Increasing and decreasing subsequences

$$
\begin{gathered}
318496725 \\
318496725
\end{gathered} \begin{aligned}
& \text { (i.s.) } \\
& \text { is.s. }(w)=\mid \text { longest i.s. } \mid=4 \\
& \operatorname{ds}(w)=\mid \text { longest d.s. } \mid=3
\end{aligned}
$$

Application: airplane boarding

Naive model: passengers board in order $w=a_{1} a_{2} \cdots a_{n}$ for seats $1,2, \ldots, n$. Each passenger takes one time unit to be seated after arriving at his seat.

2 $\stackrel{L}{1}$

$$
253614
$$

\square
5
\square
\square

\square 2 \square
6
\square
\square 5 \qquad
\square 3 $\square$$\llcorner 1$

Easy: Total waiting time $=\operatorname{is}(w)$.

Bachmat, et al.: more sophisticated model.

Two conclusions:

- Usual system (back-to-front) about as good as random.
- Better: first board window seats, then center, then aisle
partition $\lambda \vdash n$: $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0 \\
\sum \lambda_{i}=n
\end{gathered}
$$

(Young) diagram of $\lambda=(4,4,3,1)$:

Young diagram of the conjugate partition $\lambda^{\prime}=(4,3,3,2)$:

standard Young tableau (SYT) of shape $\lambda \vdash n$, e.g., $\lambda=(4,4,3,1)$:

$f^{\lambda}=\#$ of SYT of shape λ
E.g., $f^{(3,2)}=5$:

123	124	125	134	135
45	35	34	25	24

\exists simple formula for f^{λ} (Frame-RobinsonThrall hook-length formula)

Note. $f^{\lambda}=\operatorname{dim}\left(\right.$ irrep. of $\left.\mathfrak{S}_{n}\right)$, where \mathfrak{S}_{n} is the symmetric group of all permutations of $1,2 \ldots, n$.

RSK algorithm: a bijection

$$
w \xrightarrow{\text { rsk }}(P, Q),
$$

where $w \in \mathfrak{S}_{n}$ and P, Q are SYT of the same shape $\lambda \vdash n$.

Write $\lambda=\operatorname{sh}(w)$, the shape of w.
$\mathbf{R}=$ Gilbert de Beauregard Robinson
$\mathbf{S}=$ Craige Schensted (= Ea Ea)
$\mathbf{K}=$ Donald Ervin Knuth

Schensted's theorem: Let $w \xrightarrow{\text { rsk }}$ (P, Q), where $\operatorname{sh}(P)=\operatorname{sh}(Q)=\lambda$. Then
is $(w)=$ longest row length $=\lambda_{1}$ $\mathrm{ds}(w)=$ longest column length $=\lambda_{1}^{\prime}$.

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{p q+1}$. Then either is $(w)>p$ or $\operatorname{ds}(w)>q$.

Proof. Let $\lambda=\operatorname{sh}(w)$. If is $(w) \leq p$ and $\operatorname{ds}(w) \leq q$ then $\lambda_{1} \leq p$ and $\lambda_{1}^{\prime} \leq q$, so $\sum \lambda_{i} \leq p q$. \square

Corollary. Say $p \leq q$. Then

$$
\begin{gathered}
\#\left\{w \in \mathfrak{S}_{p q}: \text { is }(w)=p, \operatorname{ds}(w)=q\right\} \\
=\left(f^{\left(p^{q}\right)}\right)^{2}
\end{gathered}
$$

By hook-length formula, this is

$$
\left(\frac{(p q)!}{1^{1} 2^{2} \cdots p^{p}(p+1)^{p} \cdots q^{p}(q+1)^{p-1} \cdots(p+q-1)^{1}}\right)^{2} .
$$

Romik: let

$$
w \in \mathfrak{S}_{p^{2}}, \quad \text { is }(w)=\operatorname{ds}(w)=p
$$

Let P_{w} be the permutation matrix of w with corners $(\pm 1, \pm 1)$. Then (informally) as $p \rightarrow \infty$ almost surely the 1's in P_{w} will become dense in the region bounded by the curve

$$
\left(x^{2}-y^{2}\right)^{2}+2\left(x^{2}+y^{2}\right)=3,
$$

and will remain isolated outside this region.

$$
w=9,11,6,14,2,10,1,5,13,3,16,8,15,4,12,7
$$

Distribution of is (w)

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{n}) & =\operatorname{expectation~of~is~}(w), w \in \mathfrak{S}_{n} \\
& =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}
\end{aligned}
$$

Ulam: what is distribution of is (w) ? rate of growth of $E(n)$?

