Geometric Satake equivalence

Simon Riche

September 2nd, 2019

References.

- Mirkovic- Vilonen "Geometric Langlands duality and representations of algebraic groups over commutative rings".
- Baumann-R. "Notes on the geometric Satake equivalence"

Plan.

- Lecture 1 : Constructible sheaves.
- Lecture 2 : Statement of the equivalence
- Lecture 3 : Proof (for general coefficients)
- Lecture 4 : End of the proof tilting modules and parity sheaves

1. Brief reminder on constructible sheaves.

Ref.

- Kashiwa?? -Schapira "Sheaves on manifolds"
- P. Achar Lecture notes on perverse sheaves"
- Chiss- Ginzburg "Rep theory and complex geometry"

1.1 Constructible derived category.

 \boldsymbol{X} complex algebraic variety.

Def. An *algebraic stratification* of X is a finite partition

$$X = \sqcup_{s \in \mathcal{S}} X_s$$
 with

- (1) Each X_s is a smooth connected locally closed algebraic subvariety of X.
- (2) For all $s \in S$, $\overline{X_s}$ is a union of X_t 's

• (3) Technical condition ("existence of stratified slices")

c.f. [CG Def 32.23].

k commutative Noetherian ring of finite global dimension (e.g. field, $k = \mathbb{Z}$)

Rk. Assumptions ensure that

$$\operatorname{RHom}_k(-,k): (\mathcal{D}^b \operatorname{Mod}_K^{fg})^{op} \xrightarrow{\sim} \mathcal{D}^b \operatorname{Mod}_k^{fg}.$$

Sh(X,k): abelian category of sheaves of k-modules on X (with respect to the classical topology).

If $X = \bigsqcup_{s \in \mathcal{S}} X_s$ is an algebraic stratification, we denote by $i_s : X_s \to X$ the embedding. Then $\mathcal{F} \in \mathcal{D}^b(\mathbf{Sh}(X, k))$ is said to be \mathcal{S} -constructible if for all $s \in \mathcal{S}$ and all $j \in \mathbb{Z}$ we have $\mathcal{H}^d(i_s^* \mathcal{F})$ is a local system (= locally constant sheaves with finitely generated stalks).

 $\mathcal{D}^b_{\mathcal{S}}(X,k) =$ full subcategory of $\mathcal{D}^b \mathbf{Sh}(X,k)$ whose objects are the *S*-constructible complexes. (triangulated subcategory).

Remak. The technical condition on stratification is there to ensure that $\mathcal{D}^b_{\mathcal{S}}(X, k)$ is stable under Verdier duality

$$\mathbb{D}_X = \mathbf{RHom}_k(-,\omega_X).$$

Constructible derived category $\mathcal{D}_{c}^{b}(X,k)$: full subcategory of $\mathcal{D}^{b}\mathbf{Sh}(X,k)$ whose objects are the complexes \mathcal{F} such that here exists an algebraic stratification \mathcal{S} such that \mathcal{F} is \mathcal{S} -cosntructible.

Again, this is a triangulated subcategory of $\mathcal{D}^b \mathbf{Sh}(X, k)$.

1.2. Operations on constructible copmlexes.

 $f: X \to Y$ morphism of algebraic varieties, then we have triangulated functors

$$f_*, f_! : \mathcal{D}^b_c(X, k) \to \mathcal{D}^b_c(Y, k)$$
$$f^*, f' : \mathcal{D}^b_c(Y, k) \to \mathcal{D}^b_c(X, k)$$

Verdier duality : $\mathbb{D}_X := \mathbf{RHom}(-, \omega_{\mathbf{X}})$, where $\omega_X = \partial^{\underline{l}} \underline{k}_{pt}$ with $\partial : X \to pt$. Derived tensor product : $-^c \otimes_k - : \mathcal{D}^b_c(X, k) \times \mathcal{D}^b_c(X, k) \to \mathcal{D}^b_c(X, k)$.

Main properties.

• Compatibility with convolution.

$$(f \circ g)_* = f_* \circ g_*$$
$$(f \circ g)^* = g^* \circ f^*$$

- Adjunctions. (f^*, f_*) and $(f_!, f_!)$ are adjoint pairs.
- Special cases. If f proper then $f_* = f_!$. If f is smooth of relative dimension n then $f^! = f^*[2n]$
- Verdier duality. $\mathbb{D}_X \circ \mathbb{D}_X = \mathrm{id}$

$$\mathbb{D}_Y \circ f_* \cong f_! \circ \mathbb{D}_X,$$
$$\mathbb{D}_X \circ f^* \cong f' \circ \mathbb{D}_Y.$$

• Base change.

Insert cartesian square

 $X \neg f \neg > Y \mid \mid \mathbf{g'} \mathbf{g} \mid \mid \mathbf{v} \mathbf{v} X' \neg f' \neg > Y'$

Then we have $(f')^* \circ g_! = (g')_! \circ f^*$ and $(f')^! \circ g_* = (g')_* \circ f^!$.

