1. Use the graph of f in the figure below to find the following values or state that they do not exist. If a limit does not exist, explain why.

2. $f(1)$;
3. $\lim _{x \rightarrow 1^{-}} f(x)$;
4. $\lim _{x \rightarrow 1^{+}} f(x)$;
5. $\lim _{x \rightarrow 1} f(x)$;
6. Sketch the graph of a function with the given properties. You do not need to find a formula for the function.

$$
\begin{aligned}
& g(1)=0, \quad g(2)=1, \quad g(3)=-2, \quad \lim _{x \rightarrow 2} g(x)=0, \\
& \lim _{x \rightarrow 3^{-}} g(x)=-1, \quad \lim _{x \rightarrow 3^{+}} g(x)=-2 .
\end{aligned}
$$

3. Use the graph of f in the figure to find the following values or state that they do not exist. If a limit does not exist, explain why.
a. $f(1)$
b. $\lim _{x \rightarrow 1^{-}} f(x)$
c. $\lim _{x \rightarrow 1^{+}} f(x)$
d. $\lim _{x \rightarrow 1} f(x)$
e. $f(3)$
f. $\lim _{x \rightarrow 3^{-}} f(x)$
g. $\lim _{x \rightarrow 3^{+}} f(x)$
h. $\lim _{x \rightarrow 3} f(x)$
i. $f(2)$
j. $\lim _{x \rightarrow 2^{-}} f(x)$
k. $\lim _{x \rightarrow 2^{+}} f(x)$
4. $\lim _{x \rightarrow 2} f(x)$

5. Evaluate $\lim _{b \rightarrow 2} \frac{3 b}{\sqrt{4 b+1}-1}$.
6. Show that $\lim _{x \rightarrow 0}|x|=0$ by first evaluating $\lim _{x \rightarrow 0^{-}}|x|=0$ and $\lim _{x \rightarrow 0^{+}}|x|=0$. Recall that

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

6. Evaluate the limits

- $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$,
- $\lim _{x \rightarrow 4} \frac{x^{2}-16}{4-x}$, and
- $\lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}$.

7. An extremely popular commodity called the NEWFAD is produced by a company called Useless, Inc.; after millions of dollars spent in market research, Useless, Inc. has determined a model of the NewFad's sales, as follows:

When the price of the NewFAD is $\$ 400$, the weekly demand for it in a particular district is 8000 units. For every $\$ 2$ increase in price, the weekly demand decreases by 40 units.
Assume that the fixed costs of production on a weekly basis are $\$ 250,000$, and that the variable costs of production are $\$ 75$ per unit.
(a) Find the (linear) demand equation for the NEWFAD; use the notation p for the unit price and q for the weekly demand.
(b) Find the weekly cost function $C=C(q)$ for producing q NewFads per week. (Hint: $C(q)$ will also be a linear function.)
(c) Find the weekly revenue function $R=R(q)$. (Hint: $R(q)$ will be a quadratic function.)
(d) The break-even points are where cost equals revenue, i.e., when $C(q)=R(q)$. Find the break-even points for the NEwFAD.
(e) On the same set of axes, sketch graphs of $C(q)$ and $R(q)$, and use these graphs to help you explain why there are two break-even points.
(f) Profit is defined to be revenue minus cost; that is, $P(q)=R(q)-C(q)$. Find the profit function $P(q)$ for this situation. (Hint: the profit function will be a quadratic function.)
(g) Graph $P(q)$ on the same axes as in part (e). On this graph, indicate the regions of profit and loss (respectively, where $P(q)>0$ and where $P(q)<0$.)
(h) How should Useless, Inc. operate in order to maximize the weekly profit $P(q)$? Be sure to include a mathematical argument in your explanation.

