Some Combinatorial Aspects of Cyclotomic Polynomials J

Richard P. Stanley

April 24, 2025



Partitions

partition of n > 0: an integer sequence A = (A1, A2,...)
satisfying \;y > Ao >--->0and Y \;=n

partitions of 5: 5, 41, 32, 311, 221, 2111, 11111

The partition (6,4,4,3,2,2,2,1) has two
parts equal to 4. Equivalently, 4 has multiplicity two as a part.



Partitions

partition of n > 0: an integer sequence A = (A1, A2,...)
satisfying \;y > Ao >--->0and Y \;=n

partitions of 5: 5, 41, 32, 311, 221, 2111, 11111

The partition (6,4,4,3,2,2,2,1) has two
parts equal to 4. Equivalently, 4 has multiplicity two as a part.

f(n): number of partitions of n for which no part appears exactly
once

f(8) = 6: 44, 3311, 2222, 22211, 221111, 11111111



A theorem of MacMahon

Theorem (MacMahon, 1916) The number f(n) of partitions of n
for which no part appears exactly once equals the number of
partitions of n into parts # +1 (mod 6).



A theorem of MacMahon

(MacMahon, 1916) The number f(n) of partitions of n
for which no part appears exactly once equals the number of
partitions of n into parts # +1 (mod 6).

Proof. Z f(n)x" = H(l +xP 3 XA )

n>0 i>1
_ H 1 i
- 1—x!
i>1
. H 1-— Xi + X2I
- 1—x!
i>1
H 1-— X6i
N =1 (1 — x2)(1—x30)
= I a-)t o

JjZ+1mod6)



Why does this work?

®,(x): the nth cyclotomic polynomial

®1(x) =1—x (x —1 is standard)

op)= [T (x—e /) =TJa-xIy ), n>2

1<j<n d|n
ged(j,n)=1



Why does this work?

®,(x): the nth cyclotomic polynomial

®1(x) =1—x (x —1 is standard)

op)= [T (x—ei/m) =TJa - x/y /4, n>2

1<j<n d|n
ged(j,n)=1

k
=[[a-x)7, aecz
i=1
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1. (the main point)




Two points

1. (the main point)

1 _ Pg(x) 1—x°
F(X)'_ﬁ_x_16—x_(1—x2)(1—x3)
2.
> F(nx" = FO)F(C)F() -
n>0

(1 —x5)(1 —x12)(1 —x*®)...

(1-=x2)1—=xM)(1—=x5)---(1—x3)(1 —x5)(1—x9)---

1
(1)1 )1 )1 —xO) (I —B)(T ) -




Cyclotomic sets

A cyclotomic set is a subset S of P = {1,2,...

such that ) Ns ()
F = — j = S\
st) =1 ;X De(x)’

where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.
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where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.
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Cyclotomic sets

A cyclotomic set is a subset S of P = {1,2,...

such that )
Fs(x) := - ij =

1—x
JES

Ns(x)
Ds(x)’

where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.

k
Equivalently, Fs(x) = [ (1 — )", & € Z.
i=1

Think of S as the set of “forbidden part multiplicities.”



An example: S = {1,2,3,5,7,11}

Fs(x) = % —(x+ X2+ + X+ xT X1
¢6(X)¢12(X)¢18(X)
1—x
(1 - x2)(1 - %)
(1 —x*)(1—x%)(1—x9




An example: S = {1,2,3,5,7,11}

1
Fs(x) = m—(x+x2+x3—|—x5+x7—|—xll)

¢6(X)¢12(X)¢18(X)
1—x
(1 —x¥2)(1 — x18)
(1 —x*)(1—x%)(1—x9

Fs(x)Fs(x*)Fs(x%)--- = H(l —x)7

i=0,4,6,8,9,12,16, 18,20, 24,27, 28,30, 32 (mod 36). ()



An example: S = {1,2,3,5,7,11}

Fs(x) = % —(x+ X2+ + X+ xT X1
¢6(X)¢12(X)¢18(X)
1—x
(1 - x2)(1 - %)
(1 —x*)(1—x%)(1—x9

Fs(x)Fs(x*)Fs(x®)--- = [J(1 = x") 7,

i
i=0,4,6,8,9,12,16, 18,20, 24,27, 28,30, 32 (mod 36). (x)
For all n > 0, the number of partitions of n such that

no part occurs exactly 1,2,3,5,7 or 11 times equals the number of
partitions of n into parts i satisfying (*).