Hammersley (1972):

$$
\exists c=\lim _{n \rightarrow \infty} n^{-1 / 2} E(n),
$$

and

$$
\frac{\pi}{2} \leq c \leq e
$$

Conjectured $c=2$.

Logan-Shepp, Vershik-Kerov (1977): $c=2$

Idea of proof.

$$
\begin{aligned}
E(n) & =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} \\
& \approx \frac{1}{n!} \max _{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} .
\end{aligned}
$$

Find "limiting shape" of $\lambda \vdash n$ maximizing λ as $n \rightarrow \infty$ using hook-length formula.

$\min \iint_{A} \log \left(f(x)+f^{-1}(y)-x-y\right) d x d y$,
subject to

$$
\iint_{A} d x d y=1
$$

$$
\begin{aligned}
x= & y+2 \cos \theta \\
y= & \frac{2}{\pi}(\sin \theta-\theta \cos \theta) \\
& 0 \leq \theta \leq \pi
\end{aligned}
$$

$$
\boldsymbol{u}_{k}(\boldsymbol{n}):=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{is}_{n}(w) \leq k\right\} .
$$

J. M. Hammersley (1972):

$$
u_{2}(n)=C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

a Catalan number.

For ≥ 130 combinatorial interpretations of C_{n}, see
www-math.mit.edu/~rstan/ec
I. Gessel (1990):
$\sum_{n \geq 0} u_{k}(n) \frac{x^{2 n}}{n!^{2}}=\operatorname{det}\left[I_{|i-j|}(2 x)\right]_{i, j=1}^{k}$,
where

$$
I_{m}(2 x)=\sum_{j \geq 0} \frac{x^{m+2 j}}{j!(m+j)!},
$$

a hyperbolic Bessel function of the first kind of order m.

$$
\begin{aligned}
& \text { E.g., } \\
& \begin{aligned}
\sum_{n \geq 0} u_{2}(n) \frac{x^{2 n}}{n!^{2}} & =U_{0}(2 x)^{2}-U_{1}(2 x)^{2} \\
& =\sum_{n \geq 0} C_{n} \frac{x^{2 n}}{n!^{2}}
\end{aligned}
\end{aligned}
$$

Corollary. For fixed $k, u_{k}(n)$ is $\mathbf{P}-$ recursive, e.g.,

$$
\begin{aligned}
&(n+4)(n+3)^{2} u_{4}(n) \\
&=\left(20 n^{3}+62 n^{2}+22 n-24\right) u_{4}(n-1) \\
& \quad-64 n(n-1)^{2} u_{4}(n-2)
\end{aligned}
$$

$$
\begin{aligned}
&(n+6)^{2}(n+4)^{2} u_{5}(n) \\
&=\left(375-400 n-843 n^{2}-322 n^{3}-35 n^{4}\right) u_{5}(n-1) \\
&+\left(259 n^{2}+622 n+45\right)(n-1)^{2} u_{5}(n-2) \\
&-225(n-1)^{2}(n-2)^{2} u_{5}(n-3) .
\end{aligned}
$$

Conjectures on form of recurrence due to Bergeron, Favreau, and Krob.

Baik-Deift-Johansson:

Define $\boldsymbol{u}(\boldsymbol{x})$ by

$$
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x) \quad(*)
$$

with certain initial conditions.
(*) is the Painlevé II equation (roughly, the branch points and essential singularities are independent of the initial conditions).

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.