• Glueing $j: U \to X$ open embedding and $i: Z \to X$ closed embedding with $X = U \sqcup Z$.

Then

- $i_* = i_!, j_* = j_!$ are fully faithful
- We have functorial distinct triangles

$$\begin{array}{c} j_! j^* \stackrel{\mathrm{adj}}{\to} \mathrm{id} \stackrel{\mathrm{adj}}{\to} i_* i^* \stackrel{[1]}{\to} \\ i_* i^! \stackrel{\mathrm{adj}}{\to} \mathrm{id} \stackrel{\mathrm{adj}}{\to} j_* j^* \stackrel{[1]}{\to} \end{array}$$

1.3. Perverse sheaves (for middle perversity)

As before, k commutative Noetherian ring of finite global dimension, $X = \bigcup_{s \in S} X_g$ algebraic stratification.

Def.

$${}^{p}\mathcal{D}^{\geq 0} = \{\mathcal{F} \in \mathcal{D}^{b}_{\mathcal{S}}(X,k) | \forall s \in \mathcal{S}, \ i_{s}^{!}\mathcal{F} \in \mathcal{D}^{\geq -\dim X_{s}}_{c}(X_{s},k) \}$$

$${}^{p}\mathcal{D}^{\leq 0} = \{\mathcal{F} \in \mathcal{D}^{b}_{\mathcal{S}}(X,k) | \forall s \in \mathcal{S}, \ i_{s}^{*}\mathcal{F} \in \mathcal{D}^{\leq -\dim X_{s}}_{c}(X_{s},k) \}$$

Define $\operatorname{\mathbf{Perv}}_{\mathcal{S}}(X,k) = {}^{p}\mathcal{D}^{\geq 0} \cap {}^{p}\mathcal{D}^{\leq 0}.$

Theorem. $({}^{p}\mathcal{D}^{\geq 0}, {}^{p}\mathcal{D}^{\leq 0})$ is a bounded *t*-structure on $\mathcal{D}^{b}_{\mathcal{S}}(X, k)$. In particular, **Perv**_{\mathcal{S}}(X, k) is an abelian category, and the exact sequences in **Perv**_{\mathcal{S}}(K, k) are obtained in distinct triangles in $\mathcal{D}^{b}_{\mathcal{S}}(X, k)$ all of whose vertices belong to **Perv**(X, k) by forgetting the last arrow

$$\mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{H} \stackrel{[1]}{
ightarrow},$$

. . .

where $\mathcal{F}, \mathcal{G}, \mathcal{H}$ are perverse.

Very useful fact. For $\mathcal{G}, \mathcal{G} \in \mathbf{Perv}_{\mathcal{S}}(X, k)$

$$\operatorname{Ext}^{1}_{\operatorname{\mathbf{Perv}}_{\mathcal{S}}(X,k)}(\mathcal{F},\mathcal{G}) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}^{b}_{\mathcal{S}}(X,k)}(\mathcal{F},\mathcal{G}[1])$$

This is **not** true for highter Ext's

Intersection cohomology complexes. $s \in S$, d local systemon X_s .

Claim. There exists a unique object $IC(X, \mathcal{L}) \in \mathbf{Perv}_{\mathcal{S}}(X, k)$ such that

- $IC(X_s, \mathcal{L})$ is supported on $\overline{X_s}$
- $s^*IC(X_s, \mathcal{L}) = \mathcal{L}[\dim X_s]$
- For all $t \in S$ such that $X_t \subset \overline{X_s}$ and $t \neq s$ we have

$$i_t^* IC(X_s, \mathcal{L}) \in D^{<-\dim(X_t)}(X_t, k)$$
$$i_t^! IC(X_s, \mathcal{L}) \in D_c^{>-\dim(X_t)}(X_t, k).$$

We have natural maps

$${}^{p}\mathcal{H}^{0}(i_{s}\mathcal{L}[\dim X_{s}]) \to {}^{p}\mathcal{H}^{0}(i_{s}\mathcal{L}[\dim X_{s}])$$

factoring through $IC(X_s, \mathcal{L})$ by surjection, then injection.

Theorem. Assume that k is a field. We have a bijection

 $\{(s,\mathcal{L})|s\in\mathcal{SL} \text{ simple local system on } X_s\}/\text{isom} \xrightarrow{\sim} \{\text{simple objects in } \mathbf{Perv}_{\mathcal{S}}(X,k)\}/\text{isom}$

$$(s, \mathcal{L}) \mapsto IC(X_s, \mathcal{L})$$

Remark. If k is a field, then $\mathbb{D}_X IC(X_s, \mathcal{L}) = IC(X_s, \mathcal{L}^{\vee})$. In particular, \mathbb{D}_X restricts to an equivalence

$$\operatorname{\mathbf{Perv}}_{\mathcal{S}}(X,k)^{op} \xrightarrow{\sim} \operatorname{\mathbf{Perv}}_{\mathcal{S}}(X,k).$$

This is **not** true for general coefficient (already for X = point).

