Geometric Satake equivalence

Simon Riche

September 3rd, 2019

2. Geometric Satake equivalence

2.1. Affine Grassmannians

$\mathcal{O}=\mathbb{C}[[\varpi]]$
$\mathcal{K}=\mathbb{C}((\varpi))$
H complex algebraic group
$H_{\mathcal{O}}=\mathbb{C}$-group scheme which represents the functor $R \mapsto H(\mathbb{C}[[\varpi]])\left(=L^{+} H\right.$ in Timo's lecture). $H_{\mathcal{K}}=\mathbb{C}$-group scheme which represents the functor $R \mapsto$ $H(\mathbb{C}((\varpi)))(=L H$ in Timo's lecture $)$.
From now on G is a complex connected reductive algebraic group
B is a Borel subgroup
T maximal torus
B^{-}is the opposite Borel subgroup
$N=$ unipotent radical of B
$\$ \mathrm{~N}^{\wedge}-=\$$ unipotent radical of B^{-}
W Weyl group of (G, T)
$\mathbb{X}^{\vee}=\mathbf{X}_{\star}(T)$ cocharacter of T
simple coroots $=\Delta_{s}^{\vee}=\Delta_{s}^{\vee}(G, B, T) \subset$ positive roots $=\Delta_{+}^{\vee}=\Delta_{+}^{\vee}(G, B, T) \subset$ $\Delta^{\vee}=\Delta^{\vee}(G, T)$ coroots of (G, T)
\mathbb{X}_{+}^{\vee} : dominant characters
Same for $\mathbb{X} \supset \Delta \supset \Delta_{+} \supset \Delta_{s}$
Dominance order on $\mathbb{X}^{\vee} . \lambda, \mu \in \mathbb{X}^{\vee}$.
$\lambda \leq \mu \Leftrightarrow \lambda-\mu \in \mathbb{Z}_{\geq 0} \Delta_{+}^{\vee}$.
$\rho=$ halfsum of positive roots $\left(\langle\rho,-\rangle: \mathbb{X}^{\vee} \rightarrow \frac{1}{2} \mathbb{Z}\right)$

Affine Grassmannian $\operatorname{Gr}_{G}=\left(\left(G_{\mathcal{K}} / G_{\mathcal{O}}\right)_{e t}\right)_{\text {red }}$ ind-reduced, ind-proper indscheme, ind-(of finite type).

2.2 Decompositions

The embedding $T \subset G$ induces a closed embedding $\operatorname{Gr}_{T} \rightarrow \operatorname{Gr}_{G}: \varpi^{\lambda} T_{\mathcal{O}} \mapsto L_{\lambda}$. $\mathrm{Gr}_{T}=\mathbb{X}^{\vee}$ via $\lambda \mapsto \varpi^{\lambda} T_{\mathcal{O}}$.
Cartan decomposition. $\operatorname{Gr}_{G}=\sqcup_{\lambda \in \mathbb{X}_{+}^{\vee}} \operatorname{Gr}_{G}^{\lambda}$ with $\operatorname{Gr}_{G}^{\lambda}=\mathcal{O} \cdot L_{\lambda}$. (smooth locally closed subvariety).
We have $\overline{\operatorname{Gr}_{G}^{\lambda}}=\bigsqcup_{\lambda \in \mathbb{X}_{+}^{\vee} \mu \leq \lambda} \operatorname{Gr}_{G}^{\mu}$ (proj var with algebraic stratification)
$\operatorname{dim}\left(\operatorname{Gr}_{G}^{\lambda}\right)=\langle 3 p, \lambda\rangle$
$P_{\lambda}^{-}=$parabolic subgroup of G containing B^{-}and associated with $\{\alpha \in$ $\left.\Delta_{s} \mid\langle\lambda, \alpha\rangle=0\right\}$.
Then we have $\operatorname{Gr}_{G}^{\lambda} \rightarrow G / P_{\lambda}^{-}$via $L_{\lambda} \mapsto P_{\lambda}^{-}$. For $\lambda \in \mathbb{X}_{+}^{\vee}$ This is a Zariski locally trivial fibration whose fibers are affine spaces.
Consequences. $\operatorname{Gr}_{G}^{\lambda}$ is simply connected (no nontrivial local systems)
Bruhat decomposition.$\quad I \subset G_{0}$ Iwahori subgroup $\rightarrow B \subset G$ via $\varpi \mapsto 0$.
Then $\operatorname{Gr}_{G}=\bigsqcup_{\lambda \in \mathbb{X} \vee} \operatorname{Gr}_{G, \lambda}$ with $\operatorname{Gr}_{G, \lambda}=I \cdot L$) λ (isom. to an affine space).
For $\lambda \in \mathbb{X}_{+}^{\vee}$ we have

$$
\operatorname{Gr}_{G}^{\lambda}=\bigsqcup_{\mu \in W \cdot \lambda} \operatorname{Gr}_{G, \mu}
$$

1
V

$$
G / P_{\lambda}^{-}=\bigsqcup_{w \in W / W_{\lambda}} B w P_{\lambda}^{-} / P_{\lambda}^{-}(\mu=w \lambda)
$$

Iwasawa Decomposition.

