Catalan Numbers

Richard P. Stanley

March 13, 2024

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.
Comments. ... This is probably the longest entry in OEIS, and rightly so.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of C_{n} and 68 additional problems.

Catalan Numbers

RICHARD P．STANLEY

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

First example of an infinite trigonometric series．

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

First example of an infinite trigonometric series．
No combinatorics，no further work in China．

Ming'antu

Manuscript of Ming'antu

Manuscript of Ming'antu

Manuscript of Ming'antu

More history, via Igor Pak

- Euler (1751): conjectured formula for the number of triangulations of a convex $(n+2)$-gon. In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

More history, via Igor Pak

- Euler (1751): conjectured formula for the number of triangulations of a convex $(n+2)$-gon. In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

$1,2,5,14, \ldots$

More history, via Igor Pak

- Euler (1751): conjectured formula for the number of triangulations of a convex $(n+2)$-gon. In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

$$
1, \quad 2, \quad 5,14, \ldots
$$

We define these numbers to be the Catalan numbers C_{n}.

Completion of proof

- Goldbach and Segner (1758-1759): helped Euler complete the proof, in pieces.
- Lamé (1838): first self-contained, complete proof.

Catalan

- Eugène Charles Catalan (1838): wrote C_{n} in the form $\frac{(2 n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.

Catalan

- Eugène Charles Catalan (1838): wrote C_{n} in the form $\frac{(2 n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.
Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book Combinatorial Identities. Finally caught on.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book Combinatorial Identities. Finally caught on.
- Martin Gardner (1976): used the term in his Mathematical Games column in Scientific American. Real popularity began.

The primary recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

The primary recurrence

$$
\begin{gathered}
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1 \\
42=1 \cdot 14+1 \cdot 5+2 \cdot 2+5 \cdot 1+14 \cdot 1
\end{gathered}
$$

The primary recurrence

$$
\begin{gathered}
C_{n+1}=\sum_{k=0}^{n} c_{k} C_{n-k}, \quad c_{0}=1 \\
42=1 \cdot 14+1 \cdot 5+2 \cdot 2+5 \cdot 1+14 \cdot 1
\end{gathered}
$$

The primary recurrence

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $y=\sum_{n \geq 0} C_{n} x^{n}$ (generating function).

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $\boldsymbol{y}=\sum_{n \geq 0} C_{n} x^{n}$ (generating function).
Then

$$
\begin{aligned}
y^{2} & =\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n} \\
& =\sum_{n \geq 0} C_{n+1} x^{n} \\
& =\frac{y-1}{x}
\end{aligned}
$$

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $\boldsymbol{y}=\sum_{n \geq 0} C_{n} x^{n}$ (generating function).
Then

$$
\begin{aligned}
y^{2} & =\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n} \\
& =\sum_{n \geq 0} C_{n+1} x^{n} \\
& =\frac{y-1}{x} \\
& \Rightarrow x y^{2}-y+1=0
\end{aligned}
$$

Solve this quadratic equation for y !

Solving the quadratic equation

$$
\begin{gathered}
x y^{2}-y+1=0 \Rightarrow y=\frac{1-\sqrt{1-4 x}}{2 x} \\
\Rightarrow y=-\frac{1}{2} \sum_{n \geq 1}(-4)^{n}\binom{1 / 2}{n} x^{n-1} \\
=-\frac{1}{2} \sum_{n \geq 1}(-4)^{n} \frac{\frac{1}{2}\left(-\frac{1}{2}\right) \cdots\left(-\frac{2 n-3}{2}\right)}{n!} x^{n-1}, \\
\text { since }\binom{a}{n}=\frac{a \cdot(a-1) \cdot(a-n+1)}{n!}
\end{gathered}
$$