Tracy-Widom distribution:

$$
\begin{aligned}
& \boldsymbol{F}(\boldsymbol{t}) \\
& =\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right)
\end{aligned}
$$

Theorem (Baik-Deift-Johansson) For random (uniform) $w \in \mathfrak{S}_{n}$ and all $t \in \mathbb{R}$ we have

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{\operatorname{is}_{n}(w)-2 \sqrt{n}}{n^{1 / 6}} \leq t\right)=F(t)
$$

Corollary.

$$
\begin{aligned}
\operatorname{is}_{n}(w) & =2 \sqrt{n}+\left(\int t d F(t)\right) n^{1 / 6}+o\left(n^{1 / 6}\right) \\
& =2 \sqrt{n}-(1.7711 \cdots) n^{1 / 6}+o\left(n^{1 / 6}\right)
\end{aligned}
$$

Gessel's theorem reduces the problem to "just" analysis, viz., the RiemannHilbert problem in the theory of integrable systems, and the method of steepest descent to analyze the asymptotic behavior of integrable systems.

Where did the Tracy-Widom distribution $F(t)$ come from?

$$
\begin{gathered}
F(t) \\
=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right) \\
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x) \quad(*),
\end{gathered}
$$

Gaussian Unitary Ensemble (GUE):

Consider an $n \times n$ hermitian matrix $M=\left(M_{i j}\right)$ with probability density

$$
Z_{n}^{-1} e^{-\operatorname{tr}\left(M^{2}\right)} d M
$$

$$
d M=\prod d M_{i i}
$$

$$
\prod d\left(\operatorname{Re}\left(M_{i j}\right)\right) d\left(\operatorname{Im}\left(M_{i j}\right)\right)
$$

$$
i<j
$$

where Z_{n} is a normalization constant.

Tracy-Widom (1994): let $\boldsymbol{\alpha}_{1}$ denote the largest eigenvalue of M. Then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \\
\operatorname{Prob}\left(\left(\alpha_{1}-\sqrt{2 n}\right) \sqrt{2} n^{1 / 6} \leq t\right) \\
=F(t)
\end{gathered}
$$

Is the connection between is (w) and GUE a coincidence?

Okounkov provides a connection, via the theory of random topologies on surfaces. Very briefly, a surface can be described in two ways:

- Gluing polygons along their edges, connected to random matrices via quantum gravity.
- Ramified covering of a sphere, which can be formulated in terms of permutations.

Joint with：

Bill Chen 陈永川
 Eva Deng 邓玉平
 Rosena Du 杜若霞
 Catherine Yan 颜华菲

(complete) matching:

crossing:

nesting:

total number of matchings on $[2 n]:=$ $\{1,2, \ldots, 2 n\}$ is
$(2 n-1)!!:=1 \cdot 3 \cdot 5 \cdots(2 n-1)$.
Theorem. The number of matchings on $[2 n]$ with no crossings (or with no nestings) is

$$
C_{n}:=\frac{1}{n+1}\binom{2 n}{n} .
$$

Well-known:

$$
\begin{aligned}
& C_{n}=\#\left\{a_{1} \cdots a_{2 n}: a_{i}= \pm 1,\right. \\
& \left.\quad a_{1}+\cdots+a_{i} \geq 0, \sum a_{i}=0\right\}
\end{aligned}
$$

(ballot sequence).

What is the analogue of increasing and decreasing subsequences for matchings M ?

Associate with a matching M on the vertices $1,2, \ldots, 2 n$ a fixed-point free involution $\boldsymbol{w}_{M} \in \mathfrak{S}_{2 n}$:

Flaw: no symmetry between is and ds (different distributions on fixed-point free involutions).

3-crossing

$M=$ matching
$\operatorname{cr}(M)=\max \{k: \exists k$-crossing $\}$
$\operatorname{ne}(M)=\max \{k: \exists k$-nesting $\}=\frac{1}{2} \operatorname{ds}\left(w_{M}\right)$
Theorem. Let $f_{n}(i, j)=\#$ matchings M on $[2 n]$ with $\operatorname{cr}(M)=i$ and ne $(M)=j$. Then $\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{i}, \boldsymbol{j})=\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{j}, \boldsymbol{i})$.

Corollary. \# matchings M on $[2 n]$ with $\operatorname{cr}(M)=k$ equals \# matchings M on [2n] with $\operatorname{ne}(M)=k$.

Main tool: oscillating tableaux.

