Increasing and decreasing subsequences

$$\mathbf{is}(w) = |\text{longest i.s.}| = 4$$

 $\mathbf{ds}(w) = |\text{longest d.s.}| = 3$

Application: airplane boarding

Naive model: passengers board in order $w = a_1 a_2 \cdots a_n$ for seats $1, 2, \ldots, n$. Each passenger takes one time unit to be seated after arriving at his seat.

Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

Two conclusions:

- Usual system (back-to-front) about as good as random.
- Better: first board window seats, then center, then aisle

partition
$$\lambda \vdash n: \lambda = (\lambda_1, \lambda_2, \ldots)$$

 $\lambda_1 \ge \lambda_2 \ge \cdots \ge 0$
 $\sum \lambda_i = n$

(Young) diagram of $\lambda = (4, 4, 3, 1)$:

Young diagram of the **conjugate** partition $\lambda' = (4, 3, 3, 2)$:

standard Young tableau (SYT) of shape $\lambda \vdash n$, e.g., $\lambda = (4, 4, 3, 1)$:

$$f^{\lambda} = \# \text{ of SYT of shape } \lambda$$

E.g.,
$$f^{(3,2)} = 5$$
:
 $123 \quad 124 \quad 125 \quad 134 \quad 135$
 $45 \quad 35 \quad 34 \quad 25 \quad 24$

 \exists simple formula for f^{λ} (Frame-Robinson-Thrall **hook-length formula**)

Note. $f^{\lambda} = \dim(\text{irrep. of } \mathfrak{S}_n)$, where \mathfrak{S}_n is the **symmetric group** of all permutations of $1, 2, \ldots, n$.

RSK algorithm: a bijection

$$w \stackrel{\mathrm{rsk}}{\to} (P, Q),$$

where $w \in \mathfrak{S}_n$ and P, Q are SYT of the same shape $\lambda \vdash n$.

Write $\lambda = \mathbf{sh}(w)$, the **shape** of w.

R = Gilbert de Beauregard Robinson

S = Craige Schensted (= Ea Ea)

 $\mathbf{K} = \text{Donald Ervin Knuth}$

$$(P,Q) = \begin{pmatrix} 12 & 13 \\ 3 & 2 \\ 4 & 4 \end{pmatrix}$$

Schensted's theorem: Let $w \stackrel{\text{rsk}}{\rightarrow} (P, Q)$, where $sh(P) = sh(Q) = \lambda$. Then

$$is(w) = longest row length = \lambda_1$$

 $ds(w) = longest column length = \lambda'_1.$

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{pq+1}$. Then either is(w) > p or ds(w) > q.

Proof. Let $\lambda = \operatorname{sh}(w)$. If $\operatorname{is}(w) \leq p$ and $\operatorname{ds}(w) \leq q$ then $\lambda_1 \leq p$ and $\lambda_1' \leq q$, so $\sum \lambda_i \leq pq$. \square

Corollary. Say $p \le q$. Then $\#\{w \in \mathfrak{S}_{pq} : is(w) = p, ds(w) = q\}$

$$= \left(f^{(p^q)}\right)^2$$

By hook-length formula, this is

$$\left(\frac{(pq)!}{1^1 2^2 \cdots p^p (p+1)^p \cdots q^p (q+1)^{p-1} \cdots (p+q-1)^1}\right)^2.$$

Romik: let

$$w \in \mathfrak{S}_{p^2}$$
, $\operatorname{is}(w) = \operatorname{ds}(w) = p$.

Let P_w be the permutation matrix of w with corners $(\pm 1, \pm 1)$. Then (informally) as $p \to \infty$ almost surely the 1's in P_w will become dense in the region bounded by the curve

$$(x^2 - y^2)^2 + 2(x^2 + y^2) = 3,$$

and will remain isolated outside this region.

w = 9, 11, 6, 14, 2, 10, 1, 5, 13, 3, 16, 8, 15, 4, 12, 7

$$(x^2 - y^2)^2 + 2(x^2 + y^2) = 3$$

Distribution of is(w)

$$\mathbf{E}(\mathbf{n}) = \text{expectation of } \mathrm{is}(w), \ w \in \mathfrak{S}_n \\
= \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2$$

Ulam: what is distribution of is(w)? rate of growth of E(n)?

Hammersley (1972):

$$\exists c = \lim_{n \to \infty} n^{-1/2} E(n),$$

and

$$\frac{\pi}{2} \le c \le e.$$

Conjectured c = 2.

