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∑
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Euler considered E2n in connection with sums like

∑

k≥0

(−1)k

(2k + 1)2n+1
=

π2n+1

22n+2(2n)!
En.

Raabe (1851): introduced the term “Euler numbers”
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Alternating permutations

Sn : symmetric group of all permutations of
1, 2, . . . , n

w = a1a2 · · · an ∈ Sn is alternating if

a1 > a2 < a3 > a4 < · · · .

An = {w ∈ Sn : w is alternating}

E.g., A4 := {2143, 3142, 3241, 4132, 4231}.
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Theorem (Désiré André, 1879)
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André’s theorem

Theorem (Désiré André, 1879)

En = #An,

the number of alternating permutations in Sn.

Note on proof. Combinatorics 101.
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A new subject?

Let alt(n) be the number of alternating permutations in Sn.

Define

tan x =
∑

n≥0

alt(2n + 1)
x2n+1

(2n + 1)!

sec x =
∑

n≥0

alt(2n)
x2n

(2n)!
.

⇒ combinatorial trigonometry
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An example

sec2 x = 1 + tan2 x

Take coefficient of x2n/(2n)!:

n∑

k=0

(
2n

2k

)

alt2kalt2(n−k) =
n−1∑

k=0

(
2n

2k + 1

)

alt2k+1alt2n−2k−1,

etc.

Note. sec2 x = 1 + tan2 x is equivalent to sin2 x + cos2 x = 1
(Pythagorean theorem). So we have a combinatorial proof of the
Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in E. S.
Loomis, The Pythagorean Proposition, second ed., 1940).

Ours is perhaps the worst.



Other combinatorial interpretations

Numerous other combinatorial interpretations of En are known
(not given here).
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Volume of a polytope

Let En be the convex polytope in R
n defined by

xi ≥ 0, 1 ≤ i ≤ n

xi + xi+1 ≤ 1, 1 ≤ i ≤ n− 1.

Theorem. The volume of En is En/n!.



Tridiagonal matrices

An n × n matrix M = (mij ) is tridiagonal if mij = 0 whenever
|i − j | ≥ 2.

doubly-stochastic: mij ≥ 0, row and column sums equal 1

Tn: set of n × n tridiagonal doubly stochastic matrices



Polytope structure of Tn

Easy fact: the map

Tn → R
n−1

M 7→ (m12,m23, . . . ,mn−1,n)

is a (linear) bijection from T to En−1.



Polytope structure of Tn

Easy fact: the map

Tn → R
n−1

M 7→ (m12,m23, . . . ,mn−1,n)

is a (linear) bijection from T to En−1.

Application (Diaconis et al.): random doubly stochastic
tridiagonal matrices and random walks on Tn
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Prelude: distribution of is(w)

is(w) = length of longest increasing
subsequence of w ∈ Sn

is(48361572) = 3

Vershik-Kerov, Logan-Shepp:

E (n) :=
1

n!

∑

w∈Sn

is(w)

∼ 2
√
n



Limiting distribution of is(w)

Baik-Deift-Johansson:

For fixed t ∈ R,

lim
n→∞

Prob

(
isn(w)− 2

√
n

n1/6
≤ t

)

= F (t),

the Tracy-Widom distribution.



Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

w = 56218347 ⇒ as(w) = 5



Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

w = 56218347 ⇒ as(w) = 5

D(n)=
1

n!

∑

w∈Sn

as(w) ∼ ?
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Definition of ak(n)

ak(n) = #{w ∈ Sn : as(w) = k}

w as(w)

123 1
132 2
213 3
231 2
312 3
321 2

a1(3) = 1, a2(3) = 3, a3(3) = 2
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The main generating function

A(x, t)=
∑

k,n≥0

ak(n)t
k x

n

n!

Theorem.

A(x , t) = (1− t)

(

2/ρ

1− 1−ρ
t
eρx

− 1

ρ

)

,

where ρ=
√
1− t2.
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D(n) =
1

n!

∑

w∈Sn

as(w) =
1

n!

n∑

k=1

k · ak(n),

the expectation of as(w) for w ∈ Sn

Recall

A(x, t) =
∑

k,n≥0

ak(n)t
k x

n

n!

= (1− t)

(

2/ρ

1− 1−ρ
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− 1

ρ

)

.
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Formula for D(n)

∑

n≥0

D(n)xn =
∂

∂t
A(x , 1)

=
6x − 3x2 + x3

6(1− x)2

= x +
∑

n≥2

4n + 1

6
xn.

