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Definition of Euler numbers

Define

X
sec X +tanx = E e

+tanx ; E
even  odd "=Y Euler number

Euler considered E5, in connection with sums like

7.l_2n+1

3 - E
= (2k 4 1)2n+1 22n+2(2n)! n-

Raabe (1851): introduced the term “Euler numbers”
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Alternating permutations

&, - symmetric group of all permutations of
1,2,...,n

w = ajas---ap € G, is alternating if

g >aa<az>ag<---.

A, ={w € &, : w is alternating}

E.g. s := {2143,3142,3241,4132,4231}.



André’s theorem

Theorem (Désiré André, 1879)
En = #le

the number of alternating permutations in &,,.



André’s theorem

Theorem (Désiré André, 1879)
En = #Q’llh
the number of alternating permutations in &,,.

Note on proof. Combinatorics 101.
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A new subject?

Let alt(n) be the number of alternating permutations in &,,.

X2n+1

tanx = ;alt(Qn—i—l)m
x2n
secx = ;)alt@n)(zn)!.

= combinatorial trigonometry
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An example

sec®x = 1+ tan’x

Take coefficient of x27/(2n)!:

° /2n ol 2n
; <2k> altogalty(n_k) = kz_% <2k + 1) altogy1alton k-1,

etc.

sec? x = 1 + tan? x is equivalent to sin® x + cos® x = 1

(Pythagorean theorem). So we have a combinatorial proof of the
Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in E.S.
Loomis, The Pythagorean Proposition, second ed., 1940).

Ours is perhaps the worst.



Other combinatorial interpretations

Numerous other combinatorial interpretations of E, are known
(not given here).



Volume of a polytope
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Volume of a polytope

Let £, be the convex polytope in R" defined by

Xi > O,1</§n
1, 1<i<n-1.

Xi+Xir1 <

Theorem. The volume of €, is E,/n!.



Tridiagonal matrices

An n x n matrix M = (mj) is tridiagonal if m; = 0 whenever
i—jl 2.

doubly-stochastic: m;; > 0, row and column sums equal 1

Ta: set of n x n tridiagonal doubly stochastic matrices



Polytope structure of 7,

Easy fact: the map

T, — R1
M —  (mi,m3,...,mp_1,)

is a (linear) bijection from T to &,-1.



Polytope structure of 7,

Easy fact: the map

T, — R1
M — (mi,ma3,...,my_1,)

is a (linear) bijection from T to &,-1.

Application (Diaconis et al.): random doubly stochastic
tridiagonal matrices and random walks on 7,
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Prelude: distribution of is(w)

is(w) = length of longest increasing
subsequence of w € &,

is(48361572) = 3

Vershik-Kerov, Logan-Shepp:



Limiting distribution of is(w)

Baik-Deift-Johansson:
For fixed t € R,

fim Prob (S =2V ) gy,
(PO < o) = F)

n—oo

the Tracy-Widom distribution.



Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

w = 56218347 = as(w) =5



Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

w = 56218347 = as(w) =5

D(n)= o Z as(w) ~ 7
" wes,

1
|
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321



Definition of a,(n)

ak(n) = #{w e S, : as(w) = k}

w  as(w)
123 1
132
213
231
312
321

N W N WN

31(3) = 1, 32(3) = 3, 33(3) =2



The main generating function
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The main generating function

A(x, t)= Z ak(n)tk);—r;

k,n>0

Theorem.

A, t) = (1— 1) (2/7”_1

T

where p= V1 — t2.
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Mean (expectation) of as(w)

D(n) :% Z Z - ak(n),

" wes, " k=
the expectation of as(w) for w € &,

Recall

n

A(x,t) = Zak(n)tk%

k,n>0

- “‘”(ﬂTppepx‘%)'
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Formula for D(n)

a0
ZD(n)x = aA(X,l)

n>0
6x — 3x%2 4+ x3
6(1 — x)?

_ X+Z4n6+1

n>2

4n+1

= D(n) = 6

, n>2

Compare E(n) ~ 2+/n.

x".
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Simple proof (cont.)

w = ajaz---ap
Prob(al > 32) = 1/2
Prob(a; peak or valley) = 2/3, 2<i<n-—1
)

Prob(a, > ap—1 or ap <ap—1) = 1



Simple proof (cont.)

w = ajaz---ap
Prob(al > 32) = 1/2
Prob(a; peak or valley) = 2/3, 2<i<n-—1
)

Prob(a, > ap,—1 or a, < ap—1

=D(n) = -+((n-2)z+1




Variance of as(w)
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Variance of as(w)
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’ WGGn

the variance of as(w) for w € &,

Corollary.