Ex. If $\overline{X_s}$ is smooth then $IC(X_s, \underline{k}) = \underline{k}_{\overline{X_s}}[\dim X_s]$.

1.4. Stratified semismallness

 $X = \bigsqcup_{s \in \mathcal{S}} X_s, Y = \bigsqcup_{t \in \mathcal{T}} Y_t$ algebraic variety with algebraic stratification, $f : Y \to X$ proper such that

• (1) For all $t \in \mathcal{T}$, $f(Y_t)$ is a union of strata.

• (2) For all $t \in \mathcal{T}$ such that $X_S \subset f(Y_t)$ for all $x \in X_s$ we have

$$\dim(f^{-1}(X_s) \cap Y_t) \le \frac{1}{2}(\dim Y_t - \dim X_s)$$

• (3) For all $t \in \mathcal{T}$ for all $s \in \mathcal{S}$ such that $X_s \subset f(Y_t)$ then the map $Y_t \cap f^{-1}(X_s) \to X_s$ induced by f is a Zariski locally trivial fibration.

Proposition. In this setting, if $f \in \operatorname{Perv}_{\mathcal{T}}(Y, k)$ then $f_*\mathcal{F} = f_!\mathcal{F}$ belongs to $\operatorname{Perv}_{\mathcal{S}}(X, k)$.

1.5. Equivariant perverse sheaves

 $X = \sqcup_{s \in \mathcal{S}} X_s$ algebraic variety with algebraic stratification.

 ${\cal H}$ connected complex algebraic group acting on X with each X_s ${\cal H}\text{-stable}$ we have two maps

$$H \times X \xrightarrow[p \text{ projection}]{a \text{ action}} X.$$

Def. $\mathcal{F} \in \mathbf{Perv}_{\mathcal{S}}(X,k)$ is *H*-equivariant if $a^*\mathcal{F} \xrightarrow{\sim} p^*\mathcal{F}$.

 $\operatorname{\mathbf{Perv}}_{\mathcal{S},H}(X,k)$ full subcat of $\operatorname{\mathbf{Perv}}_{\mathcal{S}}(X,k)$ whose objects are *H*-equivariant perverse sheaves.

Facts.

- (1) Perv_{S,H} is an abelian subcategory, stable under subquotients (but not under extensions in general).
- (2) If \mathcal{L} *H*-equivariant local system on X_s , then $IC(X_s, \mathcal{L})$ is *H*-equivariant
- (3) $\mathbf{Perv}_H(X,k)$ is the heart of the perverse *t*-structure on the *H* equivariant \mathcal{S} -contructible derived category of Bernstein-Lunts.
- (4) If $X \to Y$ is a (Zariski locally trivial) *H*-torsor and S is the pullback of the stratification \mathcal{T} on Y, then the category $\mathbf{Perv}_{S,H}(X,k)\overline{X} \to \to$ $\mathbf{Perv}_{\mathcal{T}}(Y,\mathcal{T}).$

1.6. Partity complexes.

 $X = \sqcup_{s \in \mathcal{S}} X_s$ algebraic variety with algebraic stratification.

Assumptions:

- k is a field
- For any $s \in S$ all local systems on X_s are trivial (i.e. the fundamental groups of X_s 's are trivial)

• For all $s \in \mathcal{S}$ we have $\mathrm{H}^{\mathrm{odd}}(X_s; k) = 0$.

Def. $\mathcal{F} \in \mathcal{D}^b_{\mathcal{S}}(X,k)$ is called *even* (resp. *odd*) if $\mathcal{H}^{\text{odd}}(\mathcal{F}) = \mathcal{H}^{\text{odd}}(\mathbb{D}_X \mathcal{F}) = 0$ (resp. $\mathcal{H}^{\text{even}}(\mathcal{F}) = \mathcal{H}^{\text{even}}(\mathbb{D}_X \mathcal{F}) = 0$).

 \mathcal{F} is called *parity* if it is a direct sum of an even object and an odd object.

Exercise. If \mathcal{F} is even and \mathcal{G} is odd, then

$$\operatorname{Hom}_{\mathcal{D}^b_{\mathcal{S}}(X,k)}(\mathcal{F},\mathcal{G}) = 0.$$

Theorem. (Juteau – Mautner– Williamson) For any $s \in S$ there exists at most one indecomposable object parity complex $\mathcal{E}_s \in \mathcal{D}^b_{\mathcal{S}}(X,k)$ supported on $\overline{X_s}$ and such that $i_S^* \mathcal{E}_s \xrightarrow{\sim} \underline{k}[\dim X_s]$. Moreover, any indecomposable parity complex is of the form $\mathcal{E}_f[n]$ for some $s \in S$ and $n \in \mathbb{Z}$, and any parity complex is a direct sum of indecomposable parity complexes.

Remark. It can happen that \mathcal{E}_s does not exist. But it always exists for X affine Grassmannian (with the stratification by orbits of a parahoric subgroup), or for partial flag varieties of Kac-Moody groups.