A further example

S =1{2,3,4,... } is cyclotomic:

1 2

1—x
1—x




A further example

S =1{2,3,4,... } is cyclotomic:

1 1—x°
—(X2—|—X3—|—~"):1+X:

1—x 1—x

2i

15— =Tl

i>1 i>1




A further example

S =1{2,3,4,... } is cyclotomic:

1—x2

1
—(X2—|—X3—|—~"):1+X:

1—x 1—x

2i

15— =Tl

i>1 i>1

(Euler). The number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.



A property of finite cyclotomic sets

. wide open.



A property of finite cyclotomic sets

: wide open.

Theorem. Assume that S is finite. For 0 < j < d = max(S5),
exactly one of j and d — j belongs to S. Hence #S = (d +1)/2.

Proof sketch. Symmetry or antisymmetry of ®,(x) implies

Ps(x)+x9Ps(1/x) = 1+ x+---+x9, where Ps(x) = in. O
i€S



A property of finite cyclotomic sets

: wide open.

Theorem. Assume that S is finite. For 0 < j < d = max(S5),
exactly one of j and d — j belongs to S. Hence #S = (d +1)/2.

Proof sketch. Symmetry or antisymmetry of ®,(x) implies

Ps(x)+x9Ps(1/x) = 1+ x+---+x9, where Ps(x) = in. O
i€S

Corollary. S finite = max(S) is odd.



Some data

Let d be odd. There are 2(4=1)/2 sets S ¢ P with max(S) = d
such that Ns(x) is symmetric. Let f(d) be the number of these
that are cyclotomic. Then

d

7 9 11 13 15 17 19 21 23 25 27 29
55

[1 3 5
f(d)[|1 2 3 9 10 12 18 22 22 37 39 41 54



Some data

Let d be odd. There are 2(4=1)/2 sets S ¢ P with max(S) = d
such that Ns(x) is symmetric. Let f(d) be the number of these
that are cyclotomic. Then

d

[1 35 7 9 11 13 15 17 19 21 23 25 27 29
fd)[1 2 3 55

9 10 12 18 22 22 37 39 41 54

Can show: f(d) < aexp bv/d (number of polynomials of degree d
that are a product of cyclotomic polynomials), and

F(22K L —1) > k+2



Two infinite families

Write e.g. 125 = {1,2,5}.

1,23,345,4567,56789, ..

1,13,135,1357, ..



An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

Ns(x) =1 - (1-x) 3,

Jjes

where S is a finite subset of P, seem to have lots of zeros & on the
unit circle (|a] = 1).



An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

Ns(x)=1—(1—x))_«,
JES
where S is a finite subset of P, seem to have lots of zeros & on the
unit circle (|a] = 1).

There are 2™ such polynomials when max(S) =2m + 1. For
instance, when n = 33, the average number of zeros on the unit
circle of the 216 = 65536 polynomials is

751153

o 0.69464 - - .
1081344 _ 00940



An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form
Ns(x)=1—(1—x))_«,
JES

where S is a finite subset of P, seem to have lots of zeros & on the
unit circle (|a] = 1).

There are 2™ such polynomials when max(S) =2m + 1. For
instance, when n = 33, the average number of zeros on the unit

circle of the 216 = 65536 polynomials is
751153
————— = 0.69464 - - - .
1081344 0.6946

No reason known.