8 13
- >
V() =257 1g90 "2 4



Variance of as(w)

1 4n+1\2
V(n)= — Z (as(w)— n6—|— > , h>2
’ WGGn

the variance of as(w) for w € &,

Corollary. ;
8 1
>4

5" 10 "7
similar results for higher moments

V(n)



A new distribution?

—2n/3
P(t) = HIL[TO]O PrObW€6n (as(w)—n/ < t>

\/n



A new distribution?

-2
P(t) = HIL[TO]O PrObW€6n (M < t>

o/

Stanley distribution?



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim Probycs, <M\;2”/3 < t)
n

n—oo
R
VT

(Gaussian distribution)



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim Probycs, <M\;2”/3 < t)
n

n—oo
R
VT

(Gaussian distribution)

(2¥e)
-7



Umbral enumeration

Umbral formula: involves EX, where E is an indeterminate (the
umbra). Replace E* with the Euler number Ej. (Technique from
19th century, modernized by Rota et al.)



Umbral enumeration

Umbral formula: involves EX, where E is an indeterminate (the
umbra). Replace E* with the Euler number Ej. (Technique from
19th century, modernized by Rota et al.)

(1+E?3 = 143E2+3E*+E°
1+3E,+3E4+ Es
1+3-1+3-5+61
= 80



Another example

E E
(1+0)f = 1+Et+<2>t2+<3>t3+---
1
= 1—|—Et+§E(E—1)t2—|—---

1
= 1+E1t—|—§(E2—E1))t2+"'

1
= 1—|—t—|—§(1—1)t2+'~
= 1+t+0(8).
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Alt. fixed-point free involutions

fixed point free involution w € G,,,: all cycles of length two
(number =1-3-5---(2n — 1))

Let f(n) be the number of alternating fixed-point free involutions
in 62,,.
n=3: 214365 = (1,2)(3,4)(5,6)
645231 = (1,6)(2,4)(3,5)
f(3)=2



An umbral theorem

Theorem.

F(x) =) f(n)x"

n>0



An umbral theorem

Theorem.

F(x) = Z f(n)x"

n>0

1 —|—X (E2+1)/4
- (%)
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Proof idea

Proof. Uses representation theory of the symmetric group &,,.

There is a character x of &, (due to H. O. Foulkes) such that for
all w € &,
x(w) =0or %+ E.

Now use known results on combinatorial properties of characters of
G-



INTERMISSION




The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

1 4k 4k _1)B my
o= T2 (M)

k=1

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.



The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

— o TTL (M- DB
P(A) = (2n)! kH:lmk!< (2k)(2k)! > ’

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.

Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).



Connection with Euler numbers

B
Easy fact. Eyy_1 = 4k(4k )‘ 2k‘

= 6] = (@)1 H (=)




Connection with Euler numbers
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Connection with Euler numbers

B
Easy fact. Epy_1 = 4k( — 1)| 2k|

n

= o0 = 1175 (i)

k=1

From this can show

¢()‘) € Z, Z ‘@b()‘)‘ = Eap,

AFn

what does |¢(\)| count? Should be a refinement of
alternating permutations.



Record partitions

Recall >, [6(A)| = Ean = #Aop.
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Recall >\, [6(N)] = Eon = #2Asp.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in w. (Always 1 € rec(w).)

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)



Record partitions

Recall >\, [6(N)] = Eon = #2Asp.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in w. (Always 1 € rec(w).)

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)

w = 77275747873710767975 € 9110, W = 7757871079;

I’1:1, I’2:3, I’3:4, I’2—I’1:2, I’3—I’2:1,6—I’3:2,
rp(W) = (2,2,1)



Combinatorial interpretation of ¢(\)

Theorem. |p(N)] = #{w € Az, : 1p(W) = A}



Combinatorial interpretation of ¢(\)

Theorem. |p(N)] = #{w € Az, : 1p(W) = A}

Bijective argument.



Symmetric functions

Let A" be the set of all homogeneous formal power series f(x)
(over R, say) in the variables x = (x1,xp,...) that are invariant
under any permutation of the variables. Then dim A" = p(n), the
number of partitions of n. Many interesting bases for A" are
indexed by A\ F n.



Symmetric functions

Let A" be the set of all homogeneous formal power series f(x)
(over R, say) in the variables x = (x1,xp,...) that are invariant
under any permutation of the variables. Then dim A" = p(n), the
number of partitions of n. Many interesting bases for A" are
indexed by A\ F n.