⇒ D(n) =
4n + 1

6
, n ≥ 2

Compare E (n) ∼ 2
√

n.
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Simple proof (cont.)

w = a1a2 · · · an
Prob(a1 > a2) = 1/2

Prob(ai peak or valley) = 2/3, 2 ≤ i ≤ n − 1

Prob(an > an−1 or an < an−1) = 1



Simple proof (cont.)

w = a1a2 · · · an
Prob(a1 > a2) = 1/2

Prob(ai peak or valley) = 2/3, 2 ≤ i ≤ n − 1

Prob(an > an−1 or an < an−1) = 1

⇒ D(n) =
1

2
+ (n − 2)

2

3
+ 1

=
4n + 1

6
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Variance of as(w)

V (n)=
1

n!

∑

w∈Sn

(

as(w)− 4n + 1

6

)2

, n ≥ 2

the variance of as(w) for w ∈ Sn

Corollary.

V (n) =
8

45
n − 13

180
, n ≥ 4

similar results for higher moments
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A new distribution?

P(t) = lim
n→∞

Probw∈Sn

(
as(w)− 2n/3√

n
≤ t

)

Stanley distribution?



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim
n→∞

Probw∈Sn

(
as(w)− 2n/3√

n
≤ t

)

=
1√
π

∫ t
√
45/4

−∞
e−s2 ds

(Gaussian distribution)



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim
n→∞

Probw∈Sn

(
as(w)− 2n/3√

n
≤ t

)

=
1√
π

∫ t
√
45/4

−∞
e−s2 ds

(Gaussian distribution)



Umbral enumeration

Umbral formula: involves E k , where E is an indeterminate (the
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19th century, modernized by Rota et al.)



Umbral enumeration

Umbral formula: involves E k , where E is an indeterminate (the
umbra). Replace E k with the Euler number Ek . (Technique from
19th century, modernized by Rota et al.)

Example.

(1 + E 2)3 = 1 + 3E 2 + 3E 4 + E 6

= 1 + 3E2 + 3E4 + E6

= 1 + 3 · 1 + 3 · 5 + 61

= 80



Another example

(1 + t)E = 1 + Et +

(
E

2

)

t2 +

(
E

3

)

t3 + · · ·

= 1 + Et +
1

2
E (E − 1)t2 + · · ·

= 1 + E1t +
1

2
(E2 − E1))t

2 + · · ·

= 1 + t +
1

2
(1− 1)t2 + · · ·

= 1 + t +O(t3).
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Alt. fixed-point free involutions

fixed point free involution w ∈ S2n: all cycles of length two
(number = 1 · 3 · 5 · · · (2n − 1))

Let f (n) be the number of alternating fixed-point free involutions
in S2n.

n = 3 : 214365 = (1, 2)(3, 4)(5, 6)
645231 = (1, 6)(2, 4)(3, 5)

f (3) = 2
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An umbral theorem

Theorem.
F (x) =

∑

n≥0

f (n)xn

=

(
1 + x

1− x

)(E2+1)/4
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Proof. Uses representation theory of the symmetric group Sn.
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Proof idea

Proof. Uses representation theory of the symmetric group Sn.

There is a character χ of Sn (due to H. O. Foulkes) such that for
all w ∈ Sn,

χ(w) = 0 or ± Ek .

Now use known results on combinatorial properties of characters of
Sn.





The function φ(λ)

Amdeberhan-Ono-Singh (2024):

φ(λ) := (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk
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where λ = 〈1m1 , . . . , nmn〉 ⊢ n =
∑

imi (λ is a partition of n with
mi i ’s) and B2k is a Bernoulli number.
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Amdeberhan-Ono-Singh (2024):

φ(λ) := (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢ n =
∑

imi (λ is a partition of n with
mi i ’s) and B2k is a Bernoulli number.

Original motivation. Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).
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Connection with Euler numbers

Easy fact. E2k−1 = 4k(4k − 1)
|B2k |
2k

⇒ |φ(λ)| = (2n)! ·
n∏

k=1

1

mk !

(
E2k−1

(2k)!

)mk

From this can show

φ(λ) ∈ Z,
∑

λ⊢n
|φ(λ)| = E2n,

Question: what does |φ(λ)| count? Should be a refinement of
alternating permutations.
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Recall
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λ⊢n |φ(λ)| = E2n = #A2n.

