Satake, Weyl character formula, MacDonald summary: Part 2

Julia Gordon

November 28th, 2019

F local non-archimedean field. $\mu \in \mathbf{X}_{\star}(T) = \mathbf{X}^{\star}(\hat{T}), f_{\mu}$ characteristic function of $K(\varpi^{\mu})K$, is a function on G(F).

If $\mu > 0$ then $\tau_{\mu} =$ characteristic function of V_{μ} , representation of $\hat{G}(\mathbb{C})$ of highest weight μ .

Spherical representations of G are in 1-1 correspondence to $\mathbb{C}[\hat{T}]^W$.

For $\lambda \in \mathbf{X}^{\star}(\hat{T})$, let e^{λ} be a formal symbol.

$$\mathbb{C}[\mathbf{X}^{\star}(\hat{T})] \cong \mathbb{C}[\hat{T}],$$

via $\sum c_{\lambda} \cdot \lambda = \sum c_{\lambda} e^{\lambda} \mapsto \sum c_{\lambda} \lambda(t)$.

Natural bases for $\mathbb{C}[\mathbf{X}^{\star}(\hat{T})]^W$:

- 1. $\sum_{w \in W/W(\mu)} e^{w\mu}$ (one for each μ).
- 2. $S(f_{\mu})$ (Satake transform).
- 3. $\{\tau_{\mu}\}_{{\mu}>0}$.

Macdonald : rewrite $\{S(f_{\mu})\}\$ in terms of $\{\tau_{\lambda}\}$.

$$\delta^{-1/2}(\varpi^{\lambda}) = q^{\langle \lambda, f^{\vee} \rangle}$$

Macdonald:
$$S(f_{\mu}) = \operatorname{vol}(M_{\mu}) q^{\langle \mu, \rho^{\vee} \rangle} \left(\sum_{w \in W} \frac{\prod_{\alpha > 0} (1 - q^{-1} e^{-w\alpha})}{\prod_{\alpha > 0} (1 - e^{-w\alpha})} \cdot e^{w\mu} \right).$$
\$

Weyl's character formula.
$$\lambda > 0, \ \tau_{\lambda} = \sum_{w \in W} \frac{e^{w\lambda}}{\prod_{\alpha > 0} (1 - e^{-w\alpha})}.$$

Expand the numerator of Macdonald's formula, and invert the order of the sums.

$$= \operatorname{vol}(M_{\mu}) q^{\langle \mu, f^{\vee} \rangle} \sum_{S \subset \Phi^{+}} \sum_{w \in W} \frac{e^{w(\mu - \alpha_{S})}}{\prod_{\alpha > 0} (1 - e^{-w\alpha})},$$

where $\alpha_S = \sum_{\alpha \in S} \alpha$.

$$= \operatorname{vol}(M_{\mu}) q^{\langle \mu, \rho^{\vee} \rangle} \sum_{S \subset \Phi^{+}} (-q)^{|S|} \tau_{\mu - \alpha_{S}}.$$

This is not quite right, because Weyl character formula is for dominant weights. While μ is dominant, $\mu - \alpha_S$ doesn't have to be.

Trick 1. $\frac{1}{1-e^{-w\alpha}}=1+e^{-w\alpha}+e^{-2w\alpha}+\cdots$, plug those in formula and invert sums. We saw in Nick's talk that we can rewrite Weyl character formula by $au_{\lambda}=\frac{\sum_{W}\operatorname{sgn}(w)e^{w(\lambda+\rho)}}{\sum_{W}\operatorname{sgn}(w)e^{w\rho}}.$, this works for all λ .

Macdonad's formula becomes:

$$S(f_{\lambda}) = \operatorname{vol}(M_{\lambda}) \cdot f^{\langle \lambda, f^{\vee} \rangle} \sum_{S \subset \Phi^{+}} (-q)^{|S|} \prod_{\lambda + (\rho - \alpha_{S})}.$$

Let $\rho_S = \rho - \alpha_S$, so $\rho_\varnothing = \rho$, $\rho_{\Phi^+} = -\rho$. Every $w \cdot \rho$ is one of the ρ_S (S = set of roots participating in the expression for w).

Let $C_{\rho} = {\rho_S | S \subset \Phi^+}$, set of all weights of the irrep V_{ρ} of highest weight ρ .

For each $\mu \in C_{\rho}$, define $P_{\mu}(x) = \sum_{S:f_S = \mu} x^{|S|}$. (so $P_{\rho} = 1$, $R_w \rho(x) = x^{\ell(x)}$), set $x = 1: P_{\mu}(1) =$ multiplicity of the weight μ in V_{ρ} .