Solving the quadratic equation

$$
\begin{gathered}
x y^{2}-y+1=0 \Rightarrow y=\frac{1-\sqrt{1-4 x}}{2 x} \\
\Rightarrow y=-\frac{1}{2} \sum_{n \geq 1}(-4)^{n}\binom{1 / 2}{n} x^{n-1} \\
=-\frac{1}{2} \sum_{n \geq 1}(-4)^{n} \frac{\frac{1}{2}\left(-\frac{1}{2}\right) \cdots\left(-\frac{2 n-3}{2}\right)}{n!} x^{n-1},
\end{gathered}
$$

since $\binom{a}{n}=\frac{a \cdot(a-1) \cdot(a-n+1)}{n!}$.
Simplifying gives

$$
C_{n}=\frac{1}{\boldsymbol{n}+1}\binom{2 \boldsymbol{n}}{\boldsymbol{n}}=\frac{(2 n)!}{n!(n+1)!}
$$

Other combinatorial interpretations

$$
\begin{aligned}
\mathcal{P}_{n} & :=\{\text { triangulations of convex }(n+2) \text {-gon }\} \\
\Rightarrow \# \mathcal{P}_{n} & =C_{n}(\text { where } \# \mathcal{S}=\text { number of elements of } \mathcal{S})
\end{aligned}
$$

We want other combinatorial interpretations of C_{n}, i.e., other sets
\mathcal{S}_{n} for which $C_{n}=\# \mathcal{S}_{n}$.

Other combinatorial interpretations

$$
\begin{aligned}
\mathcal{P}_{n} & :=\{\text { triangulations of convex }(n+2) \text {-gon }\} \\
\Rightarrow \# \mathcal{P}_{n} & =C_{n}(\text { where } \# \mathcal{S}=\text { number of elements of } \mathcal{S})
\end{aligned}
$$

We want other combinatorial interpretations of C_{n}, i.e., other sets \mathcal{S}_{n} for which $C_{n}=\# \mathcal{S}_{n}$.

One method: If $D_{n}=\# \mathcal{S}_{n}$, then show that

$$
D_{0}=1, \quad D_{n+1}=\sum_{k=0}^{n} D_{k} D_{n-k} \text { for } n \geq 1
$$

"Transparent" interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

"Transparent" interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

"Transparent" interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters (without assuming the associative law $x x \cdot x=x \cdot x x$)

$$
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x
$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters (without assuming the associative law $x x \cdot x=x \cdot x x$)

$$
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x
$$

$$
((x(x x)) x)(x((x x)(x x)))
$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters (without assuming the associative law $x x \cdot x=x \cdot x x$)

$$
\begin{gathered}
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x \\
((x(x X)) x)(x((x x)(x x)))
\end{gathered}
$$

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

Special case: there are two candidates A and B in an election. Each receives n votes. What is the probability that A will never trail B during the count of votes?

Example. $A A B A B B B A A B$ is bad, since after seven votes, A receives 3 votes while B receives 4 .

Definition of ballot sequence

Encode a vote for A by 1 , and a vote for B by -1 (abbreviated -). Clearly a sequence $a_{1} a_{2} \cdots a_{2 n}$ of n each of 1 and -1 's is allowed if and only if $\sum_{i=1}^{k} a_{i} \geq 0$ for all $1 \leq k \leq 2 n$. Such a sequence is called a ballot sequence.

Ballot sequences

77. Ballot sequences, i.e., sequences of $n 1$'s and $n-1$'s such that every partial sum is nonnegative (with -1 denoted simply as below)

$$
111---11-1--11--1-\quad 1-11--1-1-1-
$$

Ballot sequences

77. Ballot sequences, i.e., sequences of $n 1$'s and $n-1$'s such that every partial sum is nonnegative (with -1 denoted simply as below)
```
111--- 11-1-- 11--1- 1-11-- 1-1-1-
```

Note. Answer to original problem (probability that a sequence of n each of 1 's and -1 's is a ballot sequence) is therefore

$$
\frac{C_{n}}{\binom{2 n}{n}}=\frac{\frac{1}{n+1}\binom{2 n}{n}}{\binom{2 n}{n}}=\frac{1}{n+1}
$$

The ballot recurrence

$$
11-11-1---1-11-1--
$$

Consider the first partial sum equal to 0 .

The ballot recurrence

$$
11-11-1---1-11-1--
$$

Consider the first partial sum equal to 0 .

$$
11-11-1---\mid 1-11-1--
$$

Remove the first element (which equals 1) of the ballot sequence, and the last element (which equals -1) of this partial sum.

