All questions except number 1,5 come from the course text.

1. This question consist on a few short multiple choice questions on precalc to discuss.
(a) Given the equation of a line $y=m x+b, m$ is called the:
\bigcirc asymptote \bigcirc slope \bigcirc multiplier $\bigcirc x$-intercept $\bigcirc y$-intercept
(b) The lines $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$ are parallel if: $\bigcirc m_{1}=m_{2} \bigcirc m_{1} m_{2}=-1 \quad m_{1} m_{2}=1 \bigcirc b_{1}=-b_{2} \quad \bigcirc m_{1} b_{2}-b_{1} m_{2}=0$
What about perpendicular?
(c) The maximum of $-2 x^{2}+12 x+10$ is attained for:

〇 $x=3$
$x=3 \pm \sqrt{14}$
O $=0$
○ $x=28$
\bigcirc in the middle of the two x-intercepts
Can you recall how to determine if quadratic has a maximum/minimum? What's the quadratic formula?
(d) Which of the following assertion is true?
$\bigcirc \ln (x+y)=\ln (x)+\ln (y)$
$\bigcirc e^{x y}=e^{x} e^{y}$
$2^{x}+2^{x}=2^{x+1}$
$f^{-1}(x)=\frac{1}{f(x)}$
2. Let $f(x)=\sqrt{x+2}$ for $x \geq-2$. Find the inverse of $f(x)$ for $x \geq-2$ and write it in the form $y=f^{-1}(x)$. Then, verify the relationships $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
3. The unit circle $x^{2}+y^{2}=1$ consists of four one-to-one functions, $f_{1}(x), f_{2}(x), f_{3}(x)$, and $f_{4}(x)$ (see figure).

1. Find the domain and a formula for each function.
2. Find the inverse of each function and write it as $y=f^{-1}(x)$.

3. Solve the following equations:

- $\log _{10} x=3$.
- $\log _{8} x=\frac{1}{3}$.
- $\ln x=-1$.

5. Without using a graphing utility, sketch the graph of $y=2^{x}$. Then on the same set of axes, sketch the graphs of $y=2^{-x}, y=2^{x-1}, y=2^{x}+1$, and $y=2^{2 x}$.
6. (*) A particular factory produces organic, artisanal garbage; denote by x the number of units of garbage the factory produces in a given day.
7. Suppose the total cost to the factory of producing x units a day is $C(x)=36 x+260$ dollars, and that the total projected revenue from producing x units a day is $R(x)=$ $-2 x^{2}+104 x-220$. Find the projected daily profit from producing x units per day.
8. Determine the number of units of artisanal garbage the factory should produce each day to maximize its profit.
9. (*) Prove that, if $b>0, c>0, b \neq 1, c \neq 1$, then $\left(\log _{b} c\right)\left(\log _{c} b\right)=1$.
10. Sketch a function that is one-to-one and positive for $x \geq 0$. Make a rough sketch of its inverse.
11. Solve the equation $3^{3 x-4}=15$