Cleanness

Any f(x) € Z[[x]] with f(0) =1 can be uniquely written
(formally) as

F)=J[@-x")"", a,€Z

n>1



Cleanness

Any f(x) € Z[[x]] with f(0) =1 can be uniquely written
(formally) as

F)=J[@-x")"", a,€Z

n>1

Let S be a subset of P and

F(x) = lix ) X

Jjes

S is clean if

FOFGA)FOE) - = [T —xm),

n>1

where each a, = 0,1. (Get a “clean” partition identity—no
weighted or colored parts.)



An example

Not every cyclotomic set S is clean, e.g., S ={1,5,7,8,9,11}, for
which
FOOF(C)F(x%)--- =

(1 —x%)(1 — x?®)(1 — x¥)(1 - x5®)-..

(1 —x2)(1—x3)(1 —x*)(1 —x%)(1 —x8)(1 — x9)(1 — x10)(1 — x12)...



An example

Not every cyclotomic set S is clean, e.g., S ={1,5,7,8,9,11}, for
which
FOOF(C)F(x%)--- =

(1 —x%)(1 — x?®)(1 — x¥)(1 - x5®)-..

(1 —x2)(1—x3)(1 —x*)(1 —x%)(1 —x8)(1 — x9)(1 — x10)(1 — x12)...

No nice theory of clean sets.



Numerical semigroups

Definition. A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.
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A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.

(b) Every submonoid of N is finitely-generated.



Numerical semigroups

A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.

(b) Every submonoid of N is finitely-generated.

Define Ap(x) = in.
ieM



Numerical semigroups

A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.

(b) Every submonoid of N is finitely-generated.

Define Ap(x Z x'.
ieM

Note Aum(x) Z x!,

ieEN—-M



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.

Example. M = (a, b), where a,b > 2, gcd(a, b) = 1. Then
1— Xab
(1 —x2)(1 — xb)’

AM(X) =

so M is a cyclotomic semigroup (and clean).



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.

Example. M = (a, b), where a,b > 2, gcd(a, b) = 1. Then

1_Xab

Al = Ty T by

so M is a cyclotomic semigroup (and clean).

Example. (a) M = (4,6,7) = N —{1,2,3,5,9} is cyclotomic.
(b) M =(5,6,7) =N —{1,2,3,4,8,9} is not cyclotomic.



Consequence of (a, b) being cyclotomic and clean

Theorem. Let a,b > 2, gcd(a, b) = 1. Let M = (a, b). Then for
all n > 0, the following numbers are equal:

» the number of partitions of n all of whose part multiplicities
belong to M

» the number of partitions of n into parts divisible by a or b (or
both)



Consequence of (a, b) being cyclotomic and clean

Theorem. Let a,b > 2, gcd(a, b) = 1. Let M = (a, b). Then for
all n > 0, the following numbers are equal:

» the number of partitions of n all of whose part multiplicities
belong to M

» the number of partitions of n into parts divisible by a or b (or
both)

MacMahon identity: a=2,b=3



Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup
M is .
KM =K[z' : i e M].

Let M = (a1,...,ar). K[M] is a complete
intersection if all the relations among the generators z%, ... z%
are consequences of r — 1 of them (the minimum possible).
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Let M = (a1,...,ar). K[M] is a complete
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are consequences of r — 1 of them (the minimum possible).

By elementary commutative algebra, if K[M] is a complete
intersection, then M is cyclotomic.



Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup
M is .
KM =K[z' : i e M].

Let M = (a1,...,ar). K[M] is a complete
intersection if all the relations among the generators z%, ... z%
are consequences of r — 1 of them (the minimum possible).

By elementary commutative algebra, if K[M] is a complete
intersection, then M is cyclotomic.

Converse is (main open problem on cyclotomic numerical
semigroups).



An example

Example. M = (4,6,7) = N—{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:

@ =p ?b=c? a =c* b =c°....