The ballot recurrence

$$
11-11-1---1-11-1--
$$

Consider the first partial sum equal to 0 .

$$
11-11-1---\mid 1-11-1--
$$

Remove the first element (which equals 1) of the ballot sequence, and the last element (which equals -1) of this partial sum.

$$
1-11-1--\quad \mid 1-11-1--
$$

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Walther von Dyck (1856-1934)

Bijective proofs

Suppose we know that $\# \mathcal{S}_{n}=C_{n}$ and want to show that $\# \mathcal{T}_{n}=C_{n}$.
bijective proof: construct a bijection (one-to-one correspondence) between \mathcal{S}_{n} and \mathcal{T}_{n}.

Bijection between Dyck paths and ballot sequences

For each upstep, record 1.
For each downstep, record -1 .

321-avoiding permutations

115. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k, a_{i}>a_{j}>a_{k}$), called 321-avoiding permutations

$$
\begin{array}{lllll}
123 & 213 & 132 & 312 & 231
\end{array}
$$

321-avoiding permutations

115. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k, a_{i}>a_{j}>a_{k}$), called 321-avoiding permutations

$$
\begin{array}{lllll}
123 & 213 & 132 & 312 & 231
\end{array}
$$

more subtle: no obvious decomposition into two pieces

Bijection with ballot sequences

$$
w=412573968
$$

Bijection with ballot sequences

$$
w=412573968
$$

Part of the subject of pattern avoidance.

Bijection with ballot sequences

$$
w=412573968
$$

Part of the subject of pattern avoidance.

Bijection with ballot sequences

$$
w=412573968
$$

$$
1111---1-11--11---
$$

Part of the subject of pattern avoidance.

An unexpected interpretation

92. n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of integers $a_{i} \geq 2$ such that in the sequence $1 a_{1} a_{2} \cdots a_{n} 1$, each a_{i} divides the sum of its two neighbors

$$
\begin{array}{lllll}
14321 & 13521 & 13231 & 12531 & 12341
\end{array}
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
\begin{array}{llllll}
1 & 2 & 5 & 4
\end{array}
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
1 \left\lvert\, \begin{array}{lllll}
2 & 5 & 3 & 4 & 1
\end{array}\right.
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
1|25| 341
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
1||2 \quad 5| 3 \quad 4 \quad 1
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
|1| \left\lvert\, 2 \begin{array}{llll}
\mid & 5 & 4 & 1
\end{array}\right.
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

\[

\]

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
\begin{aligned}
& \text { |1||2 } 5 \left\lvert\, \begin{array}{lll}
\mid 3 & 4 & 1
\end{array}\right. \\
& \begin{array}{lll|lll|lll}
\mid & 1 & \mid & 2 & 5 & 3 & 4 & 1
\end{array} \\
& 1-11-2-1-
\end{aligned}
$$

tricky to prove

Analysis

A65.(b)

$$
\sum_{n \geq 0} \frac{1}{C_{n}}=? ?
$$

Analysis

A65.(b)

$$
\begin{gathered}
\sum_{n \geq 0} \frac{1}{C_{n}}=? ? \\
1+1+\frac{1}{2}+\frac{1}{5}=2.7
\end{gathered}
$$

Analysis

A65.(b)

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{1}{C_{n}}=2+\frac{4 \sqrt{3} \pi}{27} \\
& 1+1+\frac{1}{2}+\frac{1}{5}=2.7
\end{aligned}
$$

Analysis

A65.(b)

$$
\begin{gathered}
\sum_{n \geq 0} \frac{1}{C_{n}}=2+\frac{4 \sqrt{3} \pi}{27} \\
1+1+\frac{1}{2}+\frac{1}{5}=2.7 \\
2+\frac{4 \sqrt{3} \pi}{27}=2.806133 \cdots
\end{gathered}
$$

Why?

