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PART I

Stern’s Diatomic Array and Beyond



The arithmetic triangle or Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...
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xn =
1√

1− 4x
(not rational)
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Sums of cubes

∑
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(
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If f (n) =
∑

k≥0

(
n
k

)3
then

(n+2)2f (n+2)−(7n2+21n+16)f (n+1)−8(n+1)2f (n) = 0, n ≥ 0

Etc.
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A second triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

...

Stern’s triangle
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Some properties

Number of entries in row n (beginning with row 0): 2n+1 − 1
(so not really a triangle)

Sum of entries in row n: 3n

Largest entry in row n: Fn+1 (Fibonacci number)

Let
〈n

k

〉
be the kth entry (beginning with k = 0) in row n.

Write
Pn(x) =

∑

k≥0

〈n

k

〉

xk .

Then Pn+1(x) = (1 + x + x2)Pn(x
2) , since x Pn(x

2)
corresponds to bringing down the previous row, and
(1 + x2)Pn(x

2) to summing two consecutive entries.
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Stern’s diatomic sequence

Corollary. Pn(x) =
n−1∏

i=0

(

1 + x2
i

+ x2·2
i
)

As n → ∞, the nth row has the limiting generating function

P(x) =

∞∏

i=0

(

1 + x2
i

+ x2·2
i
)

:=
∑

n≥0

bnx
n.

The sequence b0, b1, b2, . . . is Stern’s diatomic sequence:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, . . .

(often prefixed with 0)
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⇒ bn is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.



Partition interpretation

∑

n≥0

bnx
n =

∏

i≥0

(

1 + x2
i

+ x2·2
i
)

⇒ bn is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain
the (unique) binary expansion of n:

1

1− x
=
∏

i≥0

(

1 + x2
i
)

.



Historical note

An essentially equivalent array is due to Moritz Abraham Stern
around 1858 and is known as Stern’s diatomic array:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

...



Amazing property

Theorem (Stern, 1858). Let b0, b1, . . . be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios bi/bi+1, and moreover this expression is in lowest
terms.



Amazing property

Theorem (Stern, 1858). Let b0, b1, . . . be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios bi/bi+1, and moreover this expression is in lowest
terms.

Can be proved inductively from

b2n = bn, b2n+1 = bn + bn+1,

but better is to use Calkin-Wilf tree, though following Stigler’s
law of eponymy was earlier introduced by Jean Berstel and Aldo
de Luca as the Raney tree. Closely related tree by Stern, called
the Stern-Brocot tree, and a much earlier similar tree by Kepler
(1619).



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.

Note. Stigler’s law of eponymy implies that Stigler’s law of
eponymy was not originally discovered by Stigler.
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...

u2(n) :=
∑

k

〈n

k

〉2
= 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n)− 2u2(n − 1), n ≥ 1

∑

n≥0

u2(n)x
n =

1− 2x

1− 5x + 2x2
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u3(n) :=
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〉3
= 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 · 7n−1, n ≥ 1
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, so

u2(n + 1) = 3u2(n) + 2u1,1(n).
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= 2u2(n) + 2u1,1(n)

Recall also u2(n + 1) = 3u2(n) + 2u1,1(n).
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Two recurrences in two unknowns

Let

A :=

[
3 2
2 2

]

.

Then

A

[
u2(n)
u1,1(n)

]

=

[
u2(n + 1)
u1,1(n + 1)

]

.

⇒ An

[
u2(1)
u1,1(1)

]

=

[
u2(n)
u1,1(n)

]

minimum (or characteristic) polynomial of A: x2 − 5x + 2

⇒ An−1(A2 − 5A+ 2) = 0
⇒ u2(n + 1) = 5u2(n)− 2u2(n − 1)

Also u1,1(n + 1) = 5u1,1(n)− 2u1,1(n − 1).
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What about u3(n)?

Now we need

u2,1(n) :=
∑

k

〈n

k

〉2
〈

n

k + 1

〉

u1,2(n) :=
∑

k

〈n

k

〉〈 n

k + 1

〉2

.

However, by symmetry about a vertical axis,

u2,1(n) = u1,2(n).

We get
[
3 6
2 4

] [
u3(n)
u2,1(n)

]

=

[
u3(n + 1)
u2,1(n + 1)

]

.
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Unexpected eigenvalue

Characteristic polynomial of
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Thus u3(n + 1) = 7u3(n) and u2,1(n + 1) = 7u2,1(n) (n ≥ 1).