If w = a1 > a2 < · · · > a2n ∈ A2n define ŵ = a1, a3, . . . , a2n−1.
Write ŵ = b1, b2, , . . . , bn.

record set recrecrec(ŵ): set of indices 1 ≤ i ≤ n for which bi is a
left-to-right maximum (or record) in ŵ . (Always 1 ∈ rec(ŵ).)

record partition rp(ŵ): if rec(ŵ) = {r1, r2, . . . , rj}<, then rp(ŵ)
is the partition of n with parts r2 − r1, r3 − r2, r4 − r3, . . . , n+1− rj
(in decreasing order)



Record partitions

Recall
∑

λ⊢n |φ(λ)| = E2n = #A2n.

If w = a1 > a2 < · · · > a2n ∈ A2n define ŵ = a1, a3, . . . , a2n−1.
Write ŵ = b1, b2, , . . . , bn.

record set recrecrec(ŵ): set of indices 1 ≤ i ≤ n for which bi is a
left-to-right maximum (or record) in ŵ . (Always 1 ∈ rec(ŵ).)

record partition rp(ŵ): if rec(ŵ) = {r1, r2, . . . , rj}<, then rp(ŵ)
is the partition of n with parts r2 − r1, r3 − r2, r4 − r3, . . . , n+1− rj
(in decreasing order)

Example. w = 7, 2, 5, 4, 8, 3, 10, 6, 9, 5 ∈ A10, ŵ = 7, 5,8,10, 9;
r1 = 1, r2 = 3, r3 = 4, r2 − r1 = 2, r3 − r2 = 1, 6− r3 = 2,
rp(ŵ ) = (2, 2, 1)



Combinatorial interpretation of φ(λ)

Theorem. |φ(λ)| = #{w ∈ A2n : rp(ŵ) = λ}



Combinatorial interpretation of φ(λ)

Theorem. |φ(λ)| = #{w ∈ A2n : rp(ŵ) = λ}

Note on proof. Bijective argument.



Symmetric functions

Let Λn be the set of all homogeneous formal power series f (x)
(over R, say) in the variables x = (x1, x2, . . . ) that are invariant
under any permutation of the variables. Then dimΛn = p(n), the
number of partitions of n. Many interesting bases for Λn are
indexed by λ ⊢ n.



Symmetric functions

Let Λn be the set of all homogeneous formal power series f (x)
(over R, say) in the variables x = (x1, x2, . . . ) that are invariant
under any permutation of the variables. Then dimΛn = p(n), the
number of partitions of n. Many interesting bases for Λn are
indexed by λ ⊢ n.

power sums: pk =
∑

xki , pλ = pλ1
pλ2

· · ·
complete symmetric functions: hk = sum of all monomials of
degree n, hλ = hλ1

hλ2
· · ·

Schur functions sλ: most important basis



A symmetric function

The general form φ(λ) = (2n)!
∏ 1

mk !
f mk

k suggests defining a
symmetric function in the variables x = (x1, x2, . . . ):

An = An(x) :=
1

(2n)!

∑

λ⊢n
|φ(λ)| · pλ,

where pλ is a power sum symmetric function.



Examples.

2!A1 = p1

4!A2 = 3p21 + 2p2

6!A3 = 15p31 + 30p2p1 + 16p3

8!,A4 = 105p14 + 420p2p
2
1 + 140p22 + 448p3p1 + 272p4

4!A2:
w ŵ rp(ŵ)

2143 24 11
3142 34 11
3241 34 11
4132 43 2
4231 43 2



A generating function

Theorem.
∑

Ant
n =

∏

i sec(
√
xi t).



A generating function

Theorem.
∑

Ant
n =

∏

i sec(
√
xi t).

Proof. Manipulatorics (A. Garsia). �



h-positivity

Theorem. An(x) is h-positive.



h-positivity

Theorem. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =
∏

k≥1

(

1− 4t2

π2(2k − 1)2

)

implies:

F (t) = sec(
√
t)

=
∏

j≥1

(

1− 4t

π2(2j − 1)2

)−1

⇒
∏

i

F (xi t) =
∏

j≥1

∏

i

(

1− 4xi t

π2(2j − 1)2

)−1

=
∏

j




∑

n≥0

(
4t

π2(2j − 1)2

)n

hnt
n



 �



Some data

2!A1 = h1

4!A2 = h21 + 4h2

6!A3 = h31 + 12h2h1 + 48h3

8!A4 = h41 + 24h2h
2
1 + 256h3h1 + 16h22 + 1088h4

10!A5 = h51 + 40h2h
3
1 + 800h3h

2
1 + 80h22h1 + 9280h4h1

+ 640h3h2 + 39680h5.
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Open problem. Sum of coefficients is E2n. What are the
coefficients themselves?