$\Phi(\mathrm{M})=(\phi \square \quad \exists \quad \square \square \square \square \square)$
Φ is a bijection from matchings on $1,2, \ldots, 2 n$ to oscillating tableaux of length $2 n$, shape \emptyset.

Corollary. Number of oscillating tableaux of length $2 n$, shape \emptyset, is
(2n-1)!! (related to Brauer algebra of dimension $(2 n-1)!$!).

Schensted's theorem for matchings. Let

$$
\Phi(M)=\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right) .
$$

Then

$$
\begin{aligned}
\operatorname{cr}(M) & =\max \left\{\left(\lambda^{i}\right)_{1}^{\prime}: 0 \leq i \leq n\right\} \\
\operatorname{ne}(M) & =\max \left\{\lambda_{1}^{i}: 0 \leq i \leq n\right\} .
\end{aligned}
$$

Proof. Reduce to ordinary RSK.

$$
\begin{aligned}
& \text { Now let } \operatorname{cr}(M)=i, \operatorname{ne}(M)=j \text {, and } \\
& \Phi(M)=\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right)
\end{aligned}
$$

Define M^{\prime} by
$\Phi\left(M^{\prime}\right)=\left(\emptyset=\left(\lambda^{0}\right)^{\prime},\left(\lambda^{1}\right)^{\prime}, \ldots,\left(\lambda^{2 n}\right)^{\prime}=\emptyset\right)$.
By Schensted's theorem for matchings,

$$
\operatorname{cr}\left(M^{\prime}\right)=j, \quad \operatorname{ne}\left(M^{\prime}\right)=i
$$

Thus $M \mapsto M^{\prime}$ is an involution on matchings of $[2 n]$ interchanging cr and ne.
\Rightarrow Theorem. Let $f_{n}(i, j)=\#$ matchings M on $[2 n]$ with $\operatorname{cr}(M)=i$ and ne $(M)=j$. Then $\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{i}, \boldsymbol{j})=\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{j}, \boldsymbol{i})$.

Open: simple description of $M \mapsto$ M^{\prime}, the analogue of

$$
a_{1} a_{2} \cdots a_{n} \mapsto a_{n} \cdots a_{2} a_{1},
$$

which interchanges is and ds.

Enumeration of k-noncrossing

 matchings (or nestings).Recall: The number of matchings M on $[2 n]$ with no crossings, i.e., $\operatorname{cr}(M)=$ 1, (or with no nestings) is $\boldsymbol{C}_{\boldsymbol{n}}=\frac{1}{n+1}\binom{2 n}{n}$.

What about the number with $\operatorname{cr}(M) \leq$ k ?

Assume $\operatorname{cr}(M) \leq k$. Let
$\Phi(M)=\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right)$.
Regard each $\lambda^{i}=\left(\lambda_{1}^{i}, \ldots, \lambda_{k}^{i}\right) \in \mathbb{N}^{k}$.

Corollary. The number $f_{k}(n)$ of matchings M on $[2 n]$ with $\operatorname{cr}(M) \leq$ k is the number of lattice paths of length $2 n$ from $\mathbf{0}$ to $\mathbf{0}$ in the region $\mathcal{C}_{n}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}^{k}: a_{1} \leq \cdots \leq a_{k}\right\}$ with steps $\pm e_{i}$ ($e_{i}=i$ th unit coordinate vector).
$\mathcal{C}_{n} \otimes \mathbb{R}_{\geq 0}$ is a fundamental chamber for the Weyl group of type B_{k}.

Grabiner-Magyar: applied GesselZeilberger reflection principle to solve this lattice path problem (not knowing connection with matchings).

Theorem. Define

$$
\boldsymbol{H}_{k}(\boldsymbol{x})=\sum_{n} f_{k}(n) \frac{x^{2 n}}{(2 n)!} .
$$

Then
$H_{k}(x)=\operatorname{det}\left[I_{|i-j|}(2 x)-I_{i+j}(2 x)\right]_{i, j=1}^{k}$
where

$$
I_{m}(2 x)=\sum_{j \geq 0} \frac{x^{m+2 j}}{j!(m+j)!}
$$

as before.