Unexpected eigenvalue

Characteristic polynomial of

[
3 6
2 4

]

: x(x − 7)

Thus u3(n + 1) = 7u3(n) and u2,1(n + 1) = 7u2,1(n) (n ≥ 1).

In fact, for n ≥ 1 we have

u3(n) = 3 · 7n−1

u2,1(n) = 2 · 7n−1.



What about ur(n) for general r ≥ 1?

Get a matrix of size ⌈(r + 1)/2⌉, so expect a recurrence of this
order.



What about ur(n) for general r ≥ 1?

Get a matrix of size ⌈(r + 1)/2⌉, so expect a recurrence of this
order.

Conjecture. The least order of a homogenous linear recurrence
with constant coeffcients satisfied by ur (n) is

1
3 r + O(1).



A more accurate conjecture

Write [a0, . . . , am−1]m for the periodic function f : N → R

satisfying f (n) = ai if n ≡ i (modm).

Ar : matrix arising from ur (n)

ei (r) : # eigenvalues of Ar equal to i



A more accurate conjecture

Write [a0, . . . , am−1]m for the periodic function f : N → R

satisfying f (n) = ai if n ≡ i (modm).

Ar : matrix arising from ur (n)

ei (r) : # eigenvalues of Ar equal to i

Conjecture. We have

e0(2k − 1) =
1

3
k +

[

0,−1

3
,
1

3

]

3

,

and all 0 eigenvalues are semisimple. There are no other multiple
eigenvalues.



Even d

Conjecture. We have

e1(2k) =
1

6
k +

[

−1,−1

6
,−1

3
,−1

2
,−2

3
,
1

6

]

6

e−1(2k) = e1(2k + 6).

The eigenvalues 1 and −1 are semisimple, and there are no other
multiple eigenvalues.
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Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

mo(2s) = 2
⌊ s
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+ 3 (s 6= 1, 3)

mo(6s + 1) = 2s + 1, s ≥ 0

mo(6s + 3) = 2s + 1, s ≥ 0

mo(6s + 5) = 2s + 2, s ≥ 0.
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Minimum order of recurrence

mo(r): minimum order of recurrence satisfied by ur (n)

Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

mo(2s) = 2
⌊ s

3

⌋

+ 3 (s 6= 1, 3)

mo(6s + 1) = 2s + 1, s ≥ 0

mo(6s + 3) = 2s + 1, s ≥ 0

mo(6s + 5) = 2s + 2, s ≥ 0.

True for r ≤ 125.

∑

r≥0

mo(r)x r =
irred. deg 13

(1− x)(1− x6)



Work of David Speyer (November 12, 2018)

Theorem. The matrix Ar is realized by the operator φ : Vr → Vr

defined by

φ(f )(x , y) = f (x + y , y) + f (x , x + y),

where Vr is the space of homogeneous polynomials (over Z) of
degree r in the variables x , y , modulo the subspace generated by
all f (x , y)− f (y , x).
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Fairly easily implies:

Theorem. Ar has at least as many eigenvalues equal to −1, 0, 1 as
claimed. (Moreover, all eigenvalues are semisimple and real).



Work of David Speyer (November 12, 2018)

Theorem. The matrix Ar is realized by the operator φ : Vr → Vr

defined by

φ(f )(x , y) = f (x + y , y) + f (x , x + y),

where Vr is the space of homogeneous polynomials (over Z) of
degree r in the variables x , y , modulo the subspace generated by
all f (x , y)− f (y , x).

Fairly easily implies:

Theorem. Ar has at least as many eigenvalues equal to −1, 0, 1 as
claimed. (Moreover, all eigenvalues are semisimple and real).

Corollary. The minimum order mo(r) of a recurrence satisfied by
ur is no larger than the conjectured value.