$\operatorname{Gr}_{G}=\bigsqcup_{\lambda \in \mathbb{X}^{\vee}} S_{\lambda}$ with $S_{\lambda}=N_{\mathcal{K}} \cdot L_{\lambda}$
$=\bigsqcup_{\lambda \in \mathbb{X} \vee} T_{\lambda}$ with $T_{\lambda}=N_{\mathcal{K}}^{-} \cdot L_{\lambda}$.
Both S_{λ} and T_{λ} are ind-varieties.
$\overline{S_{\lambda}}=\bigsqcup_{\nu \in \mathbb{X} \vee}{ }_{\nu \leq \lambda} S_{\nu}$

2.3. The Satake Category

k commutative Noetherian ring of finite global dimension.
Satake Category. $\operatorname{Perv}_{G_{\mathcal{O}}}\left(\operatorname{Gr}_{G}, k\right) G_{\mathcal{O}}$-equivariant. k perverse sheaves on Gr_{G} with respect to the stratification by G_{0}-orbits.

Pf here. Gr_{G} is an ind-variety and not a variety. G_{0} is not of finite type.
One overcomes these difficulties in the following way :
if $X \subset \mathrm{Gr}_{G}$ is a finite union of G_{0} orbits, then X is a (proj) variety. Moreover, the G_{0}-action on X factors through the action of $L_{i}^{+} G$ for $i \gg 0$.
Fact. The category $\operatorname{Perv}_{L_{i}^{+}}(X, k)$ does not depend on the choice of i.
Then we set $\operatorname{Perv}_{G_{0}}\left(\operatorname{Gr}_{G}, k\right)=\underset{\vec{x}}{\lim } \operatorname{Perv}_{G_{\mathcal{O}}}(X, k)$ where X runs over finite closed unions of $G_{\mathcal{O}}$-orbits.

Remark. If $X_{q} \subset X_{2}, \operatorname{Perv}_{G_{\mathcal{O}}}\left(X_{1}, k\right) \rightarrow \operatorname{Perv}_{G_{\mathcal{O}}}\left(X_{2}, k\right)$ is fully faithful so there are no subtleties in the colimit. Below we will ignore those subtleties.

2.4 Convolution

We consider the twisted product

$$
\operatorname{Gr}_{G} \tilde{\times} \operatorname{Gr}_{G}=\left(\left(G_{\mathcal{K}} \times \operatorname{Gr}_{G}\right) / G_{\mathcal{O}}\right)_{e t, \text { red }}
$$

we have $m: \operatorname{Gr}_{G} \tilde{\times} \operatorname{Gr}_{G} \rightarrow \operatorname{Gr}_{G}$ induced by $\left(g, h G_{\mathcal{O}}\right) \mapsto g h G_{\mathcal{O}}$.
Prop (Mirkovic - Vilonen). m is stratified semismall with respect to the stratifications $\left(\operatorname{Gr}_{G}^{\lambda} \tilde{x} \operatorname{Gr}_{G}^{\mu}\right)_{\lambda, \mu \in \mathbb{X}_{+}^{\vee}}$ and $\left(\operatorname{Gr}_{G}^{\lambda}\right)_{\lambda \in \mathbb{X}_{+}^{\vee}}$.
FOr $\mathcal{F}, \mathcal{G} \in \operatorname{Perv}_{G_{\mathcal{O}}}\left(\operatorname{Gr}_{G}, k\right)$ we consider $\left.p^{*}(\mathcal{F})^{L} \boxtimes_{k} \mathcal{G}\right) \in \operatorname{Perv}\left(G_{\mathcal{K}} \times \operatorname{Gr}_{G}, k\right)$.
$p: G_{\mathcal{K}} \rightarrow \mathrm{Gr}_{G}$ projection. This is a $G_{\mathcal{O}}$ equivariant perverse sheaf (for the diagonal $G_{\mathcal{O}}$ action). So by descent there exists a perverse sheaf $\mathcal{F} \tilde{\otimes} \mathcal{G}$ on $\operatorname{Gr}_{G} \tilde{\times} \operatorname{Gr}_{G}$ whose pullback to $G_{\mathcal{K}} \times \operatorname{Gr}_{G}$ is $p^{*} \mathcal{F}^{L} \boxtimes_{k} \mathcal{G}$, take

$$
\mathcal{F} \star \mathcal{G}:=m_{*}(\mathcal{F} \tilde{\boxtimes} \mathcal{G}) \text { textperversesheafbystratifiedsemismallness. }
$$

Facts.

