Alternating Permutations and Sprout Symmetric Functions

Richard P. Stanley U. Miami & M.I.T.

November 1, 2025

Alternating Permutations and Sprout Symmetric Functions

Richard P. Stanley U. Miami & M.I.T.

November 1, 2025

Define

$$\sec x + \tan x = \sum_{n \ge 0} \mathbf{E_n} \frac{x^n}{n!}.$$

Define

$$\underbrace{\sec x}_{\text{even}} + \underbrace{\tan x}_{\text{odd}} = \sum_{n \ge 0} \underbrace{\frac{E_n}{n!}}_{\text{Euler number}} \frac{x^n}{n!}.$$

Define

$$\underbrace{\sec x}_{\text{even}} + \underbrace{\tan x}_{\text{odd}} = \sum_{n \ge 0} \underbrace{\frac{E_n}{n!}}_{\text{Euler number}} \frac{x^n}{n!}.$$

Euler considered E_{2n} in connection with sums like

$$\sum_{k>0} \frac{(-1)^k}{(2k+1)^{2n+1}} = \frac{\pi^{2n+1}}{2^{2n+2}(2n)!} E_n.$$

Define

$$\underbrace{\sec x}_{\text{even}} + \underbrace{\tan x}_{\text{odd}} = \sum_{n \ge 0} \underbrace{\frac{E_n}{n!}}_{\text{Euler number}} \frac{x^n}{n!}.$$

Euler considered E_{2n} in connection with sums like

$$\sum_{k>0} \frac{(-1)^k}{(2k+1)^{2n+1}} = \frac{\pi^{2n+1}}{2^{2n+2}(2n)!} E_n.$$

Raabe (1851): introduced the term "Euler numbers"

Alternating permutations

 \mathfrak{S}_n : symmetric group of all permutations of $1,2,\ldots,n$ $w=a_1a_2\cdots a_n\in\mathfrak{S}_n$ is **alternating** if $a_1>a_2< a_3>a_4<\cdots.$

 $\mathfrak{A}_n = \{ w \in \mathfrak{S}_n : w \text{ is alternating} \}$

Alternating permutations

 \mathfrak{S}_n : symmetric group of all permutations of $1,2,\ldots,n$ $w=a_1a_2\cdots a_n\in \mathfrak{S}_n \text{ is alternating if}$ $a_1>a_2< a_3>a_4<\cdots.$

 $\mathfrak{A}_n = \{ w \in \mathfrak{S}_n : w \text{ is alternating} \}$

 $\mathsf{E.g.,}\ \mathfrak{A}_4:=\{2143,3142,3241,4132,4231\}.$

André's theorem

Theorem (Désiré André, 1879)

$$E_n = \#\mathfrak{A}_n$$
,

the number of alternating permutations in \mathfrak{S}_n .

André's theorem

Theorem (Désiré André, 1879)

$$E_n = \#\mathfrak{A}_n$$
,

the number of alternating permutations in \mathfrak{S}_n .

Note on proof. Combinatorics 101.

A new subject?

Let alt(n) be the number of alternating permutations in \mathfrak{S}_n .

A new subject?

Let alt(n) be the number of alternating permutations in \mathfrak{S}_n .

Define

$$\tan x = \sum_{n \ge 0} \operatorname{alt}(2n+1) \frac{x^{2n+1}}{(2n+1)!}$$

$$\sec x = \sum_{n \ge 0} \operatorname{alt}(2n) \frac{x^{2n}}{(2n)!}.$$

A new subject?

Let alt(n) be the number of alternating permutations in \mathfrak{S}_n .

Define

$$\tan x = \sum_{n \ge 0} \operatorname{alt}(2n+1) \frac{x^{2n+1}}{(2n+1)!}$$

$$\sec x = \sum_{n \ge 0} \operatorname{alt}(2n) \frac{x^{2n}}{(2n)!}.$$

⇒ combinatorial trigonometry

$$\sec^2 x = 1 + \tan^2 x$$

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} \binom{2n}{2k} \mathrm{alt}_{2k} \mathrm{alt}_{2(n-k)} = \sum_{k=0}^{n-1} \binom{2n}{2k+1} \mathrm{alt}_{2k+1} \mathrm{alt}_{2n-2k-1},$$

etc.

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} \binom{2n}{2k} \operatorname{alt}_{2k} \operatorname{alt}_{2(n-k)} = \sum_{k=0}^{n-1} \binom{2n}{2k+1} \operatorname{alt}_{2k+1} \operatorname{alt}_{2n-2k-1},$$

etc.

Note. $\sec^2 x = 1 + \tan^2 x$ is equivalent to $\sin^2 x + \cos^2 x = 1$ (**Pythagorean theorem**). So we have a combinatorial proof of the Pythagorean theorem!

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} \binom{2n}{2k} \operatorname{alt}_{2k} \operatorname{alt}_{2(n-k)} = \sum_{k=0}^{n-1} \binom{2n}{2k+1} \operatorname{alt}_{2k+1} \operatorname{alt}_{2n-2k-1},$$

etc.

Note. $\sec^2 x = 1 + \tan^2 x$ is equivalent to $\sin^2 x + \cos^2 x = 1$ (**Pythagorean theorem**). So we have a combinatorial proof of the Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in **E. S. Loomis**, *The Pythagorean Proposition*, second ed., 1940).

