All questions except number 1,5 come from the course text.

- 1. This question consist on a few short multiple choice questions on precalc to discuss.
 - (a) Given the equation of a line y = mx + b, m is called the: \bigcirc asymptote \bigcirc slope \bigcirc multiplier \bigcirc x-intercept \bigcirc y-intercept
 - (b) The lines $y = m_1 x + b_1$ and $y = m_2 x + b_2$ are parallel if: $\bigcirc m_1 = m_2 \bigcirc m_1 m_2 = -1 \bigcirc m_1 m_2 = 1 \bigcirc b_1 = -b_2 \bigcirc m_1 b_2 - b_1 m_2 = 0$ What about perpendicular?
 - (c) The maximum of $-2x^2 + 12x + 10$ is attained for:
 - $\bigcirc x = 3$ $\bigcirc x = 3 \pm \sqrt{14}$ $\bigcirc x = 0$ $\bigcirc x = 28$ $\bigcirc x \text{ in the middle of the two x-intercepts}$

Can you recall how to determine if quadratic has a maximum/minimum? What's the quadratic formula?

- (d) Which of the following assertion is true? $\bigcirc \ln(x+y) = \ln(x) + \ln(y) \quad \bigcirc e^{xy} = e^x e^y \quad \bigcirc 2^x + 2^x = 2^{x+1} \quad \bigcirc f^{-1}(x) = \frac{1}{f(x)}$
- 2. Let $f(x) = \sqrt{x+2}$ for $x \ge -2$. Find the inverse of f(x) for $x \ge -2$ and write it in the form $y = f^{-1}(x)$. Then, verify the relationships $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.
- 3. The unit circle $x^2 + y^2 = 1$ consists of four one-to-one functions, $f_1(x), f_2(x), f_3(x)$, and $f_4(x)$ (see figure).
 - 1. Find the domain and a formula for each function.
 - 2. Find the inverse of each function and write it as $y = f^{-1}(x)$.

- 4. Solve the following equations:
 - $\log_{10} x = 3.$
 - $\log_8 x = \frac{1}{3}$.

- $\ln x = -1$.
- 5. Without using a graphing utility, sketch the graph of $y = 2^x$. Then on the same set of axes, sketch the graphs of $y = 2^{-x}$, $y = 2^{x-1}$, $y = 2^x + 1$, and $y = 2^{2x}$.
- 6. (*) A particular factory produces organic, artisanal garbage; denote by x the number of units of garbage the factory produces in a given day.
 - 1. Suppose the total cost to the factory of producing x units a day is C(x) = 36x + 260 dollars, and that the total projected revenue from producing x units a day is $R(x) = -2x^2 + 104x 220$. Find the projected daily profit from producing x units per day.
 - 2. Determine the number of units of artisanal garbage the factory should produce each day to maximize its profit.
- 7. (*) Prove that, if $b > 0, c > 0, b \neq 1, c \neq 1$, then $(\log_b c)(\log_c b) = 1$.
- 8. Sketch a function that is one-to-one and positive for $x \ge 0$. Make a rough sketch of its inverse.
- 9. Solve the equation $3^{3x-4} = 15$