Recall the definition of *elasticity*, namely,

$$\varepsilon(p) = \frac{\mathrm{d}q}{\mathrm{d}p} \cdot \frac{p}{q} = \frac{\frac{\mathrm{d}q}{q}}{\frac{\mathrm{d}p}{p}} \approx \frac{\% \text{ change in demand}}{\% \text{ change in price}},$$

where q = q(p) expresses demand as a function of price p; this quantity is related to variations of the revenue via $\frac{dR}{dp} = q(1 + \varepsilon(p))$.

If $-\infty < \varepsilon < -1$, the demand is said to be *elastic*, while if $-1 < \varepsilon < 0$, the demand is said to be *inelastic*. If $\varepsilon = -1$ then the product is said to be *unit-elastic*.

- 1. (*) Based on sales data over the past year, the owner of a DVD store devises the demand function q(p) = 40 2p, where q(p) is the number of DVDs that can be sold in one day at a price of p dollars.
 - a. According to the model, how many DVDs can be sold in a day at a price of \$10?
 - b. According to the model, what is the maximum price that can be charged (above which no DVDs can be sold)?
 - c. Find the elasticity function for this demand function.
 - d. For what prices is the demand elastic? Inelastic? Unit-elastic?
 - e. If the price of DVDs is raised from \$10.00 to \$10.25, what is the exact percentage decrease in demand (using the demand function)?
 - f. If the price of DVDs is raised from \$10.00 to \$10.25, what is the approximate percentage decrease in demand (using the elasticity function)?
- 2. Compute the elasticity for the exponential demand function $q(p) = ae^{-bp}$, where a and b are positive real numbers. For what prices is the demand elastic? Inelastic?
- 3. Show that the demand function $q(p) = a/p^b$, where a and b are positive real numbers, has a constant elasticity for all positive prices.
- 4. For each of the following equations, (i) use implicit differentiation to find $\frac{dy}{dx}$, and (ii) find the slope of the tangent line to the curve at the given point.
 - a. $x^4 + y^4 = 2$ at (-1, 1). b. $x = e^y$ at $(2, \ln 2)$. c. $y^2 = 4x$ at (1, 2).
- 5. Use implicit differentiation to find $\frac{\mathrm{d}y}{\mathrm{d}x}$.
 - a. $\sin xy = x + y.$
 - b. $e^{xy} = 2y$.
 - c. $x + y = \cos y$.
- 6. Use implicit differentiation to find $\frac{d^2y}{dx^2}$.
 - a. $x + y^2 = 1$.

b.
$$2x^2 + y^2 = 4$$
.
c. $x + y = \sin y$.

- 7. a. Find $\frac{dy}{dx}$, where $\sqrt{3x^7 + y^2} = \sin^2 y + 100xy$. b. Find $\frac{d^2y}{dx^2}$, where $\sqrt{y} + xy = 1$.
- 8. a. Find where the tangent line of $y^2 = x^3 3x + 1$ is horizontal. This curve is called an *elliptic curve*.
 - b. The "Limaçon" curve is $(x^2 + y^2 4x)^2 = 2(x^2 + y^2)$. Find the equation of tangent lines at the points where x = 1.
- 9. Use logarithmic differentiation to compute the derivative of the following functions on their domain
 - a. x^{x} b. $x^{e^{x}}$ c. $\sqrt{\frac{\cos(x)e^{x}}{x^{2}(x-1)^{6}}}$.
 - d. Use logarithmic differentiation to prove the power, product, and quotient rules.