1. The sides of a square increase in length at a rate of $2 \mathrm{~m} / \mathrm{s}$.
a. At what rate is the area af the square changing when the sides are 10 m long?
b. At what rate is the area of the square changing when the sides are 20 m long?
c. Draw a graph that shows how the rate of change of the area varies with the side length.
2. A 5 m ladder leans against a wall. The bottom of the ladder is 1.5 m from the wall at time $t=0$ and slides away from the wall at a rate of $0.8 \mathrm{~m} / \mathrm{s}$.
a. Find the velocity of the top of the ladder at time $t=1 \mathrm{~s}$.
b. At what time do each end of the ladder move at the same velocity?
3. A road perpendicular to a highway leads to a farmhouse located 2 km away. An automobile travels past the farmhouse at a speed of $80 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the car and the farmhouse increasing when the automobile is 6 km past the intersection of the highway and the road?
4. A swimming pool is 50 m long and 20 m wide. Its depth decreases linearly along the length from $3 m$ to $1 m$ (from the deep end to the shallow end). It is initially empty and is filled in at a rate of $1 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water level rising 4 hours after the filling begins? How long will it take to fill the pool?
5. A person of height 1.8 m walks away from a 5 m lamppost at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. Find the rate at which his shadow is increasing in length.
6. An inverted conical water tank with a height of 12 feet and a radius of 6 feet is drained through a hole in the vertex at a rate of 2 cubic feet per second (see figure 1). What is the rate of change of the water depth when the water depth is 3 feet? (Hint: Use similar triangles.)
7. For each of the following functions f :
i. Find the critical point(s) of f on the given interval;
ii. Determine the absolute extreme values of f on the given interval when they exist;
iii. Use a graphing utility to confirm your conclusions.
a. $f(x)=x^{2}-10$ on $[-2,3]$.
b. $f(x)=\sin (3 x)$ on $[-\pi / 4, \pi / 3]$.
c. $f(x)=x^{2}+\arccos x$ on $[-1,1]$.

Figure 1: Problem 3

WeBWorK style questions.

8. We want to maximize the area of an isosceles triangle of height x inscribed in a circle of radius 2 as shown in the picture.

a. The area of the triangle $P Q O$ can be written $A(x)=\alpha x \sqrt{\beta-x^{2}}$. Find α and β.

$$
\alpha=\quad, \beta=.
$$

b. The domain of $A(x)$ is

$$
\leq x \leq
$$

c. The maximal area is

$$
A=
$$