Some data

2!A1 = h1

4!A2 = h21 + 4h2

6!A3 = h31 + 12h2h1 + 48h3

8!A4 = h41 + 24h2h
2
1 + 256h3h1 + 16h22 + 1088h4

10!A5 = h51 + 40h2h
3
1 + 800h3h

2
1 + 80h22h1 + 9280h4h1

+ 640h3h2 + 39680h5.

Open problem. Sum of coefficients is E2n. What are the
coefficients themselves?

Note. Coefficient of hn is nE2n−1, the number of “cyclically
alternating” permutations in S2n.



Schur function expansion

Example. To get the coefficient of s5311 in 20! · A10, take the
conjugate partition 42211 and double each part: µ = 84422. Form
the skew shape ρ(5311):

Row lengths are the parts of µ.
Each row begins one square to the left of the row above.



Schur function expansion

Example. To get the coefficient of s5311 in 20! · A10, take the
conjugate partition 42211 and double each part: µ = 84422. Form
the skew shape ρ(5311):

Row lengths are the parts of µ.
Each row begins one square to the left of the row above.

Theorem. For general λ ⊢ n, the coefficient of sλ in (2n)!An is the
number f ρ(λ) of standard Young tableaux of (skew) shape ρ(λ).
(Well-known determinantal formula.)



Sprout symmetric functions

Definition. Let F (t) = 1 +
∑

j≥1 ajt
j ∈ R[[t]]. A sequence
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∑
hnt
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complete symmetric function).

4 F (t) = sec(
√
t), Rn = An.



Duality

Let ω be the usual involution on symmetric functions, so
ω(hλ) = eλ, ω(eλ) = hλ.

Theorem. If F (t) is the seed for R = (R0,R1, . . . ), then 1/F (−t)
is the seed for (ω(R0), ω(R1), . . . ).
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Edrei-Thoma theorem

Recall from previous slide:

(b) We can write

F (t) = eγt
∏

k≥1

1 + αkt

1− βk t
,

where γ ≥ 0 and the αk ’s and βk ’s are nonnegative real
numbers such that

∑

j(αk + βk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)

(c) The matrix [aj−i ]i ,j≥0 (where an = 0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.

This is the Edrei-Thoma theorem (1952, 1964) from the theory
of total positivity and the representation theory of the infinite
symmetric group (all permutations of 1, 2, . . . with only finitely
many nonfixed points).
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where γ, αj , βj ≥ 0. If for some α > 0 the multiplicity of 1 + αt in
the numerator exceeds the multiplicity of 1− αt in the
denominator, then some Rn is not h-positive. (Dually for
e-positive.)

Note on proof. The proof involves complex analysis, namely, the
(rather elementary) Vivanti-Pringsheim theorem.

Some other special cases also known.
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=
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tn
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.

Many properties carry over from the case d = 1, m1 = 2, q1 = 1,
but some remain mysterious.

In particular, is D(n)Rn (s, q1, . . . , qd )-positive? I.e., in the Schur
expansion of Rn, is the coefficient of each sλ a polynomial in
q1, . . . , qd with nonnegative coefficients?

No q-analogue of the theory of total positivity or of the
Edrei-Thoma theorem is known.



An example

Example. d = 2, c1 = 1, c2 = 2,F (t) =
∑

n≥0 t
n/(n)!q(2n)!r

(3)!q (6)!rR3 = s111+(q2r8+q2r7+qr8+2q2r6+qr7+r8+2q2r5+2qr6+r7+3q2r4

+2qr5+2r6+2q2r3+3qr4+2r5+2q2r2+2qr3+3r4+q2r+2qr2+2r3+q2+qr+2r2+q+r)s21

+(q3r12+2q3r11+2q2r12+5q3r10+4q2r11+2qr12+7q3r9+10q2r10+4qr11+r12

+11q3r8+14q2r9+10qr10+2r11+12q3r7+20q2r8+14qr9+5r10

+14q3r6+22q2r7+20qr8+7r9+12q3r5+24q2r6+22qr7+9r8+11q3r4+20q2r5

+24qr6+10r7+7q3r3+16q2r4+20qr5+10r6+5q3r2+10q2r3+16qr4+8r5+2q3r

+6q2r2+10qr3+5r4+q3+2q2r+6qr2+3r3+2qr+r2)s3

What do the coefficients count? Coefficient of sn is understood in
general.
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