Satake, Weyl character formula, MacDonald summary: Part 2

Julia Gordon

November 28th, 2019
F local non-archimedean field. $\mu \in \mathbf{X}_{\star}(T)=\mathbf{X}^{\star}(\hat{T}), f_{\mu}$ characteristic function of $K\left(\varpi^{\mu}\right) K$, is a function on $G(F)$.
If $\mu>0$ then $\tau_{\mu}=$ characteristic function of V_{μ}, representation of $\hat{G}(\mathbb{C})$ of highest weight μ.
Spherical representations of G are in 1-1 correspondance to $\mathbb{C}[\hat{T}]^{W}$.
For $\lambda \in \mathbf{X}^{\star}(\hat{T})$, let e^{λ} be a formal symbol.

$$
\mathbb{C}\left[\mathbf{X}^{\star}(\hat{T})\right] \cong \mathbb{C}[\hat{T}],
$$

via $\sum c_{\lambda} \cdot \lambda=\sum c_{\lambda} e^{\lambda} \mapsto \sum c_{\lambda} \lambda(t)$.
Natural bases for $\mathbb{C}\left[\mathbf{X}^{\star}(\hat{T})\right]^{W}$:

- 1. $\sum_{w \in W / W(\mu)} e^{w \mu}$ (one for each μ).
- 2. $S\left(f_{\mu}\right)$ (Satake transform).
- 3. $\left\{\tau_{\mu}\right\}_{\mu>0}$.

Macdonald : rewrite $\left\{S\left(f_{\mu}\right)\right\}$ in terms of $\left\{\tau_{\lambda}\right\}$.
$\delta^{-1 / 2}\left(\varpi^{\lambda}\right)=q^{\left\langle\lambda, f^{\vee}\right\rangle}$
Macdonald: $S\left(f_{\mu}\right)=\operatorname{vol}\left(M_{\mu}\right) q^{\left\langle\mu, \rho^{\vee}\right\rangle}\left(\sum_{w \in W} \frac{\prod_{\alpha>0}\left(1-q^{-1} e^{-w \alpha}\right)}{\prod_{\alpha>0}\left(1-e^{-w \alpha}\right)} \cdot e^{w \mu}\right) \cdot \$$
Weyl's character formula. $\lambda>0, \tau_{\lambda}=\sum_{w \in W} \frac{e^{w \lambda}}{\prod_{\alpha>0}\left(1-e^{-w \alpha}\right)}$.
Expand the numerator of Macdonald's formula, and invert the order of the sums.

$$
=\operatorname{vol}\left(M_{\mu}\right) q^{\left\langle\mu, f^{\vee}\right\rangle} \sum_{S \subset \Phi+} \sum_{w \in W} \frac{e^{w\left(\mu-\alpha_{S}\right)}}{\prod_{\alpha>0}\left(1-e^{-w \alpha}\right)},
$$

where $\alpha_{S}=\sum_{\alpha \in S} \alpha$.

$$
=\operatorname{vol}\left(M_{\mu}\right) q^{\left\langle\mu, \rho^{\vee}\right\rangle} \sum_{S \subset \Phi^{+}}(-q)^{|S|} \tau_{\mu-\alpha_{S}}
$$

This is not quite right, because Weyl character formula is for dominant weights. While μ is dominant, $\mu-\alpha_{S}$ doesn't have to be.

Trick 1. $\frac{1}{1-e^{-w \alpha}}=1+e^{-w \alpha}+e^{-2 w \alpha}+\cdots$, plug those in formula and invert sums. We saw in Nick's talk that we can rewrite Weyl character formula by $\tau_{\lambda}=\frac{\sum_{W} \operatorname{sgn}(w) e^{w(\lambda+\rho)}}{\sum_{W} \operatorname{sgn}(w) e^{w \rho}}$., this works for all λ.
Macdonad's formula becomes :

$$
S\left(f_{\lambda}\right)=\operatorname{vol}\left(M_{\lambda}\right) \cdot f^{\left\langle\lambda, f^{\vee}\right\rangle} \sum_{S \subset \Phi^{+}}(-q)^{|S|} \prod_{\lambda+\left(\rho-\alpha_{S}\right)} .
$$

Let $\rho_{S}=\rho-\alpha_{S}$, so $\rho_{\varnothing}=\rho, \rho_{\Phi^{+}}=-\rho$. Every $w \cdot \rho$ is one of the ρ_{S} ($S=$ set of roots participating in the expression for w).

Let $C_{\rho}=\left\{\rho_{S} \mid S \subset \Phi^{+}\right\}$, set of all weights of the irrep V_{ρ} of highest weight ρ.
For each $\mu \in C_{\rho}$, define $P_{\mu}(x)=\sum_{S: f_{S}=\mu} x^{|S|}$. (so $P_{\rho}=1, R_{w} \rho(x)=x^{\ell(x)}$), set $x=1: P_{\mu}(1)=$ multiplicity of the weight μ in V_{ρ}.
Get: $S\left(f_{\mu}\right)=$
mathrmvol $\left(M_{\lambda}\right) q^{\left(\lambda, \rho^{\vee}\right.} \sum_{\mu \in C_{\rho}} P_{\mu}\left(-q^{-1}\right) \Pi_{\lambda+\mu}$.
Conversely, $\tau_{\lambda}=\sum_{\mu \text { dominant, } \mu<\lambda} K_{\mu, \lambda}\left(q^{-1}\right) S\left(f_{\mu}\right)$, up to the factor $q^{\left\langle\lambda-\mu, \rho^{\vee}\right\rangle}$, these are the Kazhdan-Lustig polynomials for (μ, λ).

