1. Sketch a graph of a function f that is continuous on $[0,4]$ and satisfies the given properties.
a. $f^{\prime}(x)=0$ when $x=1$ and $2 ; f$ has an absolute maximum at $x=4 ; f$ has an absolute minimum at $x=0 ; f$ has a local minimum at $x=2$.
b. $f^{\prime}(x)=0$ when $x=1,2$, and 3 ; f has an absolute minimum at $x=1 ; f$ has no local extremum at $x=2 ; f$ has a local maximum at $x=3$.
c. $f^{\prime}(x)$ is undefined when $x=1$ and $3 ; f^{\prime}(2)=0 ; f$ has a local maximum at $x=1 ; f$ has a local minimum at $x=2 ; f$ has an absolute maximum at $x=3 ; f$ has an absolute minimum at $x=4$.
2. Sketch the graph of $f(x)=x^{2}-4 x+3$.
3. Let $f(x)=x \sqrt{3-x}$.
a. Find the domain of $f(x)$.
b. Determine the x-coordinates of the local maxima and minima (if any) and intervals where $f(x)$ is increasing or decreasing.
c. Determine intervals where $f(x)$ is concave upwards or downwards, and the x coordinates of inflection points (if any). You may use the formula $f^{\prime \prime}(x)=\frac{(3 x-12)(3-x)^{-3 / 2}}{4}$.
d. There is a point at which the the curve $y=f(x)$ has a vertical tangent line. Find this point.
e. Sketch the graph $y=f(x)$, showing the features given in items (a) to (d) above and giving the (x, y) coordinates for all points occurring above.
4. The first and second derivatives of the function $f(x)=\frac{3 x+2}{2 x-4}$ are:

$$
f^{\prime}(x)=-\frac{4}{(x-2)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{8}{(x-2)^{3}}
$$

Graph $f(x)$. Include local and absolute maxima and minima, regions where $f(x)$ is increasing or decreasing, regions where the curve is concave upward or downward, and any asymptotes.
5. The first and second derivatives of the function $f(x)=\frac{1}{x^{2}-1}$ are:

$$
f^{\prime}(x)=-\frac{2 x}{\left(x^{2}-1\right)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{6 x^{2}+2}{\left(x^{2}-1\right)^{3}}
$$

Graph $f(x)$. Include local and absolute maxima and minima, regions where $f(x)$ is increasing or decreasing, regions where the curve is concave upward or downward, and any asymptotes.
6. Graph $f(x)=1-\frac{3}{x}+\frac{4}{x^{3}}$. Include local and absolute maxima and minima, regions where $f(x)$ is increasing or decreasing, regions where the curve is concave upward or downward, and any asymptotes.
7. The first and second derivatives of the function $f(x)=\frac{x^{3}}{x-1}$ are:

$$
f^{\prime}(x)=\frac{x^{2}(2 x-3)}{(x-1)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3 x+3\right)}{(x-1)^{3}} .
$$

Graph $f(x)$. Include local and absolute maxima and minima, regions where $f(x)$ is increasing or decreasing, regions where the curve is concave upward or downward, and any asymptotes.

