Satake, Weyl character formula, MacDonald summary: Part 1.

Julia Gordon

November 21st, 2019

F is a p-adic field.

G is a split connected reductive group over F. G = G(F)

"Spherical part of the spectrum of G(F)".

Analogy. Fourier transform on \mathbb{R} .

From f, a function on \mathbb{R} (Schwarz, ...) we get \hat{f} on $\hat{\mathbb{R}} \cong \mathbb{R}$ (the isomorphism isn't canonical), where $\hat{\mathbb{R}}$ is $\{\psi_x : \psi_x(y) = e^{2\pi i x y} | x \in \mathbb{R}\}$

(Fourier inversion)
$$f(x) = (\text{constant}) \int_{\hat{\mathbb{R}}} \hat{f}(\Psi) \overline{\Psi(x)} d\psi$$
.

Important: $d\psi$ is a measure on $\hat{\mathbb{R}}$, what allows us to compute it is that $dx = d\psi$. $\hat{f}(\psi_x) =$ "Fourier coefficient of f at x"

Our group is G(F), the analogy gives all (unitary?) reps of G(F), too complicated. If we look at the smaller subset of spherical representations, i.e. π having a K-fixed vector ($K = G(\mathcal{O}_F)$). This smaller subset has a 1-1 correspondence with bi-K-invariant functions, which we expect to be "orthogonal" to the part of the spectrum without fixed vectors. (Not quite true, but true replacing K by I)

What is true: We can recover such a function f from its "Fourier coefficients" at spherical representations (= Satake transform of f).

$$f \in \mathcal{H}(G//K) \to S(f)(\pi) = \int_G f(g)(\text{matrix coeff of } \pi) dg = \text{``}\hat{f}(\pi)\text{''}.$$

Know: Spherical representations: $\pi = \operatorname{ind}_B^G(|\cdot|_F^{s_1} \times \cdots \times |\cdot|_F^{s_n}), s_i \in \mathbb{C}$. Here $\operatorname{ind} = \operatorname{Ind}() \otimes \delta_B^{-1/2}$. When this is reducible, has a unique spherical subquotient (by rearranging $\{s_i\}$, can force it to be a quotient).

Let
$$(z_i = |\varpi|^{s_i}) \in (\mathbb{C}^{\times})^n/W$$
, identify π as $\pi_{(z_1,...,z_n)}$.

For Fourier transform of $\operatorname{bi-}K$ -invariant function can be found just with the spherical part of representations via Satake transform, because it's an isomorphism, don't need the rest of reps!

So S(f) is a function on $(\mathbb{C}^{\times})^n/W \leftrightarrow W$ -invariant functions on $(\mathbb{C}^{\times})^n$, it is actually regular! (i.e. W-invariant polynomial in $z_i^{\pm 1}$).

We got our formula $S(f)(\pi_z) = \int_G f(g) E_z(g) \ g$

 $z \in (\mathbb{C}^{\times})^n/W$, $E_z(g)$ is a bi-K-invariant matrix coefficient such that $E_z(1) = 1$, it is a spherical function.

If we believe that S(f) is a polynomial in $z_i^{\pm 1}$, get $S(f) \in \mathbb{C}[\hat{T}/W]$, $\hat{T} = \text{Langlands dual torus of } T \subset G \text{ i.e. } \mathbf{X}^*(\hat{T}) = \mathbf{X}_*(T)$.

$$T(\mathbb{C}) = \mathbf{X}_{\star}(\hat{T}) \otimes_{\mathbb{Z}} \mathbb{C} = \mathbf{X}^{\star}(T) \otimes \mathbb{C}.$$

Relation to Langlands

(packets of) representations of G(F) have a correspondence with Langlands parameters σ : Weyl-Deligne group of $F \to {}^L G$. For spherical: "Deligne" is not relevant. Weil group of F.

$$1 \to I_F \to \operatorname{Gal}(\overline{F}/F) \to \langle \operatorname{Frob} \rangle \to 1.$$

The term on the right is the Galois group of a maximal unramified extension. "Unramified" here can be seen as $\sigma|_{I_F} = 1$.

 $T \subset G \leftrightarrow (\mathbf{X}^{\star}(T), \phi, \mathbf{X}_{\star}(T), \phi^{\vee})$. The group ${}^{L}G(\mathbb{C})$ is a complex Lie group with max torus \hat{T} , root system ϕ^{\vee} . $\sigma(\operatorname{Frob}) \in \hat{T}(\mathbb{C})/W$.

Theorem. Satake transform is an isomorphism $\mathcal{H}(G//K) \to \mathbb{C}[\hat{T}/W]$.

Thomas proved surjectivity.

Injectivity: closely related to "Plancherel formula".

On
$$G: (f_1, f_2) = \int_G f_1(g) \overline{f_2(g)} dg = \int_{R(G)} \hat{f_1} \underbrace{f_2^{\vee}}_{f_2} d\pi$$
 ($\tilde{\pi}$ is the contragradient rep). Plancherel measure on $\mathbf{R}(G)$ = space of unitary reps of G .

The Plancherel measure on $\hat{T}(\mathbb{C})/W$ would give $f_{1,2} \in \mathcal{H}(G//K)$, $(f_1, f_2) = \int_{\hat{T}/W} S(f_1) \overline{S(f_2)} \, d\mu^{\text{Pl}}(z_1, \dots, z_n)$.

Question. Plancherel measure on $\hat{T}(\mathbb{C})/W$?

The algebra
$$\mathbb{C}[\hat{T}/W] \cong \mathbb{C}[\underbrace{\mathbf{X}^{\star}(\hat{T})}_{\text{lattice}}]$$
:

• Natural generators (as an algebra):

 ξ_1, \dots, ξ_n = "elementary symmetric polynomials" (they can be seen as the characters of irreducible representations corresponding to the fundamental weights).

• Bases as \mathbb{C} -vector space (= W-invariant polynomial functions on $\hat{T}(\mathbb{C}) = (\mathbb{C}^{\times})^n$).

One natural basis : $\mu \in \mathbf{X}^*(\hat{T}) \to e^{\mu}$, a formal symbol. Elements of $\mathbb{C}[\mathbf{X}^*(\hat{T})]$ (convolution ring, with this notation it is product of polynomials) are of the form $\sum_{\mu} c_{\mu} e^{\mu} : t \mapsto \sum_{\mu} c_{\mu} \mu(t)$ (finitely many nonzero terms).

- The first natural basis for $\mathbb{C}[\mathbf{X}^{\star}(T)]^{W}$ is $\sum_{\mu \in W(\lambda)} e^{\mu}$, where $W(\lambda)$ is the orbit of λ under W.
- The second basis : τ_{λ} = character of an irreducible representation of LG of highest weight.
- $S(f_{\mu}), f_{\mu}$ character function of $K\begin{pmatrix} \varpi^{\mu_{1}} & 0 \\ & \ddots \\ 0 & \varpi^{\mu_{n}} \end{pmatrix} K$ (double coset corresponding to $\mu = (\mu_{1}, \cdots, \mu_{n}) \in \mathbf{X}_{\star}(T) = \mathbf{X}^{\star}(\hat{T})$).

Macdonald's formula gives a way to give a change of basis from $\{S(f_{\mu})\}\$ to $\{\tau_{\mu}\}\$.