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} \binom{2n}{2k} \operatorname{alt}_{2k} \operatorname{alt}_{2(n-k)} = \sum_{k=0}^{n-1} \binom{2n}{2k+1} \operatorname{alt}_{2k+1} \operatorname{alt}_{2n-2k-1},$$

etc.

Note. $\sec^2 x = 1 + \tan^2 x$ is equivalent to $\sin^2 x + \cos^2 x = 1$ (**Pythagorean theorem**). So we have a combinatorial proof of the Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in **E. S. Loomis**, *The Pythagorean Proposition*, second ed., 1940).

Ours is perhaps the worst.

Other combinatorial interpretations

Numerous other combinatorial interpretations of E_n are known (not given here).

Volume of a polytope

Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} \le 1, 1 \le i \le n - 1.$

Volume of a polytope

Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} \le 1, 1 \le i \le n - 1.$

Theorem. The volume of \mathcal{E}_n is $E_n/n!$.

Tridiagonal matrices

An $n \times n$ matrix $M = (m_{ij})$ is **tridiagonal** if $m_{ij} = 0$ whenever $|i - j| \ge 2$.

doubly-stochastic: $m_{ij} \geq 0$, row and column sums equal 1

 T_n : set of $n \times n$ tridiagonal doubly stochastic matrices

Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$
 $M \mapsto (m_{12}, m_{23}, \dots, m_{n-1,n})$

is a (linear) bijection from \mathcal{T} to \mathcal{E}_{n-1} .

Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$
 $M \mapsto (m_{12}, m_{23}, \dots, m_{n-1,n})$

is a (linear) bijection from \mathcal{T} to \mathcal{E}_{n-1} .

Application (**Diaconis** et al.): random doubly stochastic tridiagonal matrices and random walks on \mathcal{T}_n

Prelude: distribution of is(w)

$$\operatorname{is}(w) = \operatorname{length}$$
 of longest increasing subsequence of $w \in \mathfrak{S}_n$
$$\operatorname{is}(48361572) = 3$$

Prelude: distribution of is(w)

$$is(w) = length of longest increasing subsequence of $w \in \mathfrak{S}_n$$$

$$is(48361572) = 3$$

Prelude: distribution of is(w)

is(w) = length of longest increasing subsequence of $w \in \mathfrak{S}_n$

$$is(48361572) = 3$$

Vershik-Kerov, Logan-Shepp:

$$E(n) := \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} is(w)$$

$$\sim 2\sqrt{n}$$

Limiting distribution of is(w)

Baik-Deift-Johansson:

For fixed $t \in \mathbb{R}$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\frac{\operatorname{is}_n(w)-2\sqrt{n}}{n^{1/6}}\leq t\right)=F(t),$$

the Tracy-Widom distribution.

Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

$$w = 56218347 \Rightarrow as(w) = 5$$

Longest alternating subsequences

$$as(w)$$
 = length of longest alt. subseq. of w $w = 56218347 \Rightarrow as(w) = 5$
$$D(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} as(w) \sim ?$$

Definition of $a_k(n)$

$$\mathbf{a}_{k}(\mathbf{n}) = \#\{w \in \mathfrak{S}_{n} : \operatorname{as}(w) = k\}$$

Definition of $a_k(n)$

$$\mathbf{a}_{k}(\mathbf{n}) = \#\{\mathbf{w} \in \mathfrak{S}_{n} : \operatorname{as}(\mathbf{w}) = k\}$$

W	as(w)
1 23	1
1 32	2
213	3
2 3 1	2
312	3
3 2 1	2

Definition of $a_k(n)$

$$a_k(n) = \#\{w \in \mathfrak{S}_n : as(w) = k\}$$

$$\frac{w \quad as(w)}{123 \quad 1}$$

$$132 \quad 2$$

$$213 \quad 3$$

$$231 \quad 2$$

$$312 \quad 3$$

$$321 \quad 2$$

$$a_1(3) = 1$$
, $a_2(3) = 3$, $a_3(3) = 2$

The main generating function

$$\mathbf{A}(\mathbf{x},\mathbf{t}) = \sum_{k,n \geq 0} a_k(n) t^k \frac{x^n}{n!}$$

The main generating function

$$\mathbf{A}(\mathbf{x},\mathbf{t}) = \sum_{k,n \geq 0} a_k(n) t^k \frac{\mathbf{x}^n}{n!}$$

Theorem.

$$A(x,t) = (1-t)\left(\frac{2/\rho}{1-\frac{1-\rho}{t}e^{\rho x}}-\frac{1}{\rho}\right),\,$$

where $\rho = \sqrt{1-t^2}$.

Mean (expectation) of as(w)

$$\mathbf{D}(\mathbf{n}) = \frac{1}{n!} \sum_{\mathbf{w} \in \mathfrak{S}_n} \mathrm{as}(\mathbf{w}) = \frac{1}{n!} \sum_{k=1}^n k \cdot a_k(\mathbf{n}),$$

the **expectation** of as(w) for $w \in \mathfrak{S}_n$

Mean (expectation) of as(w)

$$\mathbf{D}(\mathbf{n}) = \frac{1}{n!} \sum_{\mathbf{w} \in \mathfrak{S}_n} \mathrm{as}(\mathbf{w}) = \frac{1}{n!} \sum_{k=1}^n k \cdot a_k(\mathbf{n}),$$

the **expectation** of as(w) for $w \in \mathfrak{S}_n$

Recall

$$\mathbf{A}(\mathbf{x}, \mathbf{t}) = \sum_{k,n \ge 0} a_k(n) t^k \frac{x^n}{n!}$$
$$= (1 - t) \left(\frac{2/\rho}{1 - \frac{1 - \rho}{t} e^{\rho x}} - \frac{1}{\rho} \right).$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$
$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\Rightarrow D(n) = \frac{4n+1}{6}, \ n \geq 2$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\Rightarrow D(n) = \frac{4n+1}{6}, \ n \geq 2$$

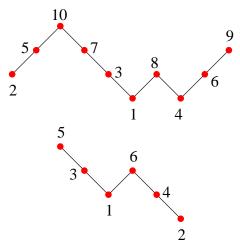
Compare $E(n) \sim 2\sqrt{n}$.

