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OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).
See http://oeis.org. A database of over 270,000 sequences of
integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, . . .

Cn is a Catalan number.

Comments. . . . This is probably the longest entry in OEIS, and
rightly so.



Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.



Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of Cn and 68 additional
problems.





History
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( ), and Jing An (c. 1692–c. 1763): a Mongolian
astronomer, mathematician, and topographic scientist who worked
at the Qing court in China.



History

Sharabiin Myangat, also known as Minggatu, Ming’antu
( ), and Jing An (c. 1692–c. 1763): a Mongolian
astronomer, mathematician, and topographic scientist who worked
at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α



History

Sharabiin Myangat, also known as Minggatu, Ming’antu
( ), and Jing An (c. 1692–c. 1763): a Mongolian
astronomer, mathematician, and topographic scientist who worked
at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α

First example of an infinite trigonometric series.



History

Sharabiin Myangat, also known as Minggatu, Ming’antu
( ), and Jing An (c. 1692–c. 1763): a Mongolian
astronomer, mathematician, and topographic scientist who worked
at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α

First example of an infinite trigonometric series.

No combinatorics, no further work in China.
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More history, via Igor Pak

Euler (1751): conjectured formula for the number of
triangulations of a convex (n + 2)-gon. In other words, draw
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More history, via Igor Pak

Euler (1751): conjectured formula for the number of
triangulations of a convex (n + 2)-gon. In other words, draw
n − 1 noncrossing diagonals of a convex polygon with n + 2
sides.

1, 2, 5, 14, . . .

We define these numbers to be the Catalan numbers Cn.



Completion of proof

Goldbach and Segner (1758–1759): helped Euler complete
the proof, in pieces.

Lamé (1838): first self-contained, complete proof.
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Eugène Charles Catalan (1838): wrote Cn in the form
(2n)!

n! (n+1)! and showed it counted (nonassociative) bracketings
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Catalan

Eugène Charles Catalan (1838): wrote Cn in the form
(2n)!

n! (n+1)! and showed it counted (nonassociative) bracketings

(or parenthesizations) of a string of n + 1 letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule).
Studied in France and worked in France and Liège, Belgium. Died
in Liège in 1894.
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Why “Catalan numbers”?

John Riordan (1948): introduced the term “Catalan
number” in Math Reviews.

Riordan (1964): used the term again in Math. Reviews.

Riordan (1968): used the term in his book Combinatorial

Identities. Finally caught on.

Martin Gardner (1976): used the term in his Mathematical
Games column in Scientific American. Real popularity began.
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The primary recurrence

Cn+1 =

n
∑

k=0

CkCn−k , C0 = 1

42 = 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1
e

12-gon, n = 9, k = 5, n − k = 4
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Cn+1x
n

=
y − 1

x
.

⇒ xy2 − y + 1 = 0

Solve this quadratic equation for y !



Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =
1−

√
1− 4x

2x
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Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =
1−

√
1− 4x

2x

⇒ y = −1

2

∑

n≥1

(−4)n
(

1/2

n

)

xn−1

= −1

2

∑

n≥1

(−4)n
1
2(−1

2) · · · (−2n−3
2 )

n!
xn−1,

since

(

a

n

)

=
a · (a − 1) · (a − n + 1)

n!
.

Simplifying gives

Cn =
1

n + 1

(

2n

n

)

=
(2n)!

n! (n + 1)!



Other combinatorial interpretations

Pn := {triangulations of convex (n + 2)-gon}
⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations of Cn, i.e., other sets
Sn for which Cn = #Sn.



Other combinatorial interpretations

Pn := {triangulations of convex (n + 2)-gon}
⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations of Cn, i.e., other sets
Sn for which Cn = #Sn.

One method: If Dn = #Sn, then show that

D0 = 1, Dn+1 =
n
∑

k=0

DkDn−k for n ≥ 1.
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in 1878 but named after Joseph Louis François Bertrand who
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theory).



The ballot problem

Bertrand’s ballot problem: first published by W. A. Whitworth
in 1878 but named after Joseph Louis François Bertrand who
rediscovered it in 1887 (one of the first results in probability
theory).

Special case: there are two candidates A and B in an election.
Each receives n votes. What is the probability that A will never
trail B during the count of votes?

Example. AABABBBAAB is bad, since after seven votes, A
receives 3 votes while B receives 4.



Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by −1 (abbreviated −).
Clearly a sequence a1a2 · · · a2n of n each of 1 and −1’s is allowed if
and only if

∑k
i=1 ai ≥ 0 for all 1 ≤ k ≤ 2n. Such a sequence is

called a ballot sequence.



Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’s and n −1’s such that
every partial sum is nonnegative (with −1 denoted simply as −
below)

111−−− 11− 1−− 11−−1− 1− 11−− 1− 1− 1−



Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’s and n −1’s such that
every partial sum is nonnegative (with −1 denoted simply as −
below)

111−−− 11− 1−− 11−−1− 1− 11−− 1− 1− 1−

Note. Answer to original problem (probability that a sequence of n
each of 1’s and −1’s is a ballot sequence) is therefore

Cn
(2n
n

) =
1

n+1

(

2n
n

)

(2n
n

) =
1

n + 1
.



The ballot recurrence
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Consider the first partial sum equal to 0.
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Remove the first element (which equals 1) of the ballot sequence,
and the last element (which equals −1) of this partial sum.



The ballot recurrence

1 1 − 1 1− 1−−− 1− 1 1− 1−−
Consider the first partial sum equal to 0.

1 1− 1 1 − 1−−−|1− 1 1− 1−−

Remove the first element (which equals 1) of the ballot sequence,
and the last element (which equals −1) of this partial sum.

1− 1 1− 1−− |1− 1 1− 1−−



Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0, 0) to
(2n, 0) with steps (1, 1) and (1,−1), never falling below the x-axis
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Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0, 0) to
(2n, 0) with steps (1, 1) and (1,−1), never falling below the x-axis

Walther von Dyck (1856–1934)



Bijective proofs

Suppose we know that #Sn = Cn and want to show that
#Tn = Cn.

bijective proof: construct a bijection (one-to-one
correspondence) between Sn and Tn.



Bijection between Dyck paths and ballot sequences

11 1 11 1 1 1 1− − − − − − − − −

For each upstep, record 1.
For each downstep, record −1.



321-avoiding permutations

115. Permutations a1a2 · · · an of 1, 2, . . . , n with longest decreasing
subsequence of length at most two (i.e., there does not exist
i < j < k , ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231



321-avoiding permutations

115. Permutations a1a2 · · · an of 1, 2, . . . , n with longest decreasing
subsequence of length at most two (i.e., there does not exist
i < j < k , ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231

more subtle: no obvious decomposition into two pieces
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Bijection with ballot sequences

w = 412573968

1

4

2

5

7

9

3

6

8

1 1 1 1 − − − 1 − 1 1 − − 1 1 − −−

Part of the subject of pattern avoidance.



An unexpected interpretation

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2 such that in the
sequence 1a1a2 · · · an1, each ai divides the sum of its two neighbors

14321 13521 13231 12531 12341



Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue
until only 1’s remain; then replace bar with 1 and an original
number with −1, except last two

1 2 5 3 4 1
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remove largest; insert bar before the element to its left; continue
until only 1’s remain; then replace bar with 1 and an original
number with −1, except last two
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Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue
until only 1’s remain; then replace bar with 1 and an original
number with −1, except last two

|1||2 5 |3 4 1

| 1 | | 2 5 | 3 4 1

1 − 1 1 − − 1 −
tricky to prove
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Analysis

A65.(b)
∑

n≥0

1

Cn

= 2 +
4
√
3π

27

1 + 1 +
1

2
+

1

5
= 2.7

2 +
4
√
3π

27
= 2.806133 · · ·



Why?

A65.(a)

∑

n≥0

xn

Cn

=
2(x + 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.



Why?

A65.(a)

∑

n≥0

xn

Cn

=
2(x + 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.

Based on a (difficult) calculus exercise: let

y = 2

(

sin−1 1

2

√
x

)2

.

Then y =
∑

n≥1

xn

n2
(2n
n

) .
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2nn )
. Note that:

x2
d

dx
x
dx

x
y =

∑

n≥1

xn+1

(
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n
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2nn )
. Note that:

d

dx
x2

d

dx
x
dx

x
y =

∑

n≥1

(n + 1)xn
(2n
n

)



Completion of proof

Recall y =
∑

n≥1
xn

n2(2nn )
. Note that:

d

dx
x2

d

dx
x
dx

x
y =

∑

n≥1

(n + 1)xn
(2n
n

)

= −1 +
∑

n≥0

xn

Cn

,

etc.
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is odd (where 0 ≤ j ≤ m) if and only
when we add j and n − j in base 2 (binary), there are no carries.
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Encore: odd Catalan numbers

C0 = 1, C1 = 1, C3 = 5, C7 = 429, C15 = 9694845

Theorem. Cn is odd if and only if n = 2k − 1 for some k ≥ 0.

Proof. Based on a theorem of Edouard Lucas (1878): the
binomial coefficient

(

m
j

)

is odd (where 0 ≤ j ≤ m) if and only
when we add j and n − j in base 2 (binary), there are no carries.

Note that Cn = 1
n+1

(2n
n

)

= 1
2n+1

(2n+1
n

)

.

So Cn is odd if and only if there are no carries when we add n and
n + 1.

There will always be a carry at the first digit unless
n = (111 . . . 1)2 (binary expansion with k 1’s for some k). This
equals 2k − 1. Conversely, there are no carries when n = 2k − 1.