. k
power sums: py = ZX,' y PX = PxPxy

complete symmetric functions: h, = sum of all monomials of
degree n, hy = hy hy, - --

Schur functions sy: most important basis



A symmetric function

The general form ¢(A\) = (2n)! ] mik!fkmk suggests defining a
symmetric function in the variables x = (x1,xp,...):

An = Aul() = e ST 16 -

AFn

where p) is a power sum symmetric function.



Examples.

21 Ay
41 Ay
6! A3
81, As

4!A22

P1
3p; +2p2

15p; + 30p2p1 + 16p3
105p1% + 420p,p? + 140p3 + 448p3p1 + 272ps

w  w  rp(w)
2143 24 11
3142 34 11
3241 34 11
4132 43 2
4231 43 2



A generating function

Theorem. Y Apt" = []; sec(y/xit).



A generating function

Theorem. Y Apt" = []; sec(y/xit).

Proof. Manipulatorics (A. Garsia). O



h-positivity

Theorem. A,(x) is h-positive.



h-positivity
. An(x) is h-positive.
Proof. Weierstrass product formula
4t2 _
cos(t) = H (1 - m) implies:
k>1
F(t) = sec(vt)
— H 1— L o
N 72(2j — 1)2

jz1

= [TFsn) = HH(“%V

Jjz1 i



Some data

2041 =y
41 Ay = h? + 4hy
6! A3 = h3 + 12hohy + 48h3
8! Ay = h + 24hyh? 4 256h3hy + 16h3 + 1088h,
10! As = h2 + 40hoh3 + 800h3h? + 80h3hy + 9280hshy
+ 640h3hy + 39680hs.
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Sum of coefficients is E>,. What are the
coefficients themselves?



Some data

2041 =y
41 Ay = h? + 4hy
6! A3 = h3 + 12hohy + 48h3
8! Ay = h + 24hyh? 4 256h3hy + 16h3 + 1088h,
10! As = h2 + 40hoh3 + 800h3h? + 80h3hy + 9280hshy
+ 640h3hy + 39680hs.

Sum of coefficients is E>,. What are the
coefficients themselves?

Coefficient of h, is nEx,—1, the number of “cyclically
alternating” permutations in Goj,.



Schur function expansion

To get the coefficient of ss317 in 20! - Aqg, take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape p(5311):

Row lengths are the parts of u.
Each row begins one square to the left of the row above.




Schur function expansion

To get the coefficient of ss317 in 20! - Aqg, take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape p(5311):

Row lengths are the parts of u.
Each row begins one square to the left of the row above.

For general \ = n, the coefficient of sy in (2n)!A, is the
number fPA) of standard Young tableaux of (skew) shape p(\).
(Well-known determinantal formula.)
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R=(Ry=1,Ry,Ry,...) of symmetric functions R, is a sprout
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Example.
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elementary symmetric function).



Sprout symmetric functions

Let F(t) =1+ > 5 ajt/ € R[[t]]. A sequence
R=(Ry=1,Ry,Ry,...) of symmetric functions R, is a sprout
sequence with seed F(t) if

D Rat" =[] F(xit).

n>0 i

Q F(t)=¢f [, =ePt so R, = ':7—1?.

Q F(t)=1+¢t [[,(1+xt)=>ent" so R, = e, (nth
elementary symmetric function).

Q@ F(t)=(1—-t)" L TI.(1 = xit)"t = hnt", so R, = h, (nth
complete symmetric function).



Sprout symmetric functions

Let F(t) =1+ > 5 ajt/ € R[[t]]. A sequence
R=(Ry=1,Ry,Ry,...) of symmetric functions R, is a sprout
sequence with seed F(t) if

D Rat" =[] F(xit).

n>0 i

Q F(t)=¢f [, =ePt so R, = ':7—1?.

Q F(t)=1+¢t [[,(1+xt)=>ent" so R, = e, (nth
elementary symmetric function).

Q@ F(t)=(1—-t)" L TI.(1 = xit)"t = hnt", so R, = h, (nth
complete symmetric function).

Q F(t) =sec(vt), R, = A,.



Duality

Let w be the usual involution on symmetric functions, so
w(h,\) = €\, w(eA) = h>\.

If F(t) is the seed for R = (Ro, R1,...), then 1/F(—t)
is the seed for (w(Ro),w(R1),...).