Simple proof

Is there a simple proof that $D(n) = \frac{4n+1}{6}$, n > 1?

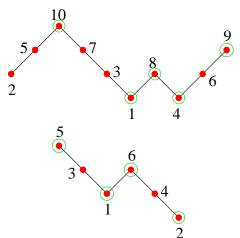
Simple proof

Is there a simple proof that $D(n) = \frac{4n+1}{6}$, n > 1?



Simple proof

Is there a simple proof that $D(n) = \frac{4n+1}{6}$, n > 1?



Simple proof (cont.)

$$w=a_1a_2\cdots a_n$$
 $\operatorname{Prob}(a_1>a_2)=1/2$
 $\operatorname{Prob}(a_i \text{ peak or valley})=2/3,\ 2\leq i\leq n-1$
 $\operatorname{Prob}(a_n>a_{n-1} \text{ or } a_n< a_{n-1})=1$

Simple proof (cont.)

$$w = a_1 a_2 \cdots a_n$$

$$\operatorname{Prob}(a_1 > a_2) = 1/2$$

$$\operatorname{Prob}(a_i \text{ peak or valley}) = 2/3, \ 2 \le i \le n-1$$

$$\operatorname{Prob}(a_n > a_{n-1} \text{ or } a_n < a_{n-1}) = 1$$

$$\Rightarrow D(n) = \frac{1}{2} + (n-2)\frac{2}{3} + 1$$

$$= \frac{4n+1}{6}$$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(as(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the **variance** of as(w) for $w \in \mathfrak{S}_n$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of as(w) for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(as(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the **variance** of as(w) for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

similar results for higher moments

A new distribution?

$$P(t) = \lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

A new distribution?

$$P(t) = \lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

Stanley distribution?

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$
$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45}/4} e^{-s^2} ds$$

(Gaussian distribution)

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$
$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45}/4} e^{-s^2} ds$$

(Gaussian distribution)

Umbral enumeration

Umbral formula: involves E^k , where E is an indeterminate (the **umbra**). Replace E^k with the Euler number E_k . (Technique from 19th century, modernized by **Rota** et al.)

Umbral enumeration

Umbral formula: involves E^k , where E is an indeterminate (the **umbra**). Replace E^k with the Euler number E_k . (Technique from 19th century, modernized by **Rota** et al.)

Example.

$$(1+E^{2})^{3} = 1+3E^{2}+3E^{4}+E^{6}$$

$$= 1+3E_{2}+3E_{4}+E_{6}$$

$$= 1+3\cdot 1+3\cdot 5+61$$

$$= 80$$

Another example

$$(1+t)^{E} = 1 + Et + {E \choose 2}t^{2} + {E \choose 3}t^{3} + \cdots$$

$$= 1 + Et + \frac{1}{2}E(E-1)t^{2} + \cdots$$

$$= 1 + E_{1}t + \frac{1}{2}(E_{2} - E_{1})t^{2} + \cdots$$

$$= 1 + t + \frac{1}{2}(1-1)t^{2} + \cdots$$

$$= 1 + t + O(t^{3}).$$

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Let f(n) be the number of alternating fixed-point free involutions in \mathfrak{S}_{2n} .

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number = $1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Let f(n) be the number of alternating fixed-point free involutions in \mathfrak{S}_{2n} .

$$n = 3$$
: 214365 = (1,2)(3,4)(5,6)
645231 = (1,6)(2,4)(3,5)
 $f(3) = 2$

An umbral theorem

Theorem.

$$F(x) = \sum_{n \geq 0} f(n)x^n$$

An umbral theorem

Theorem.

$$F(x) = \sum_{n\geq 0} f(n)x^n$$
$$= \left(\frac{1+x}{1-x}\right)^{(E^2+1)/4}$$

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

There is a character χ of \mathfrak{S}_n (due to **H. O. Foulkes**) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

There is a character χ of \mathfrak{S}_n (due to **H. O. Foulkes**) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Now use known results on combinatorial properties of characters of \mathfrak{S}_n .

The function $\phi(\lambda)$

Amdeberhan-Ono-Singh (2024):

$$\phi(\lambda) := (2n)! \cdot \prod_{k=1}^{n} \frac{1}{m_{k}!} \left(\frac{4^{k}(4^{k}-1)B_{2k}}{(2k)(2k)!} \right)^{m_{k}},$$

where $\lambda = \langle 1^{m_1}, \dots, n^{m_n} \rangle \vdash n = \sum i m_i$ (λ is a partition of n with m_i i's) and B_{2k} is a Bernoulli number.