An example
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An example
M= (4,6,7) =N —{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:
B =b,a°b=c? a'=c* b =c" .. ..

All are consequences of the first two, so K[M] is a complete
intersection. E.g.,

ct= (b =t ="l =4

The relation a® = b? has degree 3-4=6-2 = 12.
The relation a®b = ¢ has degree 2 - 4 +6=2-7 =14

(1 — x12)(1 — x)

= Aum(x) = (1 —x*)(1—x5)(1—x7)’




A nonexample

M = (4,13,23). Generators of K[M] are a = z*, b= z!3, and

c=z%.
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A nonexample

M = (4,13,23). Generators of K[M] are a = z* b= z'3, and

c=z%.

- a% = bc, b = a*c, ¢ =a°h? sonot a
complete intersection.
Multiply ¢? = a°b? by b: c?b = a®b3. Substitute a*c for

b3: ¢?b = a%c. Divide by c: bc = a° (first relation). So why not
just two relations?



A nonexample

M = (4,13,23). Generators of K[M] are a = z*, b= z!3, and

c=z%.

» a2 = be, b3 = a*c, ¢ = a®b?, so not a

complete intersection.

Multiply ¢? = a°b? by b: c?b = a®b3. Substitute a*c for
b3: ¢?b = a%c. Divide by c: bc = a° (first relation). So why not
just two relations?

Answer: not allowed to divide (not a ring operation).



A theorem of Herzog

Theorem (H. Herzog, 1969) Let M = (a, b, ¢). The following
conditions are equivalent.

» K|[M] is a complete intersection.
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A theorem of Herzog

(H. Herzog, 1969) Let M = (a, b, c). The following
conditions are equivalent.

» K[M] is a complete intersection.

» M is a cyclotomic semigroup.

> If M=N-5 then1—(1—-x)> s xJ is symmetric
(palindromic).

Thus the main open problem on cyclotomic numerical semigroups
is true for semigroups with at most three generators.



A more general framework

a partition is determined by the multiplicity of each
part, and these multiplicities are independent. Equivalently, define
AUp by

mi(AU p) = mi(A) + mj(p),

where m; denotes the multiplicity of the part /. E.g.,
(6,6,4,1,1) U (6,5,4,1) = (6,6,6,5,4,4,1,1,1).

Then U makes the set of all partitions of all n > 0 into a free
commutative monoid with unique basis {(1),(2),(3),... }.
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where m; denotes the multiplicity of the part /. E.g.,
(6,6,4,1,1) U (6,5,4,1) = (6,6,6,5,4,4,1,1,1).

Then U makes the set of all partitions of all n > 0 into a free
commutative monoid with unique basis {(1),(2),(3),... }.

Further details omitted.



A more general framework

a partition is determined by the multiplicity of each
part, and these multiplicities are independent. Equivalently, define
AUp by

mi(AU p) = mi(A) + mj(p),

where m; denotes the multiplicity of the part /. E.g.,
(6,6,4,1,1) U (6,5,4,1) = (6,6,6,5,4,4,1,1,1).

Then U makes the set of all partitions of all n > 0 into a free
commutative monoid with unique basis {(1),(2),(3),... }.

Further details omitted.

Where else can we find such monoids?
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Fix a prime power q.

B(n): number of monic irreducible polynomials of degree n over
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Polynomials over finite fields
Fix a prime power q.

B(n): number of monic irreducible polynomials of degree n over
Fq.

Z w(d)g™ 9 (irrelevant)

There are ¢" monic polynomlals of degree n over F;. Every such
polynomial is uniquely (up to order of factors) a product of monic
irreducible polynomials. Hence

Zq"x": —H (1—x™m —Bm).

n>0 m>1




Polynomials over finite fields
Fix a prime power q.

B(n): number of monic irreducible polynomials of degree n over
Fq.

