1. Determine the points at which the following function f has discontinuities. At each point of discontinuity, state the conditions in the continuity checklist that are violated.

2. Compute $\lim _{x \rightarrow 4} \frac{x+\sqrt{x}-6}{x-4}$.
3. If $\lim _{x \rightarrow 1} g(x)=6$ and $\lim _{x \rightarrow 1} \frac{g(x)}{f(x)-1}=3$, find $\lim _{x \rightarrow 1} f(x)$.
4. Consider three functions $f(x), g(x), h(x)$ such that

$$
\begin{gathered}
\lim _{x \rightarrow 1} f(x)=2, \lim _{x \rightarrow 1} g(x)=-2, \lim _{x \rightarrow 1} h(x)=2 \\
\lim _{x \rightarrow 2} f(x)=6, \lim _{x \rightarrow 2} g(x)=3, \lim _{x \rightarrow 2} h(x)=2 \\
\lim _{x \rightarrow 3} f(x)=-1, \lim _{x \rightarrow 3} g(x)=-1, \lim _{x \rightarrow 3} h(x)=1
\end{gathered}
$$

Compute $\lim _{x \rightarrow 1} \frac{\sqrt{f(h(f(x)))+g(x)}}{2 g(x)+f(x) h(x)+x}$.
5. Let

$$
f(x)= \begin{cases}\frac{x^{2}-4 x+3}{x-3} & \text { if } x \neq 3 \\ 2 & \text { if } x=3\end{cases}
$$

Determine whether or not $f(x)$ is continuous at $a=3$. Use the continuity checklist to justify your answer.
6. Determine the interval(s) on which the function $f(x)=\frac{x^{5}+6 x+17}{x^{2}-9}$ is continuous.
7. Let

$$
f(x)= \begin{cases}2 x & \text { if } x<1 \\ x^{2}+3 x & \text { if } x \geq 1\end{cases}
$$

a. Use the continuity checklist to show that f is not continuous at 1 .
b. Is f left-continuous or right-continuous at 1 ?
c. State the interval(s) of continuity.
8. Find an interval of length 1 containing a number x such that $2^{x}+3^{x}=4^{x}$.
9. You are shopping for a $\$ 150,000,30$-year loan to buy a house. The monthly payment is

$$
m(r)=\frac{150000(r / 12)}{1-(1+r / 12)^{-360}},
$$

where r is the annual interest rate. Suppose banks are currently offering interest rates between 6% and 8%.
a. Use the intermediate value theorem to show that there is a value of r in the interval $(0.06,0.08)$ - i.e., an interest rate between 6% and 8% - that allows you to make monthly payments of $\$ 1000$ per month. You can use an online calculator for numerical computations.
b. Use a graph to illustrate your explanation to part a. Then determine the interest rate you need for monthly payments of $\$ 1000$.
10. Determine the value of the constant a for which the function

$$
f(x)= \begin{cases}\frac{x^{2}+3 x+2}{x+1} & \text { if } x \neq-1 \\ a & \text { if } x=-1\end{cases}
$$

is continuous at -1 .
11. Let

$$
f(x)= \begin{cases}x^{2}+x & \text { if } x<1 \\ a & \text { if } x=1 \\ 3 x+5 & \text { if } x>1\end{cases}
$$

a. Determine the value of a for which f is left-continuous at 1 .
b. Determine the value of a for which f is right-continuous at 1 .
c. Is there a value of a for which f is continuous at 1? Explain why or why not.
12. (*) This is a bonus question, only attempt it if you have finished the rest.

The goal of this question is to prove the following: On the equator, there are always two points diametrically opposed (i.e. symmetric with respect to the center of the earth) with the same temperature. Define a function as follows

$$
f(\theta)=\text { temperature at } P_{\theta}-\text { temperature at } Q_{\theta} \text {, }
$$

where θ is an angle between 0° and 360°, and P_{θ} and Q_{θ} are in the following picture.

Use the IVT to show that there is an angle x between 0° and 180° such that $f(x)=0$. What does this show?

Remark. This is nothing special about the equator, on any longitude or lattitude there are always two points opposed with the same temperature.