Logan-Shepp, Vershik-Kerov (1977): c = 2

Idea of proof.

$$E(n) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2$$
$$\approx \frac{1}{n!} \max_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2.$$

Find "limiting shape" of $\lambda \vdash n$ maximizing λ as $n \to \infty$ using hook-length formula.

$$\min \iint_A \log(f(x) + f^{-1}(y) - x - y) dx dy,$$
 subject to
$$\iint_A dx dy = 1.$$

$$x = y + 2\cos\theta$$
$$y = \frac{2}{\pi}(\sin\theta - \theta\cos\theta)$$
$$0 \le \theta \le \pi$$

$$\boldsymbol{u_k(n)} := \#\{w \in \mathfrak{S}_n : \mathrm{is}_n(w) \le k\}.$$

J. M. Hammersley (1972):

$$u_2(n) = C_n = \frac{1}{n+1} \binom{2n}{n},$$

a Catalan number.

For ≥ 130 combinatorial interpretations of C_n , see

www-math.mit.edu/~rstan/ec

I. Gessel (1990):

$$\sum_{n>0} u_k(n) \frac{x^{2n}}{n!^2} = \det \left[I_{|i-j|}(2x) \right]_{i,j=1}^k,$$

where

$$I_m(2x) = \sum_{j \ge 0} \frac{x^{m+2j}}{j!(m+j)!},$$

a hyperbolic Bessel function of the first kind of order m.

$$\sum_{n\geq 0} u_2(n) \frac{x^{2n}}{n!^2} = U_0(2x)^2 - U_1(2x)^2$$
$$= \sum_{n\geq 0} C_n \frac{x^{2n}}{n!^2}.$$

Corollary. For fixed k, $u_k(n)$ is P-recursive, e.g.,

$$(n+4)(n+3)^{2}u_{4}(n)$$

$$= (20n^{3} + 62n^{2} + 22n - 24)u_{4}(n-1)$$

$$-64n(n-1)^{2}u_{4}(n-2)$$

$$(n+6)^{2}(n+4)^{2}u_{5}(n)$$

$$= (375-400n-843n^{2}-322n^{3}-35n^{4})u_{5}(n-1)$$

$$+(259n^{2}+622n+45)(n-1)^{2}u_{5}(n-2)$$

$$-225(n-1)^{2}(n-2)^{2}u_{5}(n-3).$$

Conjectures on form of recurrence due to Bergeron, Favreau, and Krob.

Baik-Deift-Johansson:

Define u(x) by

$$\frac{d^2}{dx^2}u(x) = 2u(x)^3 + xu(x) \quad (*),$$

with certain initial conditions.

(*) is the **Painlevé II** equation (roughly, the branch points and essential singularities are independent of the initial conditions).

Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.

Tracy-Widom distribution:

F(t)

$$= \exp\left(-\int_{t}^{\infty} (x-t)u(x)^{2} dx\right)$$

Theorem (Baik-Deift-Johansson) For random (uniform) $w \in \mathfrak{S}_n$ and all $t \in \mathbb{R}$ we have

$$\lim_{n \to \infty} \operatorname{Prob}\left(\frac{\mathrm{is}_n(w) - 2\sqrt{n}}{n^{1/6}} \le t\right) = F(t).$$

Corollary.

$$is_n(w) = 2\sqrt{n} + \left(\int t \, dF(t)\right) n^{1/6} + o(n^{1/6})$$
$$= 2\sqrt{n} - (1.7711 \cdots) n^{1/6} + o(n^{1/6})$$

Gessel's theorem reduces the problem to "just" analysis, viz., the **Riemann-Hilbert problem** in the theory of integrable systems, and the **method of steepest descent** to analyze the asymptotic behavior of integrable systems.

Where did the Tracy-Widom distribution F(t) come from?

$$F(t)$$

$$= \exp\left(-\int_{t}^{\infty} (x-t)u(x)^{2} dx\right)$$

$$\frac{d^2}{dx^2}u(x) = 2u(x)^3 + xu(x) \quad (*),$$

Gaussian Unitary Ensemble (GUE):

Consider an $n \times n$ hermitian matrix $\mathbf{M} = (\mathbf{M}_{ij})$ with probability density

$$Z_n^{-1}e^{-\operatorname{tr}(M^2)}dM,$$

$$dM = \prod_{i} dM_{ii}$$

$$\cdot \prod_{i < j} d(\operatorname{Re}(M_{ij})) d(\operatorname{Im}(M_{ij})),$$

where \mathbf{Z}_{n} is a normalization constant.

Tracy-Widom (1994): let α_1 denote the largest eigenvalue of M. Then

$$\lim_{n \to \infty} \operatorname{Prob}\left(\left(\alpha_1 - \sqrt{2n}\right)\sqrt{2n^{1/6}} \le t\right) \\
= F(t).$$

Is the connection between is(w) and GUE a coincidence?