General α

α = (α0, . . . , αm−1)

uα(n) :=
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k

〈n

k

〉α0
〈

n

k + 1

〉α1

· · ·
〈

n

k +m − 1

〉αm−1
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A closer look at α = (1, 1, 1, 1)

u1,1,1,1(n) =
∑

k

〈n
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k + 1

〉〈
n
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〉〈
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u1,1,1,1(n + 1) =
∑
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n
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+
〈
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〉)〈
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〉(〈
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〉
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∑

k

〈
n
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〉 (〈
n
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〉
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〈

n
k+1

〉)〈
n

k+1

〉(〈
n
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〉

+
〈

n
k+2

〉)

A(1,1,1,1) =











3 8 6 0 0 0
2 5 3 0 0 0
2 4 2 0 0 0
1 4 2 1 0 0
1 3 1 2 1 0
0 2 2 2 2 0











4
3, 1
2, 2

1, 2, 1
2, 1, 1

1, 1, 1, 1
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A(1,1,1,1) =











3 8 6 0 0 0
2 5 3 0 0 0
2 4 2 0 0 0

1 4 2 1 0 0
1 3 1 2 1 0

0 2 2 2 2 0











4
3, 1
2, 2

1, 2, 1
2, 1, 1

1, 1, 1, 1



Reduction to α = (r)

min. polynomial for α = (4): (x + 1)(2x2 − 11x + 1)

min. polynomial for α = (1, 1, 1, 1): (x − 1)2(x + 1)(2x2 − 11x + 1)
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mp(α): minimum polynomial of Aα

Theorem. Let α ∈ Nm and
∑

αi = r . Then mp(α) has the form
xwα(x − 1)zαmp(r) for some wα, zα ∈ N.



Reduction to α = (r)

min. polynomial for α = (4): (x + 1)(2x2 − 11x + 1)

min. polynomial for α = (1, 1, 1, 1): (x − 1)2(x + 1)(2x2 − 11x + 1)

mp(α): minimum polynomial of Aα

Theorem. Let α ∈ Nm and
∑

αi = r . Then mp(α) has the form
xwα(x − 1)zαmp(r) for some wα, zα ∈ N.

No conjecture for value of wα, zα.



A generalization

Let p(x),q(x) ∈ C[x ], α = (α0, . . . , αm−1) ∈ Nm, and b ≥ 2. Set

q(x)

n−1∏

i=0

p(xb
i

) =
∑

k

〈
n

k

〉

p,q,α,b
xk =

∑

k

〈
n

k

〉
xk

and

up,q,α,b(n) =
∑

k

〈n

k

〉α0
〈

n

k + 1

〉α1

· · ·
〈

n

k +m − 1

〉αm−1

.



Main theorem

Theorem. For fixed p, q, α, b, the function up,q,α,b(n) satisfies a
linear recurrence with constant coefficients (n ≫ 0). Equivalently,
∑

n up,q,α,b(n)x
n is a rational function of x.



Main theorem

Theorem. For fixed p, q, α, b, the function up,q,α,b(n) satisfies a
linear recurrence with constant coefficients (n ≫ 0). Equivalently,
∑

n up,q,α,b(n)x
n is a rational function of x.

Note. ∃ multivariate generalization.



PART II

A Weak Order Conjecture



Graded posets

P : finite poset

chain : u1 < u2 < · · · < uk
.



Graded posets

P : finite poset

chain : u1 < u2 < · · · < uk
.

Assume P is finite. P is graded of rank n if

P = P0 ∪ P1 ∪ · · · ∪ Pn,

such that every maximal chain has the form

t0 < t1 < · · · < tn, ti ∈ Pi .



Diagram of a graded poset

..

.

P

P

P

P

P

0

1

2

n −1

n



Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piq
i
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Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piq
i

Rank-symmetric: pi = pn−i ∀i
Rank-unimodal: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 ≥ · · · ≥ pn for some j

rank-unimodal and rank-symmetric ⇒ j = ⌊n/2⌋



The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •
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The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •
Note. Pi is an antichain

P is Sperner (or has the Sperner property) if

max
A

#A = max
i

pi



An example

rank-symmetric, rank-unimodal, FP(q) = 3 + 3q



An example

rank-symmetric, rank-unimodal, FP(q) = 3 + 3q not Sperner



The boolean algebra

Bn: subsets of {1, 2, . . . , n}, ordered by inclusion



The boolean algebra

Bn: subsets of {1, 2, . . . , n}, ordered by inclusion

pi =
(
n
i

)
, FBn

(q) = (1 + q)n

rank-symmetric, rank-unimodal



Diagram of B3
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Sperner’s theorem, 1927

Theorem. Bn is Sperner.



Sperner’s theorem, 1927

Theorem. Bn is Sperner.

Emanuel Sperner
9 December 1905 – 31 January 1980



Linear algebra to the rescue!