Get:
$$S(f_{\mu}) =$$

 $mathrmvol(M_{\lambda})q^{\langle \lambda, \rho^{\vee}} \sum_{\mu \in C_{\rho}} P_{\mu}(-q^{-1}) \Pi_{\lambda+\mu}.$

Conversely, $\tau_{\lambda} = \sum_{\mu \text{ dominant, } \mu \leq \lambda} K_{\mu,\lambda}(q^{-1}) S(f_{\mu})$, up to the factor $q^{\langle \lambda - \mu, \rho^{\vee} \rangle}$, these are the Kazhdan-Lustig polynomials for (μ, λ) .

Note. $K_{\mu,\lambda}$ are associated with the affine Grassmannian "G(F)/K". Start with a full coxeter group : affine Weyl group.

Schur polynomials corresponds to something, and Weyl group corresponds to G/B.

Back to Weyl Character formula.

We go over theorem from Casselman-Cely-Hales.

Let V a finite-dimensional representation of $\hat{G}(\mathbb{C})$, with $V = \bigoplus V_{\mu}$ its weight space decomposition. $E: V \to V$ formal linear operator.

Our E will be diagonal with respect to $V = \bigoplus V_{\mu}$ on each V_{μ} it is mult by e^{μ} . We have $\det(1-qE,V) \in \mathbb{Z}[e^{\mu},q]$. Define $P(\tilde{G},V,E,q) = \det(1-qE,V)^{-1}$, this is called a q-partition function.

• For
$$q=1,$$

$$\det(1-E, \text{ adj. rep on } \mathfrak{g}/\mathfrak{z} = \prod_{\alpha \in P} (1-e^{-\alpha}).$$

 $\prod_{\alpha>0}(1-e^{-\alpha})^{-1}=\sum e^{-\mu}\cdot \text{Kostant}$ partition function $\mu.$ (Usin the trick $\prod (1-e^{-\alpha})^{-1}=1+e^{-\alpha}+e^{-2\alpha}+\cdots).$

Remark. G acts on $\operatorname{Sym}(\mathfrak{g})$, which is a free module over $\mathbb{C}[\mathfrak{g}]^G = \mathbb{C}[\mathfrak{g}]^W$. Harmonic polynomials on \mathfrak{g} are killed by invariant constant coefficient differential operators (elements of $\operatorname{Sym}(\mathfrak{g}^*)$) of positive degree. Call those polynomials $\mathcal{H}(\mathfrak{g})$. So we get $\operatorname{Sym}(\mathfrak{g}) = \mathcal{H}(\mathfrak{g}) \otimes \mathbb{C}[\mathfrak{g}]^G$, and G acts on the left part. Multiplicities of G On $\mathcal{H}(\mathfrak{g})$ are finite. μ -integral dominant weight is a element of Λ , the root lattice. So V_{μ} occurs with q-multiplicity. q^{\deg} (general exponents of μ) are multiplicity of μ in the corresponding graded piece.

Weyl character formula corresponds (by expanding denominator) to Kostant multiplicity formula (multiplicity of μ in V_{λ})

$$\operatorname{mult}(\mu) = \sum_{w \in W} (-1)^{\ell(w)} P(w \cdot (\lambda + \rho) - \mu + \rho),$$

where P is the Kostant partition function.

Side note: Take λ dominant weight. $Z_{\lambda} = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{b})} \mathbb{C}_{\lambda}$ (Verma module), here C_{λ} is a 1 dimensional representation of $\mathfrak{b} : \mathfrak{g}$ acts by λ . The multiplicity of μ in Z_{λ} is $P(\lambda - \mu)$ (number of ways to get from λ to μ by using negatice roots).

Weyl denominator q-determinant with $q=1, V=\pi$ adjoint representation.

$$\mathfrak{g}=\pi^{-1}+\mathfrak{g}+\underbrace{\pi}_{\oplus_{\alpha>0}\mathfrak{g}_{\alpha}}.$$

Sketch of the proof of Weyl character formula: $\tau_{\lambda} = J(e^{\lambda})P(E^{-1},1)$, J is the Weyl symmetrizer operator, $J(f)(x) = \sum_{W} (-1)^{\ell(w)} f(w \cdot x)$.

Make a chain complex: $C^j = \bigwedge^j \pi' \otimes V_{\lambda}$. $T_{\lambda} = \text{character on the cohomology of this complex.}$

We had: coeff of τ_{λ} in terms of $S(f_{\mu})$ $(\langle \tau_{\lambda}, S(f_{\mu}) \rangle_{\mu_{\hat{T}(\mathbb{C})}^{\mathrm{Pl}}})$.

Fact : Pl measure on \hat{T} : $\frac{P(E,q^{-1})P(E^{-1},q^{-1})}{P(E,1)P(E^{-1},1)}\mathrm{d}s$. If $s\in\hat{T},\,E$ depends on $s=q^{2\pi i\lambda},\,E=E_{\lambda}$