- Convolution is associative (i.e. there eists a canonical isom $(-\star-) \star-=$ $-\star(-\star-)$ functorial in each entry).
- The object $\delta_{\mathrm{Gr}}:=$ skyscraper sheaf at $L_{0} \in \mathrm{Gr}_{G}$ is a unit object (i.e. there are canonical isom $\delta_{\mathrm{Gr}} \times-\simeq \mathrm{id}, d \simeq-\star \delta_{\mathrm{Gr}}$)
So it is a monoidal category.

2.5. Statement

$G_{k}^{\vee}=$ "Langlands dual reductive k-group" $=\operatorname{Spec}(k) \times_{\operatorname{Spec}(\mathbb{Z})} G_{\mathbb{Z}}^{\vee}$ where $G_{\mathbb{Z}}^{\vee}$ is the unique split reductive group over \mathbb{Z} whose base change to \mathbb{C} whose root datum is ($\mathbb{X}^{\vee}, \mathbb{X}, \Delta^{\vee}, \Delta$) (exchange roots and coroots).
$\operatorname{Rep}\left(G_{k}^{\vee}\right)=$ cat of algebraic G_{k}^{\vee}-modules $\left(\mathcal{O}\left(G_{k}^{\vee}\right)\right.$-comodule) which are finitely generated as k-modules.
Theorem. There exists an equivalence of monoidal categories $\left(\operatorname{Perv}_{G_{0}}\left(\operatorname{Gr}_{G}, k\right), \star\right) \simeq$ $\left(\operatorname{Rep}\left(G_{k}^{\vee}\right), \otimes\right)$ under which the forgetful functor $\operatorname{Rep}\left(G_{k}^{\vee}\right) \rightarrow \operatorname{Mod}_{k}^{f g}$ corresponds to $\mathbb{H}^{*}\left(\operatorname{Gr}_{G},-\right): \operatorname{Perv}_{G_{\mathcal{O}}}\left(\operatorname{Gr}_{G}, k\right) \rightarrow \operatorname{Mod}_{k}^{f g}$.

Remarks.

- (1.1) Simple objects (in case k is an algebraically closed field) in $\operatorname{Rep}\left(G_{k}^{\vee}\right)$ are classified by highest weights (in \mathbb{X}_{+}^{\vee}).
- (1.2) In $\operatorname{Perv}_{G_{0}}(\mathrm{Gr}, k)$: classified by pairs $\left(\operatorname{Gr}_{G}^{\lambda}, \mathcal{L}\right)$. Here \mathcal{L} must be \underline{k}. The simple objects are parametrized by \mathbb{X}_{+}^{\vee}.
- (2) Assume further that $\operatorname{char}(k)=0$. Then we will see later that $\operatorname{Perv}_{G_{\mathcal{O}}}\left(\operatorname{Gr}_{G}, k\right)$ is semisimple. The same is true for $\operatorname{Rep}\left(G_{k}^{\vee}\right)$.
The existence of an equivalence $\operatorname{Rep}\left(G_{k}^{\vee}\right) \simeq \operatorname{Perv}_{G_{\mathcal{O}}}\left(\operatorname{Gr}_{G}, k\right)$ is obvious. The main content of the theorem is then the compatibility with monoidal structures.
- (3) We will do slightly better. We will construct a group scheme \tilde{G}_{k} for any k and an equivalence $\operatorname{Perv}_{G_{0}}\left(\operatorname{Gr}_{G}, k\right) \simeq \operatorname{Rep}\left(\tilde{G}_{k}\right)$ such that $\tilde{G}_{k^{\prime}} \simeq \operatorname{Spec}\left(k^{\prime}\right) \times_{\text {Speck }} \tilde{G}_{k}$ for any $k \rightarrow k^{\prime}$ and show that $\tilde{G}_{\mathbb{Z}}$ is split reductive (with a canonical maximal torus) with appropriate root datum.

\#\#\#\# 2.6. Commutativity

The tensor product in $\operatorname{Rep}\left(G_{k}^{\vee}\right)$ is commutative, i.e. for $M, N \in \operatorname{Rep}\left(G_{k}^{\vee}\right)$ we have a canonical isomorphism $M \otimes_{k} N \xrightarrow{\sim} N \otimes_{k} M$ so if the theorem is true, the same should hold for $\operatorname{Perv}_{G_{\mathcal{O}}}(\mathrm{Gr}, k)$.
In fac tthe proof will require to construct such an isomorphism before proving the theorem.