P = P0 ∪ · · · ∪ Pm : graded poset

QPi : vector space with basis Pi

U : QPi → QPi+1 is order-raising if

U(s) ∈ spanQ{t ∈ Pi+1 : s < t}



Order-matchings

Order matching: µ : Pi → Pi+1: injective and µ(t) > t



Order-matchings

Order matching: µ : Pi → Pi+1: injective and µ(t) > t

P

Pi +1

i

µ



Order-raising and order-matchings

Key Lemma. If U : QPi → QPi+1 is injective and order-raising,
then there exists an order-matching µ : Pi → Pi+1.



Order-raising and order-matchings

Key Lemma. If U : QPi → QPi+1 is injective and order-raising,
then there exists an order-matching µ : Pi → Pi+1.

Proof. Consider the matrix of U with respect to the bases Pi and
Pi+1.



Key lemma proof

Pi+1
︷ ︸︸ ︷

t1 · · · tm · · · tn

Pi







s1
...
sm






6= 0 | ∗
. . . | ∗

6= 0| ∗






det 6= 0



Key lemma proof

Pi+1
︷ ︸︸ ︷

t1 · · · tm · · · tn

Pi







s1
...
sm






6= 0 | ∗
. . . | ∗

6= 0| ∗






det 6= 0

⇒ s1 < t1, . . . , sm < tm �



Minor variant

Similarly if there exists surjective order-raising U : QPi → QPi+1,
then there exists an order-matching µ : Pi+1 → Pi .



A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0
inj.→ QP1

inj.→ · · · inj.→ QPj
surj.→ QPj+1

surj.→ · · · surj.→ QPn,

then P is rank-unimodal and Sperner.



A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0
inj.→ QP1

inj.→ · · · inj.→ QPj
surj.→ QPj+1

surj.→ · · · surj.→ QPn,

then P is rank-unimodal and Sperner.

Proof. “Glue together” the order-matchings.
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Gluing example

j



A chain decomposition

P = C1 ∪ · · · ∪ Cpj (chains)

A = antichain,C = chain ⇒ #(A ∩ C ) ≤ 1

⇒ #A ≤ pj . �



The weak order W (Sn) on Sn

si = (i , i + 1), 1 ≤ i ≤ n − 1

w ∈ Sn, ℓ(w) = #{1 ≤ i < j ≤ n : w(i) > w(j)}
For u, v ∈ Sn define u ≤ v if v = usi1 · · · sik , where ℓ(v) = k+ ℓ(u).



The weak order W (Sn) on Sn

si = (i , i + 1), 1 ≤ i ≤ n − 1

w ∈ Sn, ℓ(w) = #{1 ≤ i < j ≤ n : w(i) > w(j)}
For u, v ∈ Sn define u ≤ v if v = usi1 · · · sik , where ℓ(v) = k+ ℓ(u).

W (Sn) is graded of rank
(
n
2

)
, rank-symmetric, and rank-unimodal,

with

FW (Sn)(q) :=

(n2)∑

k=0

#W (Sn)k q
k

= (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).



An order-raising operator

How to define Uk : QW (Sn)k → QW (Sn)k+1?



An order-raising operator

How to define Uk : QW (Sn)k → QW (Sn)k+1?

Theorem (Macdonald 1991, Fomin-S. 1994). Sw : Schubert
polynomial indexed by w ∈ Sn. Let k = ℓ(w).

k!Sw (1, 1, . . . , 1) =
∑

(a1,...,ak)∈R(w)

a1 · · · ak ,

where R(w) is the set of reduced decompositions of w , i.e.,

w = sa1 · · · sak .



An order-raising operator

How to define Uk : QW (Sn)k → QW (Sn)k+1?

Theorem (Macdonald 1991, Fomin-S. 1994). Sw : Schubert
polynomial indexed by w ∈ Sn. Let k = ℓ(w).

k!Sw (1, 1, . . . , 1) =
∑

(a1,...,ak)∈R(w)

a1 · · · ak ,

where R(w) is the set of reduced decompositions of w , i.e.,

w = sa1 · · · sak .

Example. 321 = s1s2s1 = s2s1s2, and

1 · 2 · 1 + 2 · 1 · 2 = 6 = ℓ(321)!.



An equivalent formulation

Define for ℓ(w) = k (or w ∈ W (Sn)k),

U(w) = Uk(w) =
∑

i : siw>w

i · siw .

If u < v and ℓ(v)− ℓ(u) = r , then

[v ]U r (u) = r !Su−1v (1, 1, . . . , 1).



An equivalent formulation

Define for ℓ(w) = k (or w ∈ W (Sn)k),

U(w) = Uk(w) =
∑

i : siw>w

i · siw .