Z w(d)g™ 9 (irrelevant)

There are ¢" monic polynomlals of degree n over F;. Every such
polynomial is uniquely (up to order of factors) a product of monic
irreducible polynomials. Hence

Zq"x": —H (1—x™m —Bm).

n>0 m>1

(cyclomatic identity)



Powerful polynomials

Example. Let f(n) be the number of monic polynomials of degree
n over g such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus



Powerful polynomials

Let f(n) be the number of monic polynomials of degree
n over g such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus

S fxm = T+ 3T )P

n>0 m>1
1— X6m B(m)
- 1 (i)
1— gx®

(1—gx?)(1 - gx3)

T+x+x2+x3  x(1+x+x3)

1—gx? 1—gx3
= f(n) = ql"/? 4 gln/2-1 _ gln=-1)/3],



Generalization.

Let S be a cyclotomic subset of P, so

1 : 1—x\)%
__ZX/:H( )

_ -\ p:?
1=x i€s [T —x)"

where the products are finite. Let f(n) be the number of monic
polynomials of degree n over I such that no irreducible factor has
multiplicity m € S. Then

o I @y
2 = L= q



Generalization.

Let S be a cyclotomic subset of P, so

\ar
oy - dE
1=x i€S H(I_XJ)J

where the products are finite. Let f(n) be the number of monic

polynomials of degree n over I such that no irreducible factor has
multiplicity m € S. Then

o I @y
R i

Can convert to a partial fraction in g and find an explicit (though
in general very lengthy) formula for f(n).



An example

S = {1,2,3,5,7,11}
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An example

S = {1,2,3,5,7,11}

no (1— gx1?)(1 — gx'8)
2 = a1 ed) - o)

¢2¢4¢8¢7¢14 ¢3¢9 X8

®s5(1—gx*)  d5(1—gx?)
¢2¢3¢4¢%¢12 X2
1—gxb

)

where ®; = ®;(x).



Yet another example

Let S ={2,3,4,...}. Recall

1 : 1-x°
1—x Z x X 1—x
ieS
f(n): number of monic polynomials of degree n over
Fg. Then
1— 2
Z f(n)x" = 9
1—gx
n>0

= 14+gx+) (g—1)g" X"
n>2

= f(n)=(q—1)¢" % n>2 (well-known),



Yet another example

Let S ={2,3,4,...}. Recall

1 i 1-— X2
_ —-1 — .
1—x Z X X 1—x
ieS
f(n): number of monic polynomials of degree n over
Fg. Then
1— 2
St = =&
1—gx
n>0

= 14+gx+) (g—1)g" X"
n>2

= f(n)=(q—1)¢" % n>2 (well-known),
a kind of analogue (though not a g-analogue in the usual sense) of

Euler's result on partitions of n into distinct parts and into odd
parts.



Factorization of integers

Most familiar free commutative monoid: P = {1,2,3,... } under
multiplication.



Factorization of integers

Most familiar free commutative monoid: P = {1,2,3,... } under
multiplication.

For functions f(n) involving factorization of integers into primes,
often convenient to use Dirichlet series ) ., f(n)n™*. In
particular,

C(s) = > n°

n>1




Powerful numbers

A positive integer is powerful if p|n = p?|n when p is prime.

F(s) := Z n—*®

n>1
n powerful

— H(1+P_2S+P_3S+P_4S+“‘)
p

- 1l (1 —lp‘s N p_s>

p

1— p—6s

- la==a=

¢(25)¢(3s)
T C(6s) (Golomb, 1970)



Insignificant corollary

7wt 70 691712
<) 90’ <(6) 045’ ¢(12) 638512875

1 ¢(4)¢(6)
- ; ? ¢(12)
n powerful

15015
138272

1.100823 - - -

Q



A general result

Let S be a finite cyclotomic subset of P, so

— x)¥
1 —x)bi

(finite products).

Then [1¢(bis)

where n ranges over all positive integers such that if m € S, then
no prime p divides n with multiplicity m.
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