The function $\phi(\lambda)$

Amdeberhan-Ono-Singh (2024):

$$\phi(\lambda) := (2n)! \cdot \prod_{k=1}^{n} \frac{1}{m_k!} \left(\frac{4^k (4^k - 1) B_{2k}}{(2k)(2k)!} \right)^{m_k},$$

where $\lambda = \langle 1^{m_1}, \dots, n^{m_n} \rangle \vdash n = \sum i m_i$ (λ is a partition of n with m_i i's) and B_{2k} is a Bernoulli number.

Original motivation. Express a certain theta function of Ramanujan in terms of Eisenstein series (not explained here).

Connection with Euler numbers

Easy fact.
$$E_{2k-1} = 4^k (4^k - 1) \frac{|B_{2k}|}{2k}$$

$$\Rightarrow |\phi(\lambda)| = (2n)! \cdot \prod_{k=1}^n \frac{1}{m_k!} \left(\frac{E_{2k-1}}{(2k)!} \right)^{m_k}$$

Connection with Euler numbers

Easy fact.
$$E_{2k-1} = 4^k (4^k - 1) \frac{|B_{2k}|}{2k}$$

$$\Rightarrow |\phi(\lambda)| = (2n)! \cdot \prod_{k=1}^n \frac{1}{m_k!} \left(\frac{E_{2k-1}}{(2k)!}\right)^{m_k}$$

From this can show

$$\phi(\lambda) \in \mathbb{Z}, \quad \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n},$$

Connection with Euler numbers

Easy fact.
$$E_{2k-1} = 4^k (4^k - 1) \frac{|B_{2k}|}{2k}$$

$$\Rightarrow |\phi(\lambda)| = (2n)! \cdot \prod_{k=1}^n \frac{1}{m_k!} \left(\frac{E_{2k-1}}{(2k)!}\right)^{m_k}$$

From this can show

$$\phi(\lambda) \in \mathbb{Z}, \quad \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n},$$

Question: what does $|\phi(\lambda)|$ count? Should be a refinement of alternating permutations.

Record partitions

Recall
$$\sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n} = \#\mathfrak{A}_{2n}$$
.

Record partitions

```
Recall \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n} = \#\mathfrak{A}_{2n}.

If w = a_1 > a_2 < \cdots > a_{2n} \in \mathfrak{A}_{2n} define \hat{\mathbf{w}} = a_1, a_3, \ldots, a_{2n-1}.

Write \hat{w} = b_1, b_2, \ldots, b_n.

record set \operatorname{rec}(\hat{w}): set of indices 1 \leq i \leq n for which b_i is a left-to-right maximum (or \operatorname{record}) in \hat{w}. (Always 1 \in \operatorname{rec}(\hat{w}).)

record partition \operatorname{rp}(\hat{w}): if \operatorname{rec}(\hat{w}) = \{r_1, r_2, \ldots, r_j\}_{<}, then \operatorname{rp}(\hat{w}) is the partition of n with parts r_2 - r_1, r_3 - r_2, r_4 - r_3, \ldots, n + 1 - r_j (in decreasing order)
```

Record partitions

```
Recall \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n} = \#\mathfrak{A}_{2n}.

If w = a_1 > a_2 < \cdots > a_{2n} \in \mathfrak{A}_{2n} define \hat{\mathbf{w}} = a_1, a_3, \ldots, a_{2n-1}.

Write \hat{w} = b_1, b_2, \ldots, b_n.

record set rec(\hat{w}): set of indices 1 \le i \le n for which b_i is a left-to-right maximum (or record) in \hat{w}. (Always 1 \in \operatorname{rec}(\hat{w}).)

record partition \operatorname{rp}(\hat{w}): if \operatorname{rec}(\hat{w}) = \{r_1, r_2, \ldots, r_j\}_{<}, then \operatorname{rp}(\hat{w}) is the partition of n with parts r_2 - r_1, r_3 - r_2, r_4 - r_3, \ldots, n+1-r_j (in decreasing order)
```

Example.
$$w = 7, 2, 5, 4, 8, 3, 10, 6, 9, 5 \in \mathfrak{A}_{10}, \ \hat{w} = 7, 5, 8, 10, 9;$$
 $r_1 = 1, \ r_2 = 3, \ r_3 = 4, \ r_2 - r_1 = 2, \ r_3 - r_2 = 1, \ 6 - r_3 = 2,$ $\operatorname{rp}(\hat{w}) = (2, 2, 1)$

Combinatorial interpretation of $\phi(\lambda)$

Theorem.
$$|\phi(\lambda)| = \#\{w \in \mathfrak{A}_{2n} : \operatorname{rp}(\hat{w}) = \lambda\}$$

Combinatorial interpretation of $\phi(\lambda)$

Theorem.
$$|\phi(\lambda)| = \#\{w \in \mathfrak{A}_{2n} : \operatorname{rp}(\hat{w}) = \lambda\}$$

Note on proof. Bijective argument.

Symmetric functions

Let Λ^n be the set of all homogeneous formal power series f(x) (over \mathbb{R} , say) in the variables $\mathbf{x} = (x_1, x_2, \dots)$ that are invariant under any permutation of the variables. Then $\dim \Lambda^n = \mathbf{p}(\mathbf{n})$, the number of partitions of \mathbf{n} . Many interesting bases for Λ^n are indexed by $\lambda \vdash \mathbf{n}$.