If u < v and ℓ(v)− ℓ(u) = r , then

[v ]U r (u) = r !Su−1v (1, 1, . . . , 1).

Thus U is a “natural” order-raising operator for W (Sn).



A matrix

U(n, k): matrix of

U(n2)−2k : QW (Sn)k → QW (Sn)(n2)−k

with respect to the bases W (Sn)k and W (Sn)(n2)−k .



A matrix

U(n, k): matrix of

U(n2)−2k : QW (Sn)k → QW (Sn)(n2)−k

with respect to the bases W (Sn)k and W (Sn)(n2)−k .

If u ∈ W (Sn)k and v ∈ W (Sn)(n2)−k
, then

U(n, k)uv =

{
(· · · )Su−1v (1, . . . , 1), u ≤ v

0, u 6≤ v .



A determinant

To show: detU(n, k) 6= 0 (implies W (Sn) is Sperner).
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To show: detU(n, k) 6= 0 (implies W (Sn) is Sperner).

Theorem. Write Wn = W (Sn). Then

detU(n, k) = ±
((

n

2

)

− 2k

)

!
#(Wn)k

k−1∏

i=0

((
n
2

)
− (k + i)

k − i

)#(Wn)i

.
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D. Speyer, and A. Weigandt (2019).



A determinant

To show: detU(n, k) 6= 0 (implies W (Sn) is Sperner).

Theorem. Write Wn = W (Sn). Then

detU(n, k) = ±
((

n

2

)

− 2k

)

!
#(Wn)k

k−1∏

i=0

((
n
2

)
− (k + i)

k − i

)#(Wn)i

.

Conjectured by RS (2018), proved by Z. Hamaker, O. Pechenik,
D. Speyer, and A. Weigandt (2019).

Corollary. W (Sn) is Sperner.



Another approach

Theorem (C. Gaetz and Y. Gao, November 13, 2018). There
exists a “down” operator

D : CW (Sn)k → CW (Sn)k−1

such that U (over C) and D generate sl(2,C).
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Another approach

Theorem (C. Gaetz and Y. Gao, November 13, 2018). There
exists a “down” operator

D : CW (Sn)k → CW (Sn)k−1

such that U (over C) and D generate sl(2,C).

Corollary. For k < 1
2

(
n
2

)
the linear transformation

U(n2)−2k : QW (Sn)k → QW (Sn)(n2)−k

is a bijection.

Corollary. W (Sn) is Sperner.



What is D?

Lehmer code of w = a1 · · · an ∈ Sn: L(w) = (c1, . . . , cn), where

ci = #{j > i : aj < ai}.



What is D?

Lehmer code of w = a1 · · · an ∈ Sn: L(w) = (c1, . . . , cn), where

ci = #{j > i : aj < ai}.

If w ∈ (Wn)k , then Dw :=
∑

v∈(Wn)k−1
γvwv , where

γvw =

{

‖ L(w)− L(v) ‖1, if v < w (strong order)

0, otherwise.



Example of D

v = 231654, w = 251634

ℓ(v) = 5, ℓ(w) = 6, v < w (strong order)

L(v) = (1, 1, 0, 2, 1, 0), L(w) = (1, 3, 0, 2, 0, 0)

L(w)− L(v) = (0, 2, 0, 0,−1, 0)

γvw = 2 + 1 = 3



Combining the two proofs

Gaetz and Gao combined their ideas with those of Hamaker,
Pechenik, Speyer, and Weigandt to find the Smith normal form of
U(n, k) (stronger result than detU(n, k)).
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Is there a “hard Lefschetz” explanation for detU(n, k) 6= 0?
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Is there a “hard Lefschetz” explanation for detU(n, k) 6= 0?

If we replace Sw (1, 1, . . . , 1) with Sw (x1.x2, . . . , xm) or just
Sw (1, q, . . . , q

m−1) (formula conjectured by Macdonald and
proved by Fomin-S.), then the determinant does not factor.

Is there a nice q-analogue?



Open problems

Is there a “hard Lefschetz” explanation for detU(n, k) 6= 0?

If we replace Sw (1, 1, . . . , 1) with Sw (x1.x2, . . . , xm) or just
Sw (1, q, . . . , q

m−1) (formula conjectured by Macdonald and
proved by Fomin-S.), then the determinant does not factor.

Is there a nice q-analogue?

Other types, i.e., the weak order of other Coxeter groups?



The final slide
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