Okounkov provides a connection, via the theory of **random topologies on surfaces**. Very briefly, a surface can be described in two ways:

- Gluing polygons along their edges, connected to random matrices via quantum gravity.
- Ramified covering of a sphere, which can be formulated in terms of permutations.

Joint with:

Bill Chen 陈永川
Eva Deng 邓玉平
Rosena Du 杜若霞
Catherine Yan 颜华菲

(complete) matching:

crossing: /

nesting:

total number of matchings on $[2n] := \{1, 2, \dots, 2n\}$ is

$$(2n-1)!! := 1 \cdot 3 \cdot 5 \cdots (2n-1).$$

Theorem. The number of matchings on [2n] with no crossings (or with no nestings) is

$$C_n := \frac{1}{n+1} \binom{2n}{n}.$$

Well-known:

$$C_n = \#\{a_1 \cdots a_{2n} : a_i = \pm 1,$$
 $a_1 + \cdots + a_i \ge 0, \sum a_i = 0\}$

(ballot sequence).

What is the analogue of increasing and decreasing subsequences for matchings M?

Associate with a matching M on the vertices $1, 2, \ldots, 2n$ a fixed-point free involution $\mathbf{w}_{M} \in \mathfrak{S}_{2n}$:

Flaw: no symmetry between is and ds (different distributions on fixed-point free involutions).

M = matching $\mathbf{cr}(M) = \max\{k : \exists k \text{-crossing}\}$

 $\mathbf{ne}(M) = \max\{k : \exists k \text{-nesting}\} = \frac{1}{2} \mathrm{ds}(w_M)$

Theorem. Let $f_n(i,j) = \# matchings M$ on [2n] with cr(M) = i and ne(M) = j. Then $f_n(i,j) = f_n(j,i)$.

Corollary. # matchings M on [2n] with cr(M) = k equals # matchings M on [2n] with ne(M) = k.

Main tool: oscillating tableaux.

 Φ is a bijection from matchings on $1, 2, \ldots, 2n$ to oscillating tableaux of length 2n, shape \emptyset .

Corollary. Number of oscillating tableaux of length 2n, shape \emptyset , is (2n-1)!! (related to **Brauer algebra** of dimension (2n-1)!!).

Schensted's theorem for matchings. Let

$$\Phi(M) = (\emptyset = \lambda^0, \lambda^1, \dots, \lambda^{2n} = \emptyset).$$

Then

$$\operatorname{cr}(M) = \max\{(\lambda^i)_1' : 0 \le i \le n\}$$

 $\operatorname{ne}(M) = \max\{\lambda_1^i : 0 \le i \le n\}.$

Proof. Reduce to ordinary RSK.

Now let
$$\operatorname{cr}(M) = i$$
, $\operatorname{ne}(M) = j$, and $\Phi(M) = (\emptyset = \lambda^0, \lambda^1, \dots, \lambda^{2n} = \emptyset)$.

Define M' by

$$\Phi(M') = (\emptyset = (\lambda^0)', (\lambda^1)', \dots, (\lambda^{2n})' = \emptyset).$$

By Schensted's theorem for matchings,

$$\operatorname{cr}(M') = j, \quad \operatorname{ne}(M') = i.$$

Thus $M \mapsto M'$ is an involution on matchings of [2n] interchanging cr and ne.

 \Rightarrow Theorem. Let $f_n(i,j) = \#$ matchings M on [2n] with $\operatorname{cr}(M) = i$ and $\operatorname{ne}(M) = j$. Then $f_n(i,j) = f_n(j,i)$.

Open: simple description of $M \mapsto M'$, the analogue of

$$a_1a_2\cdots a_n\mapsto a_n\cdots a_2a_1,$$

which interchanges is and ds.

Enumeration of k-noncrossing matchings (or nestings).

Recall: The number of matchings M on [2n] with no crossings, i.e., $\operatorname{cr}(M) = 1$, (or with no nestings) is $\mathbf{C}_n = \frac{1}{n+1} \binom{2n}{n}$.

What about the number with $cr(M) \le k$?

Assume $\operatorname{cr}(M) \leq k$. Let

$$\Phi(M) = (\emptyset = \lambda^0, \lambda^1, \dots, \lambda^{2n} = \emptyset).$$

Regard each
$$\lambda^i = (\lambda_1^i, \dots, \lambda_k^i) \in \mathbb{N}^k$$
.