Symmetric functions

Let Λ^n be the set of all homogeneous formal power series f(x) (over \mathbb{R} , say) in the variables $\mathbf{x} = (x_1, x_2, \dots)$ that are invariant under any permutation of the variables. Then $\dim \Lambda^n = \mathbf{p}(\mathbf{n})$, the number of partitions of n. Many interesting bases for Λ^n are indexed by $\lambda \vdash n$.

power sums: $p_k = \sum x_i^k$, $p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots$

complete symmetric functions: $h_k = \text{sum of } all \text{ monomials of degree } n, h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots$

Schur functions s_{λ} : most important basis

A symmetric function

The general form $\phi(\lambda) = (2n)! \prod \frac{1}{m_k!} f_k^{m_k}$ suggests defining a symmetric function in the variables $\mathbf{x} = (x_1, x_2, \dots)$:

$$\mathbf{A}_{n} = A_{n}(\mathbf{x}) := \frac{1}{(2n)!} \sum_{\lambda \vdash n} |\phi(\lambda)| \cdot p_{\lambda},$$

where p_{λ} is a power sum symmetric function.

Examples.

$$2! A_1 = p_1$$

$$4! A_2 = 3p_1^2 + 2p_2$$

$$6! A_3 = 15p_1^3 + 30p_2p_1 + 16p_3$$

$$8!, A_4 = 105p_1^4 + 420p_2p_1^2 + 140p_2^2 + 448p_3p_1 + 272p_4$$

4! *A*₂:

W	ŵ	$\operatorname{rp}(\hat{w})$
2143	24	11
3142	34	11
3241	34	11
4132	43	2
4231	43	2

A generating function

Theorem.
$$\sum A_n t^n = \prod_i \sec(\sqrt{x_i t}).$$

A generating function

Theorem.
$$\sum A_n t^n = \prod_i \sec(\sqrt{x_i t}).$$

Proof. Manipulatorics (A. Garsia).
$$\square$$

h-positivity

Theorem. $A_n(x)$ is h-positive.

h-positivity

Theorem. $A_n(x)$ is h-positive.

Proof. Weierstrass product formula

$$cos(t) = \prod_{k>1} \left(1 - \frac{4t^2}{\pi^2(2k-1)^2}\right)$$
 implies:

$$F(t) = \sec(\sqrt{t})$$

$$= \prod_{j \ge 1} \left(1 - \frac{4t}{\pi^2 (2j - 1)^2} \right)^{-1}$$

$$\Rightarrow \prod_{i} F(x_i t) = \prod_{j \ge 1} \prod_{i} \left(1 - \frac{4x_i t}{\pi^2 (2j - 1)^2} \right)^{-1}$$

$$= \prod_{j} \left(\sum_{n \ge 0} \left(\frac{4t}{\pi^2 (2j - 1)^2} \right)^n h_n t^n \right) \square$$

Some data

2!
$$A_1 = h_1$$

4! $A_2 = h_1^2 + 4h_2$
6! $A_3 = h_1^3 + 12h_2h_1 + 48h_3$
8! $A_4 = h_1^4 + 24h_2h_1^2 + 256h_3h_1 + 16h_2^2 + 1088h_4$
10! $A_5 = h_1^5 + 40h_2h_1^3 + 800h_3h_1^2 + 80h_2^2h_1 + 9280h_4h_1 + 640h_3h_2 + 39680h_5$.

Some data

2!
$$A_1 = h_1$$

4! $A_2 = h_1^2 + 4h_2$
6! $A_3 = h_1^3 + 12h_2h_1 + 48h_3$
8! $A_4 = h_1^4 + 24h_2h_1^2 + 256h_3h_1 + 16h_2^2 + 1088h_4$
10! $A_5 = h_1^5 + 40h_2h_1^3 + 800h_3h_1^2 + 80h_2^2h_1 + 9280h_4h_1$
 $+ 640h_3h_2 + 39680h_5$.

Open problem. Sum of coefficients is E_{2n} . What are the coefficients themselves?

Some data

2!
$$A_1 = h_1$$

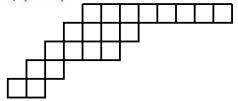
4! $A_2 = h_1^2 + 4h_2$
6! $A_3 = h_1^3 + 12h_2h_1 + 48h_3$
8! $A_4 = h_1^4 + 24h_2h_1^2 + 256h_3h_1 + 16h_2^2 + 1088h_4$
10! $A_5 = h_1^5 + 40h_2h_1^3 + 800h_3h_1^2 + 80h_2^2h_1 + 9280h_4h_1$
 $+ 640h_3h_2 + 39680h_5$.

Open problem. Sum of coefficients is E_{2n} . What are the coefficients themselves?

Note. Coefficient of h_n is nE_{2n-1} , the number of "cyclically alternating" permutations in \mathfrak{S}_{2n} .

Schur function expansion

Example. To get the coefficient of s_{5311} in $20! \cdot A_{10}$, take the conjugate partition 42211 and double each part: $\mu = 84422$. Form the skew shape $\rho(5311)$:

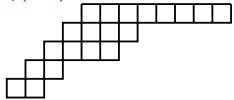


Row lengths are the parts of μ .

Each row begins one square to the left of the row above.

Schur function expansion

Example. To get the coefficient of s_{5311} in $20! \cdot A_{10}$, take the conjugate partition 42211 and double each part: $\mu = 84422$. Form the skew shape $\rho(5311)$:



Row lengths are the parts of μ .

