes these difficulties in the following way :

if X C Grg is a finite union of Gy orbits, then X is a (proj) variety. Moreover,
the Gg-action on X factors through the action of LZFG for i >> 0.

Fact. The category Perv, +.,(X, k) does not depend on the choice of i.

Then we set Pervg, (Grg, k) = limPerveg, (X, k) where X runs over finite
—
X

closed unions of Gp-orbits.

Remark. If X, C X5, Pervg, (X1,k) = Pervg, (X, k) is fully faithful so
there are no subtleties in the colimit. Below we will ignore those subtleties.

2.4 Convolution

We consider the twisted product

GI‘G;GI‘G = ((G}C X Grg)/Go)etymd
we have m : GrgxGrg — Grg induced by (g, hGo) — ghGo.

Prop (Mirkovic - Vilonen). m is stratified semismall with respect to the
stratifications (Gré%Gré)A,uew and (Grz\;),\@q.

FOr F,G € Pervg, (Grg, k) we consider p*(F)L Ky, G) € Perv(Gx x Grg, k).

p : Gx — Grg projection. This is a G equivariant perverse sheaf (fgr the
diagonal Go action). So by descent there exists a perverse sheaf FXG on
GrexGre whose pullback to G x Grg is p* FL K, G, take

F %G := m,(FXG) textperversesheafbystratifiedsemismallness.

Facts.

» Convolution is associative (i.e. there eists a canonical isom (—* —) * — =
— % (— % —) functorial in each entry).

o The object d¢, := skyscraper sheaf at Ly € Grg is a unit object (i.e. there
are canonical isom dgy X — =~ id, d ~ — % dgy)

So it is a monoidal category.



2.5. Statement

G\ = “Langlands dual reductive k-group” = Spec(k) Xgpec(z) Gy where Gy is
the unique split reductive group over Z whose base change to C whose root
datum is (XV,X, AV, A) (exchange roots and coroots).

Rep(G))= cat of algebraic G)/-modules (O(G),)-comodule) which are finitely
generated as k-modules.

Theorem. There exists an equivalence of monoidal categories (Perve, (Grg, k), *) ~
(Rep(GY,), ®) under which the forgetful functor Rep(GY) — Modig corresponds
to H*(Grg, —) : Pervg, (Gra, k) — Mod/?.

Remarks.

 (1.1) Simple objects (in case k is an algebraically closed field) in Rep(G)))
are classified by highest weights (in XY ).

+ (1.2) In Pervg, (Gr, k) : classified by pairs (Grgy, £). Here £ must be k.
The simple objects are parametrized by Xi

e (2) Assume further that char(k) = 0. Then we will see later that
Pervg,, (Grg, k) is semisimple. The same is true for Rep(GY).

The existence of an equivalence Rep(G))) ~ Pervg,, (Grg, k) is obvious. The
main content of the theorem is then the compatibility with monoidal structures.

e (3) We will do slightly better. We will construct a group scheme G
for any k and an equivalence Pervg, (Grg, k) =~ Rep(G},) such that
Gy ~ Spec(k') Xspeck G for any k — k' and show that Gz is split
reductive (with a canonical maximal torus) with appropriate root
datum.

#HH#H## 2.6. Commutativity

The tensor product in Rep(GY) is commutative, i.e. for M, N € Rep(G)) we

have a canonical isomorphism M ®; N = N ®; M so if the theorem is true, the
same should hold for Pervg, (Gr, k).

In fac tthe proof will require to construct such an isomorphism before proving
the theorem.

Idea of the construction. (Drinfeld) Use the moduli representation of Grg.

We set G = Af, C* = ZE\{0}. Recall from Timo’s lecture that Grg represents

the functor R — {(€, B)|€ G —bundle on Cr = C' x SpecR 3 : £, = 5|C§}/ ~,
R

“global” version. Grg,c — C ind-scheme which represents the functor

R {(y,e, B)ly € C(R) € G-bundle on Cr 5 : 58R\ryz—>5cp,\ry} .

But one can do that also over C? : one gets the Beilinson-Drinfeld Grassmannian
Grg g2 © ind-scheme over C? which represents



R {(yl,yg, 5, C’)|yg,y2 c C(R) &€ G-bundle over CR ﬂ : ggR\(Fyl ury,) = gCR\(Fyl Upw)} .

Facts.
e (1) This functor is represented by and ind-proper ind-scheme over C?
o (2) GI"G’Cz X2 AC = GI‘G7C Xc AC = GI‘G x AC

. (3) GI“G7C2 X2 (CQ\AC) = (GIG,C X GrG,C)|02\AC ~ GI‘G X GI‘G X
(C2\AC).

To £ one associates the pair (£1, &) where &; is the G-bundle obtained by glueing
é'gR\Fyi using the trivialization 8 (j # ).

We set i : Grg x AC' — Grg 2 (closed embedding)

j: Grg x Grg x C*\AC — Grg c2 (open embedding)

Theorem (Belinson - Drinfeld). There exists an isomorphism

-1

]
i (j!*pHO (]:1L Xy, Fo* Ky Ec2\Ac[2])) > (Fi x Fo)* Ry kpce[1].

The construction on the left handside is called the fusion product.

Application. We have o : Grg,c2 — Grg c2 obtained by switching y; and ys.
Restrict trivially to AC and to (¢Go,hGo,y1,y2) — (hGo, 9Go,y1,y2) over
C?\AC. Using the fact that i* ~ i*o* (because o; = i) one obtains a canonical
isomorphism F; « Fo = Fo x Fi.

Remark. On fact one needs to twist this isomorphism by a sign depending on
the connected component supporting F; and F, to get the actual commutativity
contraint.
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