Idea of the construction. (Drinfeld) Use the moduli representation of Gr_{G}. We set $G=\mathbb{A}_{\mathbb{C}}^{1}, C^{\times}=\mathbb{Z}_{\mathbb{C}}^{1} \backslash\{0\}$. Recall from Timo's lecture that Gr_{G} represents the functor $R \mapsto\left\{(\mathcal{E}, \beta) \mid \mathcal{E} G\right.$ - bundle on $\left.C_{R}=C \times \operatorname{Spec} R \beta:\left.\mathcal{E}_{C_{R}^{\times}}^{\circ} \xrightarrow{\sim} \mathcal{E}\right|_{C_{R}^{\times}}\right\} / \simeq$.
"global" version. $\mathrm{Gr}_{G, C} \rightarrow C$ ind-scheme which represents the functor

$$
R \mapsto\left\{(y, \mathcal{E}, \beta) \mid y \in C(\mathbb{R}) \mathcal{E} G \text {-bundle on } C_{R} \beta: \mathcal{E}_{C_{R} \backslash \Gamma_{y}}^{\circ} \bar{\sim} \rightarrow \mathcal{E}_{C_{R} \backslash \Gamma_{y}}\right\}
$$

But one can do that also over C^{2} : one gets the Beilinson-Drinfeld Grassmannian $\mathrm{Gr}_{G, G^{2}}$: ind-scheme over C^{2} which represents
$R \mapsto\left\{\left(y_{1}, y_{2}, \mathcal{E}, C\right) \mid y_{!}, y_{2} \in C(R) \mathcal{E} G\right.$-bundle over $\left.C_{R} \beta: \mathcal{E}_{C_{R} \backslash\left(\Gamma_{y_{1}} \cup \Gamma_{y_{2}}\right)}^{\circ} \xrightarrow{\sim} \mathcal{E}_{C_{R} \backslash\left(\Gamma_{y_{1}} \cup \Gamma_{y_{2}}\right)}\right\}$.

Facts.

- (1) This functor is represented by and ind-proper ind-scheme over C^{2}
- (2) $\operatorname{Gr}_{G, C^{2}} \times{ }_{C^{2}} \Delta C=\operatorname{Gr}_{G, C} \times{ }_{C} \Delta C=\operatorname{Gr}_{G} \times \Delta C$
- (3) $\operatorname{Gr}_{G, C^{2}} \times{ }_{C^{2}}\left(C^{2} \backslash \Delta C\right)=\left.\left(\operatorname{Gr}_{G, C} \times \mathrm{Gr}_{G, C}\right)\right|_{C^{2} \backslash \Delta C} \simeq \mathrm{Gr}_{G} \times \mathrm{Gr}_{G} \times$ $\left(C^{2} \backslash \Delta C\right)$.

To \mathcal{E} one associates the pair $\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)$ where \mathcal{E}_{i} is the G-bundle obtained by glueing $\mathcal{E}_{C_{R} \backslash \Gamma_{y_{i}}}^{\circ}$ using the trivialization $\beta(j \neq i)$.
We set $i: \mathrm{Gr}_{G} \times \Delta C \rightarrow \mathrm{Gr}_{G, C^{2}}$ (closed embedding)
$j: \operatorname{Gr}_{G} \times \operatorname{Gr}_{G} \times C^{2} \backslash \Delta C \rightarrow \operatorname{Gr}_{G, C^{2}}$ (open embedding)
Theorem (Belinson - Drinfeld). There exists an isomorphism

$$
i^{*}\left(j_{!:}^{p} \mathcal{H}^{0}\left(\mathcal{F}_{1}^{L} \boxtimes_{k} \mathcal{F}_{2}^{L} \boxtimes_{k} \underline{k}_{C^{2} \backslash \Delta C}[2]\right)\right)^{[-1]} \simeq\left(\mathcal{F}_{1} \times \mathcal{F}_{2}\right)^{L} \boxtimes_{k} \underline{k}_{\Delta C^{2}}[1]
$$

The construction on the left handside is called the fusion product.
Application. We have $\sigma: \mathrm{Gr}_{G, C^{2}} \xrightarrow{\sim} \mathrm{Gr}_{G, C^{2}}$ obtained by switching y_{1} and y_{2}. Restrict trivially to ΔC and to $\left(g G_{\mathcal{O}}, h G_{\mathcal{O}}, y_{1}, y_{2}\right) \mapsto\left(h G_{\mathcal{O}}, g G_{\mathcal{O}}, y_{1}, y_{2}\right)$ over $C^{2} \backslash \Delta C$. Using the fact that $i^{*} \simeq i^{*} \sigma^{*}$ (because $\sigma_{i}=i$) one obtains a canonical isomorphism $\mathcal{F}_{1} \star \mathcal{F}_{2} \xrightarrow{\sim} \mathcal{F}_{2} \star \mathcal{F}_{1}$.

Remark. On fact one needs to twist this isomorphism by a sign depending on the connected component supporting \mathcal{F}_{1} and \mathcal{F}_{2} to get the actual commutativity contraint.