Each row begins one square to the left of the row above.

Theorem. For general $\lambda \vdash n$, the coefficient of s_{λ} in $(2n)!A_n$ is the number $f^{\rho(\lambda)}$ of standard Young tableaux of (skew) shape $\rho(\lambda)$. (Well-known determinantal formula.)

Definition. Let $F(t) = 1 + \sum_{j \geq 1} a_j t^j \in \mathbb{R}[[t]]$. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, \dots)$ of symmetric functions R_n is a **sprout sequence** with **seed** F(t) if

$$\sum_{n\geq 0} R_n t^n = \prod_i F(x_i t).$$

Definition. Let $F(t) = 1 + \sum_{j \geq 1} a_j t^j \in \mathbb{R}[[t]]$. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, \dots)$ of symmetric functions R_n is a **sprout sequence** with **seed** F(t) if

$$\sum_{n\geq 0} R_n t^n = \prod_i F(x_i t).$$

1
$$F(t) = e^t$$
, $\prod_i e^{x_i t} = e^{p_1 t}$, so $R_n = \frac{p_1^n}{n!}$.

Definition. Let $F(t) = 1 + \sum_{j \geq 1} a_j t^j \in \mathbb{R}[[t]]$. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, \dots)$ of symmetric functions R_n is a **sprout sequence** with **seed** F(t) if

$$\sum_{n\geq 0} R_n t^n = \prod_i F(x_i t).$$

- **1** $F(t) = e^t$, $\prod_i e^{x_i t} = e^{p_1 t}$, so $R_n = \frac{p_1^n}{n!}$.
- ② F(t) = 1 + t, $\prod_{i} (1 + x_i t) = \sum_{i} e_n t^n$, so $R_n = e_n$ (nth elementary symmetric function).

Definition. Let $F(t) = 1 + \sum_{j \geq 1} a_j t^j \in \mathbb{R}[[t]]$. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, \dots)$ of symmetric functions R_n is a **sprout sequence** with **seed** F(t) if

$$\sum_{n\geq 0} R_n t^n = \prod_i F(x_i t).$$

- **1** $F(t) = e^t$, $\prod_i e^{x_i t} = e^{p_1 t}$, so $R_n = \frac{p_1^n}{n!}$.
- ② F(t) = 1 + t, $\prod_i (1 + x_i t) = \sum_i e_n t^n$, so $R_n = e_n$ (nth elementary symmetric function).
- **3** $F(t) = (1-t)^{-1}$, $\prod_i (1-x_it)^{-1} = \sum_i h_n t^n$, so $R_n = h_n$ (nth complete symmetric function).

Definition. Let $F(t) = 1 + \sum_{j \geq 1} a_j t^j \in \mathbb{R}[[t]]$. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, \dots)$ of symmetric functions R_n is a **sprout sequence** with **seed** F(t) if

$$\sum_{n\geq 0} R_n t^n = \prod_i F(x_i t).$$

- **1** $F(t) = e^t$, $\prod_i e^{x_i t} = e^{p_1 t}$, so $R_n = \frac{p_1^n}{n!}$.
- ② F(t) = 1 + t, $\prod_i (1 + x_i t) = \sum_i e_n t^n$, so $R_n = e_n$ (nth elementary symmetric function).
- **3** $F(t) = (1-t)^{-1}$, $\prod_i (1-x_it)^{-1} = \sum_i h_n t^n$, so $R_n = h_n$ (nth complete symmetric function).
- $F(t) = \sec(\sqrt{t}), R_n = A_n.$

Duality

Let ω be the usual involution on symmetric functions, so $\omega(h_{\lambda}) = e_{\lambda}$, $\omega(e_{\lambda}) = h_{\lambda}$.

Theorem. If F(t) is the seed for $\mathfrak{R} = (R_0, R_1, ...)$, then 1/F(-t) is the seed for $(\omega(R_0), \omega(R_1), ...)$.

Many interesting properties of sprout symmetric functions. We state the deepest.

Many interesting properties of sprout symmetric functions. We state the deepest.

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence over \mathbb{R} with seed $F(t) = \sum a_j t^j$. The following conditions are equivalent.

(a) Each R_n is Schur positive.

Many interesting properties of sprout symmetric functions. We state the deepest.

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence over \mathbb{R} with seed $F(t) = \sum a_j t^j$. The following conditions are equivalent.

- (a) Each R_n is Schur positive.
- (b) We can write

$$F(t) = e^{\gamma t} \prod_{k \ge 1} \frac{1 + \alpha_k t}{1 - \beta_k t},$$

where $\gamma \geq 0$ and the α_k 's and β_k 's are nonnegative real numbers such that $\sum_j (\alpha_k + \beta_k)$ is convergent. (This is an analytic, not formal or combinatorial, statement.)

Many interesting properties of sprout symmetric functions. We state the deepest.

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence over \mathbb{R} with seed $F(t) = \sum a_j t^j$. The following conditions are equivalent.

- (a) Each R_n is Schur positive.
- (b) We can write

$$F(t) = e^{\gamma t} \prod_{k \ge 1} \frac{1 + \alpha_k t}{1 - \beta_k t},$$

where $\gamma \geq 0$ and the α_k 's and β_k 's are nonnegative real numbers such that $\sum_j (\alpha_k + \beta_k)$ is convergent. (This is an analytic, not formal or combinatorial, statement.)