Corollary. The number $f_k(n)$ of matchings M on [2n] with $\operatorname{cr}(M) \leq k$ is the number of lattice paths of length 2n from $\mathbf{0}$ to $\mathbf{0}$ in the region

 $C_n := \{(a_1, \dots, a_k) \in \mathbb{N}^k : a_1 \leq \dots \leq a_k\}$ with steps $\pm e_i$ ($e_i = ith \ unit \ coordinate \ vector$).

 $C_n \otimes \mathbb{R}_{\geq 0}$ is a fundamental chamber for the Weyl group of type B_k .

Grabiner-Magyar: applied Gessel-Zeilberger reflection principle to solve this lattice path problem (not knowing connection with matchings).

Theorem. Define

$$\boldsymbol{H_k(x)} = \sum_{n} f_k(n) \frac{x^{2n}}{(2n)!}.$$

Then

$$H_k(x) = \det \left[I_{|i-j|}(2x) - I_{i+j}(2x) \right]_{i,j=1}^k$$

where

$$I_m(2x) = \sum_{j \ge 0} \frac{x^{m+2j}}{j!(m+j)!}$$

as before.

Example. k = 1 (noncrossing matchings):

$$H_1(x) = I_0(2x) - I_2(2x)$$
$$= \sum_{j \ge 0} C_j \frac{x^{2j}}{(2j)!}.$$

Compare:

 $u_k(n) := \#\{w \in \mathfrak{S}_n : \text{longest increasing subsequence of length } \le k\}.$

$$\sum_{n\geq 0} u_k(n) \frac{x^{2n}}{n!^2} = \det \left[I_{i-j}(2x) \right]_{i,j=1}^k.$$

Baik-Rains (implicitly):

$$\lim_{n \to \infty} \operatorname{Prob}\left(\frac{\operatorname{cr}_n(M) - \sqrt{2n}}{(2n)^{1/6}} \le \frac{t}{2}\right) = F_1(t),$$

where

$$F_1(t) = \sqrt{F(t)} \exp\left(\frac{1}{2} \int_t^\infty u(x) dx\right),$$

where F(t) is the Tracy-Widom distribution and u(x) the Painlevé II function.

$$F(t) = \exp\left(-\int_{t}^{\infty} (x-t)u(x)^{2} dx\right)$$

$$\frac{d^2}{dx^2}u(x) = 2u(x)^3 + xu(x)$$

$$g_{j,k}(n) := \#\{\text{matchings } M \text{ on } [2n],$$

 $\operatorname{cr}(M) \le j, \ \operatorname{ne}(M) \le k\}$

Now

$$g_{j,k}(n) = \#\{(\emptyset = \lambda^0, \lambda^1, \dots, \lambda^{2n} = \emptyset) : \lambda^{i+1} = \lambda^i \pm \square, \ \lambda^i \subseteq j \times k \text{ rectangle}\},$$
 a walk on the Hasse diagram $\mathcal{H}(j, k)$ of

 $L(j, k) := \{ \lambda \subseteq j \times k \text{ rectangle} \},$ ordered by inclusion.

 \mathbf{A} = adjacency matrix of $\mathcal{H}(j,k)$

 $\mathbf{A_0}$ = adjacency matrix of $\mathcal{H}(j,k) - \{\emptyset\}$.

Transfer-matrix method \Rightarrow

$$\sum_{n>0} g_{j,k}(n)x^{2n} = \frac{\det(I - xA_0)}{\det(I - xA)}.$$

Theorem (Grabiner, implicitly) Every zero of det(I - xA) has the form

$$2(\cos(\pi r_1/m) + \cdots + \cos(\pi r_j/m)),$$

where each $r_i \in \mathbb{Z}$ and m = j + k + 1.

Corollary. Every factor of $\det(I - xA)$ over \mathbb{Q} has degree dividing

$$\frac{1}{2}\phi(2(j+k+1)),$$

where ϕ is the Euler phi-function.

Example.

$$j = 2, k = 5, \frac{1}{2}\phi(16) = 4:$$

$$\det(I - xA) = (1 - 2x^2)(1 - 4x^2 + 2x^4)$$

$$(1 - 8x^2 + 8x^4)(1 - 8x^2 + 8x^3 - 2x^4)$$

$$(1 - 8x^2 - 8x^3 - 2x^4)$$

$$j = k = 3, \frac{1}{2}\phi(14) = 3:$$

$$\det(I - xA) = (1 - x)(1 + x)(1 + x - 9x^2 - x^3)$$

$$(1 - x - 9x^2 + x^3)(1 - x - 2x^2 + x^3)^2$$

$$(1 + x - 2x^2 - x^3)^2$$

Partition of the set [n]:

$$\{1,5\}, \{2\}, \{3,6,8,9\}, \{4,7,10\}$$

Generalize oscillating tableaux to vacillating tableaux (related to the partition algebra).