Questions marked with $(*)$ are more involved than the other questions. Questions with multiple stars are harder and should only be attempted after the rest was completed.

1. Let $f(x)=\sqrt{3 x+1}$ and let $a=8$.
a. Use the definition of the derivative to find $f^{\prime}(a)$.
b. Determine the equation of the line tangent to the graph of f at the point $(a, f(a))$.
2. Find the derivative of the following functions.
a. $g(x)=6 x^{5}-x$.
b. $f(t)=6 \sqrt{t}-4 t^{3}+9$.
c. $s(t)=4 \sqrt{t}-\frac{1}{4} t^{4}+t+1$.
3. Consider the curve $y=x^{3}-4 x^{2}+2 x-1$. Find the equation of the line tangent to the curve at $x=2$.
4. (*) Use the graph of f in the figure to do the following.
a. Find the values of x in $(0,3)$ at which f is not continuous.
b. Find the values of x in $(0,3)$ at which f is not differentiable.
c. Sketch a graph of f^{\prime}.

5. Let

$$
f(x)= \begin{cases}2 x^{2} & \text { if } x \leq 1 \\ a x-2 & \text { if } x>1\end{cases}
$$

Determine the value (if it exists) of a for which f^{\prime} is continuous at $x=1$.
6. Let $f(x)=2 x^{3}-3 x^{2}-12 x+4$.
a. Find all points on the graph of f at which the tangent line is horizontal.
b. Find all points on the graph of f at which the tangent line has slope 60 .
7. (*) The limit $\lim _{h \rightarrow 0} \frac{(1+h)^{8}+(1+h)^{3}-2}{h}$ represents $f^{\prime}(a)$ for some function f and some real number a.
a. Find a possible function f and number a.
b. Evaluate the limit by computing $f^{\prime}(a)$.
c. Do the same to compute $\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}$.
d. (Final 2016) Do the same to compute $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin (x)-\cos (x)}{x-\frac{\pi}{4}}$.
8. (*) (Final 2010) If a function $y=f(x)$ is differentiable and $x=3$ and $f^{\prime}(3)=5$, find the limit $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{f(3)-f(x)}$.
9. $(* *)$
a. Let $f(x), g(x)$ be function and fix some a. Assume $f(a)=g(a)=0$, and $g^{\prime}(a) \neq 0$. Observe that in the spirit of the previous questions, we can compute

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{x-a}{g(x)-g(a)} \frac{f(x)-f(a)}{x-a}=\frac{f^{\prime}(a)}{g^{\prime}(a)} .
$$

b. Use this rule to compute $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{e^{x}-1}$.
10. Find the derivative of the following functions.
a. $g(x)=6 x-2 x \mathrm{e}^{x}$.
b. $g(w)=\mathrm{e}^{w}\left(5 w^{2}+3 w+1\right)$.
c. $f(x)=\left(1+\frac{1}{x^{2}}\right)\left(x^{2}+1\right)$.
11. (*) Compute the derivative of the following functions.
a. $h(x)=\frac{x \mathrm{e}^{x}}{x+1}$.
b. $h(x)=\frac{x+1}{x^{2} \mathrm{e}^{x}}$.
12. (*) Assuming that the first and second derivatives of f and g exist at x, find a formula for $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(f(x) g(x))$.
13. $(* *)$ Consider the function $f(x)=\frac{x}{1-x}$. If $a \neq 1$, define $g(a)$ to be the x-intercept of the tangent line of $y=f(x)$ at $x=a$. Find a formula $g(a)$.
14. $(* *)$
a. Show that the tangent lines to the x-intercepts of the polynomial $2 x^{2}+3 x+1$ are perpendicular.
b. Find a condition on a, b, c so that the two tangent lines of $y=a x^{2}+b x+c$ at the x-intercepts are perpendicular.
15. (**) Suppose the function $f(x)$ is twice differentiable and $f\left(x^{2}\right)=f(x)+x^{2}$. Find $f^{\prime}(1)$ and $f^{\prime \prime}(1)$.
16. $(* * *)$ Suppose $a>0$. Consider the function $f(x)=\frac{1}{x}$. Determine $A(a)$, defined as the area of the triangle \mathcal{T} formed between the tangent line of $y=f(x)$ at $x=a$, the x-axis, and the y-axis. Drawing the situation can be really useful.