(c) The matrix $[a_{j-i}]_{i,j\geq 0}$ (where $a_n=0$ if n<0) is **totally nonnegative**, i.e., every minor is nonnegative.

Edrei-Thoma theorem

Recall from previous slide:

(b) We can write

$$F(t) = e^{\gamma t} \prod_{k \ge 1} \frac{1 + \alpha_k t}{1 - \beta_k t},$$

where $\gamma \geq 0$ and the α_k 's and β_k 's are nonnegative real numbers such that $\sum_j (\alpha_k + \beta_k)$ is convergent. (This is an analytic, not formal or combinatorial, statement.)

(c) The matrix $[a_{j-i}]_{i,j\geq 0}$ (where $a_n=0$ if n<0) is **totally nonnegative**, i.e., every minor is nonnegative.

Edrei-Thoma theorem

Recall from previous slide:

(b) We can write

$$F(t) = e^{\gamma t} \prod_{k \ge 1} \frac{1 + \alpha_k t}{1 - \beta_k t},$$

where $\gamma \geq 0$ and the α_k 's and β_k 's are nonnegative real numbers such that $\sum_j (\alpha_k + \beta_k)$ is convergent. (This is an analytic, not formal or combinatorial, statement.)

(c) The matrix $[a_{j-i}]_{i,j\geq 0}$ (where $a_n=0$ if n<0) is **totally nonnegative**, i.e., every minor is nonnegative.

This is the **Edrei-Thoma theorem** (1952, 1964) from the theory of total positivity and the representation theory of the infinite symmetric group (all permutations of 1,2,... with only finitely many nonfixed points).

Recall: e-positivity \Rightarrow Schur positivity and h-positivity \Rightarrow Schur positivity.

Schur positivity
$$\Leftrightarrow F(t) = e^{\gamma t} \prod_{j \geq 1} \frac{1 + \alpha_j t}{1 - \beta_j t}$$

Recall: e-positivity \Rightarrow Schur positivity and h-positivity \Rightarrow Schur positivity.

Schur positivity
$$\Leftrightarrow F(t) = e^{\gamma t} \prod_{j \ge 1} \frac{1 + \alpha_j t}{1 - \beta_j t}$$

Proposition.

- (a) If all $\beta_j = 0$, then each R_n is e-positive.
- (b) If all $\alpha_j = 0$, then each R_n is h-positive.

Recall: e-positivity \Rightarrow Schur positivity and h-positivity \Rightarrow Schur positivity.

Schur positivity
$$\Leftrightarrow F(t) = e^{\gamma t} \prod_{j \ge 1} \frac{1 + \alpha_j t}{1 - \beta_j t}$$

Proposition.

- (a) If all $\beta_j = 0$, then each R_n is e-positive.
- (b) If all $\alpha_j = 0$, then each R_n is h-positive.

Proof completely analogous to *h*-positivity for $F(t) = \sec(\sqrt{x_i t})$.

Recall: e-positivity \Rightarrow Schur positivity and h-positivity \Rightarrow Schur positivity.

Schur positivity
$$\Leftrightarrow F(t) = e^{\gamma t} \prod_{j \ge 1} \frac{1 + \alpha_j t}{1 - \beta_j t}$$

Proposition.

- (a) If all $\beta_j = 0$, then each R_n is e-positive.
- (b) If all $\alpha_j = 0$, then each R_n is h-positive.

Proof completely analogous to *h*-positivity for $F(t) = \sec(\sqrt{x_i t})$.

Conjecture. The converse hold.

Special case of converse

Theorem, Let

$$F(t) = e^{\gamma t} \prod_{j} \frac{1 + \alpha_{j} t}{1 - \beta_{j} t},$$

where $\gamma, \alpha_j, \beta_j \geq 0$. If for some $\alpha > 0$ the multiplicity of $1 + \alpha t$ in the numerator exceeds the multiplicity of $1 - \alpha t$ in the denominator, then some R_n is not h-positive. (Dually for e-positive.)

Special case of converse

Theorem. Let

$$F(t) = e^{\gamma t} \prod_{j} \frac{1 + \alpha_{j} t}{1 - \beta_{j} t},$$

where $\gamma, \alpha_j, \beta_j \geq 0$. If for some $\alpha > 0$ the multiplicity of $1 + \alpha t$ in the numerator exceeds the multiplicity of $1 - \alpha t$ in the denominator, then some R_n is not h-positive. (Dually for e-positive.)

Note on proof. The proof involves complex analysis, namely, the (rather elementary) **Vivanti-Pringsheim theorem**.

Special case of converse

Theorem. Let

$$F(t) = e^{\gamma t} \prod_{j} \frac{1 + \alpha_{j} t}{1 - \beta_{j} t},$$

where $\gamma, \alpha_j, \beta_j \geq 0$. If for some $\alpha > 0$ the multiplicity of $1 + \alpha t$ in the numerator exceeds the multiplicity of $1 - \alpha t$ in the denominator, then some R_n is not h-positive. (Dually for e-positive.)

Note on proof. The proof involves complex analysis, namely, the (rather elementary) **Vivanti-Pringsheim theorem**.

Some other special cases also known.

