Ranks of My Students 1977-2004
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$\begin{array}{llllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$
$\begin{array}{llllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$
$\begin{array}{llllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ 41

Some Problems I Couldn't Solve

- serious effort
- still open
- may be tractable
- easily explained
- inspired by G.-C. Rota, Ten mathematics problems I will never solve, Oaxaca, 1997

Prehistory: Circulant Hadamard ma-

 tricesA circulant Hadamard matrix of order n is an $n \times n$ matrix of ± 1 's such that any two distinct rows are orthogonal, and each row is a cyclic shift one unit right of the previous row (circulant matrix).

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{array}\right]
$$

Conjecture (Ryser). If n is the order of a circulant Hadamard matrix, then $n=4$.

If A is a circulant Hadamard matrix with first row $\left(a_{0}, \ldots, a_{n-1}\right)$, compute $\operatorname{det}(A)$ in two ways to get:

$$
n^{n / 2}=\prod_{k=0}^{n-1}\left(a_{0}+a_{1} \zeta^{k}+\cdots+a_{n-1} \zeta^{(n-1) k}\right)
$$

where $\zeta=e^{2 \pi i / n}$.
Theorem (Turyn, 1965). There does not exist a circulant Hadamard matrix of order $8 m$ (and various $4(2 k+1)$).

RS (~ 1968): There does not exist a circulant Hadamard matrix of order $2^{j}>4$.

The Poset Conjecture (or NeggersStanley conjecture)
$\boldsymbol{P}=$ labelled poset

$\mathcal{L}(\boldsymbol{P})$: set of linear extensions of P

w	$\operatorname{des}(w)$
35124	1
35142	2
31524	2
31452	2
53124	2
31542	3
53142	3

If $\pi=a_{1} a_{2} \ldots a_{n} \in \mathfrak{S}_{n}$, then define

$$
\operatorname{des}(\pi)=\#\left\{i: a_{i}>a_{i+1}\right\}
$$

the number of descents of π.

$$
\boldsymbol{A}_{P}(x)=\sum_{\pi \in \mathcal{L}(P)} x^{\operatorname{des}(\pi)}
$$

the \boldsymbol{P}-Eulerian polynomial.
For above example,

$$
A_{P}(x)=x+4 x^{2}+2 x^{3}
$$

Conjecture. $A_{P}(x)$ has only real zeros.
Neggers (1978) for naturally labelled posets;
RS (1986) for any labeling.
Sample result (Wagner). If conjecture is true for P and Q, then also true for $P+Q$ (compatibly labelled).

Let \boldsymbol{L} be a finite distributive lattice, so $L=J(P)$ for some finite poset P. Let $c_{i}=\# i$-element chains of L

Proposition. If P is naturally labelled, then $A_{P}(x)$ has only real zeros if and only if the chain polynomial $\sum_{i} c_{i} x^{i}$ has only real zeros.

Conjecture. The chain polynomial of a modular lattice has only real zeros.

Possible hint: M. Chudnovsky and P. Seymour, The roots of the stable set polynomial of a clawfree graph.

Gorenstein Hilbert functions

Let $R=R_{0} \oplus R_{1} \oplus \cdots \oplus R_{s}$ be an artinian graded Gorenstein algebra over the field $K=R_{0}$, generated by R_{1}, with $R_{s} \neq$ 0 . Define

$$
\boldsymbol{h}_{\boldsymbol{i}}=\operatorname{dim}_{K} R_{i},
$$

the Hilbert function of R. Thus $h_{0}=1$.
Well-known (Macaulay): $h_{i}=h_{s-i}$.

What more can be said about $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ (Gorenstein sequence)?

Is a complete characterization possible?
If $s=4$ and $h_{1}=n$, how small can h_{2} be?

$$
\left(1, n, h_{2}, n, 1\right)
$$

Denote this minimum by $f(n)$.

Fact:

$$
\begin{aligned}
\frac{1}{2} 6^{2 / 3} & \leq \liminf _{n \rightarrow \infty} f(n) n^{-2 / 3} \\
& \leq \limsup _{n \rightarrow \infty} f(n) n^{-2 / 3} \leq 6^{2 / 3}
\end{aligned}
$$

Linear algebra reformulation:

Fix $s \geq 0$. Let
$\boldsymbol{M}_{\boldsymbol{i}}=\left\{\right.$ monomials of degree i in $\left.x_{1}, \ldots, x_{m}\right\}$.
Fix a nonzero $\sigma: M_{s} \rightarrow K$. For $0 \leq j \leq s$, let $\boldsymbol{A}^{(j)}$ be the matrix with rows indexed by M_{j} and columns by M_{s-j}, defined by

$$
A_{u v}^{(j)}=\sigma(u v) .
$$

Let $\boldsymbol{h}_{\boldsymbol{j}}=\operatorname{rank} A^{(j)}$.

Fact:

Gorenstein sequence same as $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$.

Partitions of simplicial complexes

Let $\boldsymbol{\Gamma}$ be a finite (abstract) simplicial complex, i.e., an order ideal of a boolean algebra B_{n}.
$c \Gamma$: cone over Γ

\exists partition $\boldsymbol{\pi}$ of $c \Gamma$ into 2-element intervals [$\left.F, F^{\prime}\right]$ such that

$$
\left\{F:\left[F, F^{\prime}\right] \in c \Gamma\right\}
$$

is a subcomplex (namely, Γ) of $c \Gamma$.

Suppose Δ is only acyclic (vanishing reduced homology).

Theorem (1993). If Δ is acyclic, then there is a partition π of Δ into 2-element intervals $\left[F, F^{\prime}\right]$ such that

$$
\left\{F:\left[F, F^{\prime}\right] \in \Delta\right\}
$$

is a subcomplex of Γ.
Proof uses Marriage Theorem and exterior algebra.
f_{i} : number of i-dimensional faces of Δ
$\left(f_{0}, f_{1}, \ldots\right): f$-vector of Δ
Corollary (Kalai). f-vectors of acyclic Δ coincide with f-vectors of cones.

Nice generalization by Duval for any Δ (partition into 1-element and 2-element intervals).

Many open questions remain.

Sample:

Obvious fact: For any Γ, there is a partition π of $c c \Gamma$ into intervals $\left[F, F^{\prime}\right] \cong B_{2}$ such that

$$
\left\{F:\left[F, F^{\prime}\right] \in \pi\right\}
$$

is a subcomplex (namely, Γ) of $c c \Gamma$.

If v is a vertex of Δ, define the link of v by

$$
\operatorname{lk}(v)=\{F \in \Delta: v \notin F, F \cup v \in \Delta\}
$$

Δ

$\mathbf{l k}(\boldsymbol{v})$

Conjecture. If Δ and $\operatorname{lk}(v)$ are acyclic for every vertex v of Δ (i.e., Δ is doubly acyclic), then there is a partition π of Δ into intervals $\left[F, F^{\prime}\right] \cong B_{2}$ such that

$$
\left\{F:\left[F, F^{\prime}\right] \in \pi\right\}
$$

is a subcomplex of Δ.

Perhaps a "generalized Marriage Theorem" is involved.

Above conjecture $\Rightarrow f$-vectors of doubly acyclic Δ coincide with f-vectors of double cones $c c \Gamma$ (proved by Kalai using algebraic shifting).