Schur positivity

Many interesting properties of sprout symmetric functions. We
state the deepest.
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Many interesting properties of sprout symmetric functions. We
state the deepest.
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(a) Each R, is Schur positive.
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where v > 0 and the ay's and By 's are nonnegative real
numbers such that (ax + Bk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)



Schur positivity

Many interesting properties of sprout symmetric functions. We
state the deepest.

Let R = (1, Ry, Ra,...) be a sprout sequence over R
with seed F(t) =) ajt/. The following conditions are equivalent.

(a) Each R, is Schur positive.
(b) We can write

where v > 0 and the ay's and By 's are nonnegative real
numbers such that (ax + Bk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)

(c) The matrix [aj_j]i j>0 (where a, =0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.



Edrei-Thoma theorem

Recall from previous slide:
(b) We can write

1+ oyt
Fity=e']] ——
k>1

where v > 0 and the ay's and By 's are nonnegative real
numbers such that 3 (cu + Bk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)

(c) The matrix [aj_i]i j>0 (where a, =0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.



Edrei-Thoma theorem

Recall from previous slide:
(b) We can write

1+ agt
F(t)y=e"]]
k>1

where v > 0 and the ay's and By 's are nonnegative real
numbers such that 3 (cu + Bk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)

(c) The matrix [aj_i]i j>0 (where a, =0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.

This is the (1952, 1964) from the theory
of total positivity and the representation theory of the infinite
symmetric group (all permutations of 1,2,... with only finitely

many nonfixed points).
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Schur positivity < F(t) = 7" H —
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e and h-positivity
e-positivity = Schur positivity and h-positivity = Schur
positivity.

Schur positivity < F(t) = 7" H —

(a) Ifall B; =0, then each R, is e-positive.
(b) If all oj =0, then each R, is h-positive.

Proof completely analogous to h-positivity for F(t) = sec(/x;t).

The converse hold.



Special case of converse

bt 1+ ot
o
F(t)=¢" Ly
(1) H e
where 7y, j, 3; > 0. If for some oo > 0 the multiplicity of 1 + act in
the numerator exceeds the multiplicity of 1 — at in the
denominator, then some R, is not h-positive. (Dually for
e-positive.)




Special case of converse

Let

14 qjt
F(f)Ze“Hl_ﬁj.t’
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Note on proof. The proof involves complex analysis, namely, the
(rather elementary) Vivanti-Pringsheim theorem.



Special case of converse

Let
1—|—ajt

Fo=e"117—75+

Jj

where 7y, j, 3; > 0. If for some oo > 0 the multiplicity of 1 + act in
the numerator exceeds the multiplicity of 1 — at in the
denominator, then some R, is not h-positive. (Dually for
e-positive.)

Note on proof. The proof involves complex analysis, namely, the
(rather elementary) Vivanti-Pringsheim theorem.

Some other special cases also known.
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Generalization

Let g1,...,qq be indeterminates and
mi,...,mg € P. Define

(k) =1 +a)1+aq+a7) (L+a+a + - +q )

the standard gj-analogue of k!. Let

t" t"

n>0

Many properties carry over from thecase d =1, m; =2, g1 =1,
but some remain mysterious.

In particular, is D(n)R, (s, q1, ..., qq)-positive? le., in the Schur
expansion of R,, is the coefficient of each sy a polynomial in
g1, ---,qq with coefficients?

No g-analogue of the theory of total positivity or of the
Edrei-Thoma theorem is known.



An example

d=2,c =16 =2F(t) =Y 0t"/(n)!,(2n)!,

(3)!q (6)!, Rs =s111+(q?rB+q°r"+qr8+2q2r5+qr’' +r84+2¢%r>+2qr®+r'+3¢%r*
+2qr5+2r6+2q2r3+3qr4+2r5+2q2r2+2qr3+3r4+q2r+2qr2+2r3+q2+qr+2r2+q+r)521
+(g®r2+2q3 1 42¢2 2453 r0 1 42 rtt 4-2qr2 +7q3 9 +10g2 ri0+ 4qrit 4112
+11¢3r8+14¢%r°+10gr1®4+-2r11 4124317 +20¢% r8+14qr°4-5r10
+14¢%r54+22¢%r"+20qr8+7r9 4123 r>+24¢%r5+22qr" +9r8 41193 r* +204° r°
+24qr°+10r"4+7¢3r34+16G2r*4+20qr°+10r%+5¢3r2+10g2 r3+16gr*+8r°+2q3r
+6G%r?+10qr3+5r*+q3+2q° r+-6qr2+3r3+2qr+r?)s;

What do the coefficients count? Coefficient of s, is understood in
general.
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