Note. $K_{\mu, \lambda}$ are associated with the affine Grassmannian " $G(F) / K$ ". Start with a full coxeter group : affine Weyl group.

Schur polynomials corresponds to something, and Weyl group corresponds to G / B.

Back to Weyl Character formula.

We go over theorem from Casselman-Cely-Hales.
Let V a finite-dimensional representation of $\hat{G}(\mathbb{C})$, with $V=\bigoplus V_{\mu}$ its weight space decomposition. $E: V \rightarrow V$ formal linear operator.
Our E will be diagonal with respect to $V=\bigoplus V_{\mu}$ on each V_{μ} it is mult by e^{μ}. We have $\operatorname{det}(1-q E, V) \in \mathbb{Z}\left[e^{\mu}, q\right]$. Define $P(\tilde{G}, V, E, q)=\operatorname{det}(1-q E, V)^{-1}$, this is called a q-partition function.

- For $q=1$,

$$
\operatorname{det}\left(1-E, \text { adj. rep on } \mathfrak{g} / \mathfrak{z}=\prod_{\alpha \in P}\left(1-e^{-\alpha}\right)\right.
$$

$\prod_{\alpha>0}\left(1-e^{-\alpha}\right)^{-1}=\sum e^{-\mu}$.Kostant partition function μ. (Usin the trick $\Pi(1-$ $\left.\left.e^{-\alpha}\right)^{-1}=1+e^{-\alpha}+e^{-2 \alpha}+\cdots\right)$.
Remark. G acts on $\operatorname{Sym}(\mathfrak{g})$, which is a free module over $\mathbb{C}[\mathfrak{g}]^{G}=\mathbb{C}[\mathfrak{g}]^{W}$. Harmonic polynomials on \mathfrak{g} are killed by invariant constant coefficient differential operators (elements of $\operatorname{Sym}\left(\mathfrak{g}^{\star}\right)$) of positive degree. Call those polynomials $\mathcal{H}(\mathfrak{g})$. So we get $\operatorname{Sym}(\mathfrak{g})=\mathcal{H}(\mathfrak{g}) \otimes \mathbb{C}[\mathfrak{g}]^{G}$, and G acts on the left part. Multiplicities of G On $\mathcal{H}(\mathfrak{g})$ are finite. μ-integral dominant weight is a element of Λ, the root lattice. So V_{μ} occurs with q-multiplicity. q^{deg} (general exponents of μ) are multiplicity of μ in the corresponding graded piece.
Weyl character formula corresponds (by expanding denominator) to Kostant multiplicity formula (multiplicity of μ in V_{λ})

$$
\operatorname{mult}(\mu)=\sum_{w \in W}(-1)^{\ell(w)} P(w \cdot(\lambda+\rho)-\mu+\rho),
$$

where P is the Kostant partition function.
Side note: Take λ dominant weight. $Z_{\lambda}=\mathcal{U}(\mathfrak{g}) \otimes \mathcal{U}(\mathfrak{b}) \mathbb{C}_{\lambda}$ (Verma module), here C_{λ} is a 1 dimensional representation of $\mathfrak{b}: \mathfrak{g}$ acts by λ. The multiplicity of μ in Z_{λ} is $P(\lambda-\mu)$ (number of ways to get from λ to μ by using negatice roots).
Weyl denominator q-determinant with $q=1, V=\pi$ adjoint representation.
$\mathfrak{g}=\pi^{-1}+\mathfrak{g}+\underbrace{\pi}_{\oplus_{\alpha>0} \mathfrak{g}_{\alpha}}$.
Sketch of the proof of Weyl character formula: $\tau_{\lambda}=J\left(e^{\lambda}\right) P\left(E^{-1}, 1\right), J$ is the Weyl symmetrizer operator, $J(f)(x)=\sum_{W}(-1)^{\ell(w)} f(w \cdot x)$.

Make a chain complex: $C^{j}=\Lambda^{j} \pi^{\prime} \otimes V_{\lambda} . T_{\lambda}=$ character on the cohomology of this complex.
We had : coeff of τ_{λ} in terms of $S\left(f_{\mu}\right)\left(\left\langle\tau_{\lambda}, S\left(f_{\mu}\right)\right\rangle_{\left.\mu_{T(\mathrm{C})}^{\mathrm{P}}\right)}\right)$.
Fact : Pl measure on $\hat{T}: \frac{P\left(E, q^{-1}\right) P\left(E^{-1}, q^{-1}\right)}{P(E, 1) P\left(E^{-1}, 1\right)} \mathrm{d} s$. If $s \in \hat{T}, E$ depends on $s=q^{2 \pi i \lambda}$, $E=E_{\lambda}$