Example. $k=1$ (noncrossing matchings):

$$
\begin{aligned}
H_{1}(x) & =I_{0}(2 x)-I_{2}(2 x) \\
& =\sum_{j \geq 0} C_{j} \frac{x^{2 j}}{(2 j)!}
\end{aligned}
$$

Compare:

$u_{k}(\boldsymbol{n}):=\#\left\{w \in \mathfrak{S}_{n}:\right.$ longest increasing subsequence of length $\leq k\}$.
$\sum_{n \geq 0} u_{k}(n) \frac{x^{2 n}}{n!^{2}}=\operatorname{det}\left[I_{i-j}(2 x)\right]_{i, j=1}^{k}$.

Baik-Rains (implicitly):

$\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{\operatorname{cr}_{n}(M)-\sqrt{2 n}}{(2 n)^{1 / 6}} \leq \frac{t}{2}\right)=F_{1}(t)$,
where
$\boldsymbol{F}_{1}(\boldsymbol{t})=\sqrt{F(t)} \exp \left(\frac{1}{2} \int_{t}^{\infty} u(x) d x\right)$,
where $F(t)$ is the Tracy-Widom distri-
bution and $u(x)$ the Painlevé II function.

$$
\begin{gathered}
F(t) \\
=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right) \\
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x)
\end{gathered}
$$

$$
\begin{gathered}
g_{j, k}(\boldsymbol{n}):=\#\{\text { matchings } M \text { on }[2 n], \\
\operatorname{cr}(M) \leq j, \operatorname{ne}(M) \leq k\}
\end{gathered}
$$

Now
$g_{j, k}(n)=\#\left\{\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right):\right.$
$\lambda^{i+1}=\lambda^{i} \pm \square, \lambda^{i} \subseteq j \times k$ rectangle $\}$, a walk on the Hasse diagram $\mathcal{H}(\boldsymbol{j}, \boldsymbol{k})$ of
$L(j, k):=\{\lambda \subseteq j \times k$ rectangle $\}$,
ordered by inclusion.

$\boldsymbol{A}=$ adjacency matrix of $\mathcal{H}(j, k)$
$\boldsymbol{A}_{0}=$ adjacency matrix of $\mathcal{H}(j, k)-\{\emptyset\}$.
Transfer-matrix method \Rightarrow

$$
\sum_{n \geq 0} g_{j, k}(n) x^{2 n}=\frac{\operatorname{det}\left(I-x A_{0}\right)}{\operatorname{det}(I-x A)}
$$

Theorem (Grabiner, implicitly) Every zero of $\operatorname{det}(I-x A)$ has the form

$$
2\left(\cos \left(\pi r_{1} / m\right)+\cdots+\cos \left(\pi r_{j} / m\right)\right)
$$

where each $r_{i} \in \mathbb{Z}$ and $m=j+k+1$.
Corollary. Every factor of $\operatorname{det}(I-$ $x A)$ over \mathbb{Q} has degree dividing

$$
\frac{1}{2} \phi(2(j+k+1)),
$$

where ϕ is the Euler phi-function.

Example.

$$
\begin{aligned}
& j=2, k=5, \frac{1}{2} \phi(16)=4: \\
& \operatorname{det}(I-x A)=\left(1-2 x^{2}\right)\left(1-4 x^{2}+2 x^{4}\right) \\
& \quad\left(1-8 x^{2}+8 x^{4}\right)\left(1-8 x^{2}+8 x^{3}-2 x^{4}\right) \\
& \quad\left(1-8 x^{2}-8 x^{3}-2 x^{4}\right) \\
& j=k=3, \frac{1}{2} \phi(14)=3: \\
& \operatorname{det}(I-x A)=(1-x)(1+x)\left(1+x-9 x^{2}-x^{3}\right) \\
& \left(1-x-9 x^{2}+x^{3}\right)\left(1-x-2 x^{2}+x^{3}\right)^{2} \\
& \left(1+x-2 x^{2}-x^{3}\right)^{2}
\end{aligned}
$$

Partition of the set $[n]$:
$\{1,5\},\{2\},\{3,6,8,9\},\{4,7,10\}$

Generalize oscillating tableaux to vacillating tableaux (related to the partition algebra).