"Ultimate" generalization. Let q_1, \ldots, q_d be indeterminates and $m_1, \ldots, m_d \in \mathbb{P}$. Define

$$(k)!_{q_i} = 1 \cdot (1+q_i)(1+q_i+q_i^2) \cdots (1+q_i+q_i^2+\cdots+q_i^{k-1}).$$

the standard q_i -analogue of k!. Let

$$F(t) = \sum_{n\geq 0} \frac{t^n}{(\mathbf{m_1} \mathbf{n})!_{q_1} \cdots (\mathbf{m_d} \mathbf{n})!_{q_d}} = \sum_{n\geq 0} \frac{t^n}{D(n)}.$$

"Ultimate" generalization. Let q_1, \ldots, q_d be indeterminates and $m_1, \ldots, m_d \in \mathbb{P}$. Define

$$(k)!_{q_i} = 1 \cdot (1+q_i)(1+q_i+q_i^2) \cdots (1+q_i+q_i^2+\cdots+q_i^{k-1}).$$

the standard q_i -analogue of k!. Let

$$F(t) = \sum_{n\geq 0} \frac{t^n}{(\boldsymbol{m_1}\boldsymbol{n})!_{q_1}\cdots(\boldsymbol{m_d}\boldsymbol{n})!_{q_d}} = \sum_{n\geq 0} \frac{t^n}{D(n)}.$$

Many properties carry over from the case d=1, $m_1=2$, $q_1=1$, but some remain mysterious.

"Ultimate" generalization. Let q_1, \ldots, q_d be indeterminates and $m_1, \ldots, m_d \in \mathbb{P}$. Define

$$(k)!_{q_i} = 1 \cdot (1+q_i)(1+q_i+q_i^2)\cdots(1+q_i+q_i^2+\cdots+q_i^{k-1}).$$

the standard q_i -analogue of k!. Let

$$F(t) = \sum_{n\geq 0} \frac{t^n}{(\boldsymbol{m_1}\boldsymbol{n})!_{q_1}\cdots(\boldsymbol{m_d}\boldsymbol{n})!_{q_d}} = \sum_{n\geq 0} \frac{t^n}{D(n)}.$$

Many properties carry over from the case d=1, $m_1=2$, $q_1=1$, but some remain mysterious.

In particular, is $D(n)R_n$ (s, q_1, \ldots, q_d) -positive? I.e., in the Schur expansion of R_n , is the coefficient of each s_λ a polynomial in q_1, \ldots, q_d with nonnegative coefficients?

"Ultimate" generalization. Let q_1, \ldots, q_d be indeterminates and $m_1, \ldots, m_d \in \mathbb{P}$. Define

$$(k)!_{q_i} = 1 \cdot (1+q_i)(1+q_i+q_i^2)\cdots(1+q_i+q_i^2+\cdots+q_i^{k-1}).$$

the standard q_i -analogue of k!. Let

$$F(t) = \sum_{n\geq 0} \frac{t^n}{(\boldsymbol{m_1}\boldsymbol{n})!_{q_1}\cdots(\boldsymbol{m_d}\boldsymbol{n})!_{q_d}} = \sum_{n\geq 0} \frac{t^n}{D(n)}.$$

Many properties carry over from the case d=1, $m_1=2$, $q_1=1$, but some remain mysterious.

In particular, is $D(n)R_n$ $(s, q_1, ..., q_d)$ -positive? I.e., in the Schur expansion of R_n , is the coefficient of each s_λ a polynomial in $q_1, ..., q_d$ with nonnegative coefficients?

No *q*-analogue of the theory of total positivity or of the Edrei-Thoma theorem is known.

An example

Example.
$$d = 2, c_1 = 1, c_2 = 2, F(t) = \sum_{n \ge 0} t^n / (n)!_q (2n)!_r$$

$$\begin{aligned} \textbf{(3)!}_q \textbf{(6)!}_r R_3 &= s_{111} + (q^2 r^8 + q^2 r^7 + q r^8 + 2q^2 r^6 + q r^7 + r^8 + 2q^2 r^5 + 2q r^6 + r^7 + 3q^2 r^4 \\ &+ 2q r^5 + 2r^6 + 2q^2 r^3 + 3q r^4 + 2r^5 + 2q^2 r^2 + 2q r^3 + 3r^4 + q^2 r + 2q r^2 + 2r^3 + q^2 + q r + 2r^2 + q + r) s_{21} \\ &+ (q^3 r^{12} + 2q^3 r^{11} + 2q^2 r^{12} + 5q^3 r^{10} + 4q^2 r^{11} + 2q r^{12} + 7q^3 r^9 + 10q^2 r^{10} + 4q r^{11} + r^{12} \\ &+ 11q^3 r^8 + 14q^2 r^9 + 10q r^{10} + 2r^{11} + 12q^3 r^7 + 20q^2 r^8 + 14q r^9 + 5r^{10} \\ &+ 14q^3 r^6 + 22q^2 r^7 + 20q r^8 + 7r^9 + 12q^3 r^5 + 24q^2 r^6 + 22q r^7 + 9r^8 + 11q^3 r^4 + 20q^2 r^5 \\ &+ 24q r^6 + 10r^7 + 7q^3 r^3 + 16q^2 r^4 + 20q r^5 + 10r^6 + 5q^3 r^2 + 10q^2 r^3 + 16q r^4 + 8r^5 + 2q^3 r \\ &+ 6q^2 r^2 + 10q r^3 + 5r^4 + q^3 + 2q^2 r + 6q r^2 + 3r^3 + 2q r + r^2) s_3 \end{aligned}$$

What do the coefficients count? Coefficient of s_n is understood in general.

The final slide

The final slide

