Ranks of My Students 1977–2004

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41									

Some Problems I Couldn't Solve

- serious effort
- still open
- may be tractable
- easily explained
- inspired by G.-C. Rota, Ten mathematics problems I will never solve, Oaxaca, 1997

Prehistory: Circulant Hadamard matrices

A circulant Hadamard matrix of order n is an $n \times n$ matrix of ± 1 's such that any two distinct rows are orthogonal, and each row is a cyclic shift one unit right of the previous row (circulant matrix).

$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$$

Conjecture (Ryser). If n is the order of a circulant Hadamard matrix, then n = 4.

If A is a circulant Hadamard matrix with first row (a_0, \ldots, a_{n-1}) , compute det(A) in two ways to get:

$$n^{n/2} = \prod_{k=0}^{n-1} (a_0 + a_1 \zeta^k + \dots + a_{n-1} \zeta^{(n-1)k}),$$

where $\zeta = e^{2\pi i/n}$.

Theorem (Turyn, 1965). There does not exist a circulant Hadamard matrix of order 8m (and various 4(2k + 1)).

RS (~1968): There does not exist a circulant Hadamard matrix of order $2^j > 4$.

The Poset Conjecture (or Neggers-Stanley conjecture)

P = labelled poset

 $\mathcal{L}(\mathbf{P})$: set of linear extensions of P

w	$\operatorname{des}(w)$
3 5 124	1
3 5 1 4 2	2
3 1 5 24	2
3 14 5 2	2
53 124	2
3 1 54 2	3
53 1 4 2	3

If $\pi = a_1 a_2 \dots a_n \in \mathfrak{S}_n$, then define $\operatorname{des}(\pi) = \#\{i : a_i > a_{i+1}\},$

the number of **descents** of π .

$$\mathbf{A}_P(x) = \sum_{\pi \in \mathcal{L}(P)} x^{\operatorname{des}(\pi)},$$

the *P*-Eulerian polynomial.

For above example,

$$A_P(x) = x + 4x^2 + 2x^3.$$

Conjecture. $A_P(x)$ has only real zeros.

Neggers (1978) for naturally labelled posets; RS (1986) for any labeling.

Sample result (Wagner). If conjecture is true for P and Q, then also true for P+Q(compatibly labelled). Let \boldsymbol{L} be a finite distributive lattice, so L = J(P) for some finite poset P. Let

 $c_i = \# i$ -element chains of L

Proposition. If P is naturally labelled, then $A_P(x)$ has only real zeros if and only if the **chain polynomial** $\sum_i c_i x^i$ has only real zeros.

Conjecture. The chain polynomial of a modular lattice has only real zeros.

Possible hint: M. Chudnovsky and P. Seymour, The roots of the stable set polynomial of a clawfree graph.

Gorenstein Hilbert functions

Let $R = R_0 \oplus R_1 \oplus \cdots \oplus R_s$ be an artinian graded Gorenstein algebra over the field $K = R_0$, generated by R_1 , with $R_s \neq$ 0. Define

$$\boldsymbol{h_i} = \dim_K R_i,$$

the **Hilbert function** of R. Thus $h_0 = 1$.

Well-known (Macaulay): $h_i = h_{s-i}$.

What more can be said about (h_0, h_1, \ldots, h_s) (Gorenstein sequence)?

Is a complete characterization possible?

If s = 4 and $h_1 = n$, how small can h_2 be?

$$(1, n, h_2, n, 1)$$

Denote this minimum by f(n).

Fact:

$$\frac{1}{2}6^{2/3} \le \liminf_{n \to \infty} f(n)n^{-2/3}$$
$$\le \limsup_{n \to \infty} f(n)n^{-2/3} \le 6^{2/3}$$

Linear algebra reformulation:

Fix $s \ge 0$. Let

 $M_i = \{ \text{monomials of degree } i \text{ in } x_1, \ldots, x_m \}.$

Fix a nonzero $\boldsymbol{\sigma} : M_s \to K$. For $0 \leq j \leq s$, let $\boldsymbol{A^{(j)}}$ be the matrix with rows indexed by M_j and columns by M_{s-j} , defined by

$$\boldsymbol{A_{uv}^{(j)}} = \sigma(uv).$$

Let $\boldsymbol{h_j} = \operatorname{rank} A^{(j)}$.

Fact:

Gorenstein sequence same as (h_0, h_1, \ldots, h_s) .

Partitions of simplicial complexes

Let Γ be a finite (abstract) simplicial complex, i.e., an order ideal of a boolean algebra B_n .

 \exists partition π of $c\Gamma$ into 2-element intervals [F, F'] such that

$$\{F : [F, F'] \in c\Gamma\}$$

is a subcomplex (namely, Γ) of $c\Gamma$.

Suppose Δ is only **acyclic** (vanishing reduced homology).

Theorem (1993). If Δ is acyclic, then there is a partition π of Δ into 2-element intervals [F, F'] such that

 $\{F : [F, F'] \in \Delta\}$

is a subcomplex of Γ .

Proof uses Marriage Theorem and exterior algebra.

 f_i : number of *i*-dimensional faces of Δ (f_0, f_1, \ldots) : *f***-vector** of Δ

Corollary (Kalai). *f*-vectors of acyclic Δ coincide with *f*-vectors of cones.

Nice generalization by Duval for **any** Δ (partition into 1-element and 2-element intervals).

Many open questions remain.

Sample:

Obvious fact: For any Γ , there is a partition π of $cc\Gamma$ into intervals $[F, F'] \cong B_2$ such that

$$\{F : [F, F'] \in \pi\}$$

is a subcomplex (namely, Γ) of $cc\Gamma$.

If v is a vertex of Δ , define the **link** of v by

 $\operatorname{lk}(v) = \{ F \in \Delta : v \notin F, F \cup v \in \Delta \}.$

Conjecture. If Δ and lk(v) are acyclic for every vertex v of Δ (i.e., Δ is **doubly acyclic**), then there is a partition π of Δ into intervals $[F, F'] \cong B_2$ such that

$$\{F : [F, F'] \in \pi\}$$

is a subcomplex of Δ .

Perhaps a "generalized Marriage Theorem" is involved.

Above conjecture $\Rightarrow f$ -vectors of doubly acyclic Δ coincide with f-vectors of double cones $cc\Gamma$ (proved by Kalai using algebraic shifting).