A65.(a)

$$
\sum_{n \geq 0} \frac{x^{n}}{C_{n}}=\frac{2(x+8)}{(4-x)^{2}}+\frac{24 \sqrt{x} \sin ^{-1}\left(\frac{1}{2} \sqrt{x}\right)}{(4-x)^{5 / 2}}
$$

Why?

A65.(a)

$$
\sum_{n \geq 0} \frac{x^{n}}{C_{n}}=\frac{2(x+8)}{(4-x)^{2}}+\frac{24 \sqrt{x} \sin ^{-1}\left(\frac{1}{2} \sqrt{x}\right)}{(4-x)^{5 / 2}}
$$

Based on a (difficult) calculus exercise: let

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}
$$

Then $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$.

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
\frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n-1}}{n\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
x \frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n}}{n\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
\frac{d}{d x} x \frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n-1}}{\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{x^{n+1}}{\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
\frac{d}{d x} x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{(n+1) x^{n}}{\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
\begin{aligned}
\frac{d}{d x} x^{2} \frac{d}{d x} x \frac{d x}{x} y= & \sum_{n \geq 1} \frac{(n+1) x^{n}}{\binom{2 n}{n}} \\
& =-1+\sum_{n \geq 0} \frac{x^{n}}{C_{n}}
\end{aligned}
$$

etc.

The final slide

The final slide

Encore: odd Catalan numbers

$$
C_{0}=1, C_{1}=1, \quad C_{3}=5, \quad C_{7}=429, \quad C_{15}=9694845
$$

Encore: odd Catalan numbers

$$
C_{0}=1, C_{1}=1, \quad C_{3}=5, C_{7}=429, \quad C_{15}=9694845
$$

Theorem. C_{n} is odd if and only if $n=2^{k}-1$ for some $k \geq 0$.

Encore: odd Catalan numbers

$$
C_{0}=1, C_{1}=1, C_{3}=5, C_{7}=429, C_{15}=9694845
$$

Theorem. C_{n} is odd if and only if $n=2^{k}-1$ for some $k \geq 0$.
Proof. Based on a theorem of Edouard Lucas (1878): the binomial coefficient $\binom{m}{j}$ is odd (where $0 \leq j \leq m$) if and only when we add j and $n-j$ in base 2 (binary), there are no carries.

Encore: odd Catalan numbers

$$
C_{0}=1, C_{1}=1, C_{3}=5, C_{7}=429, C_{15}=9694845
$$

Theorem. C_{n} is odd if and only if $n=2^{k}-1$ for some $k \geq 0$.
Proof. Based on a theorem of Edouard Lucas (1878): the binomial coefficient $\binom{m}{j}$ is odd (where $0 \leq j \leq m$) if and only when we add j and $n-j$ in base 2 (binary), there are no carries.

Note that $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$.

Encore: odd Catalan numbers

$$
C_{0}=1, C_{1}=1, C_{3}=5, C_{7}=429, \quad C_{15}=9694845
$$

Theorem. C_{n} is odd if and only if $n=2^{k}-1$ for some $k \geq 0$.
Proof. Based on a theorem of Edouard Lucas (1878): the binomial coefficient $\binom{m}{j}$ is odd (where $0 \leq j \leq m$) if and only when we add j and $n-j$ in base 2 (binary), there are no carries.

Note that $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$.
So C_{n} is odd if and only if there are no carries when we add n and $n+1$.

Encore: odd Catalan numbers

$$
C_{0}=1, C_{1}=1, C_{3}=5, C_{7}=429, C_{15}=9694845
$$

Theorem. C_{n} is odd if and only if $n=2^{k}-1$ for some $k \geq 0$.
Proof. Based on a theorem of Edouard Lucas (1878): the binomial coefficient $\binom{m}{j}$ is odd (where $0 \leq j \leq m$) if and only when we add j and $n-j$ in base 2 (binary), there are no carries.

Note that $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$.
So C_{n} is odd if and only if there are no carries when we add n and $n+1$.

There will always be a carry at the first digit unless $n=(111 \ldots 1)_{2}$ (binary expansion with k 1's for some $\left.k\right)$. This equals $2^{k}-1$. Conversely, there are no carries when $n=2^{k}-1$.

