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Symmetric functions

K: a field of characteristic 0

Ak = Nk(x): ring of symmetric functions over K in the variables
x = (x1,x2,...)

bases m) (monomial symmetric functions), py (power sums), hy
(complete), ey (elementary), sy (Schur): knowledge assumed



Sprout sequences and their seeds

Definition. A sequence R = (Ry = 1, Ry, Rz, ...) of symmetric
functions is a sprout sequence if there exists a power series

F(t) =) ajt/ e K[[t]], a0 =1
j20

such that

F(t) = H F(xit) = Z R,t"

n>0

Well-defined formally, and R, is homogeneous of degree n



Sprout sequences and their seeds

A sequence R = (Ry = 1, Ry, Ry, ...) of symmetric
functions is a sprout sequence if there exists a power series

F(t) =) ajt/ e K[[t]], a0 =1
j20

such that

F(t) = H F(xit) = Z R,t"

n>0

Well-defined formally, and R, is homogeneous of degree n
F(t) is the seed of the sprout sequence ‘.

We also call Ry, Ry, ... sprout symmetric functions (with
respect to the seed F(t)). Note Ry = 1,R; = a1 )_ x; = aip1.



Simple examples

1. F(t) =e€". Then

F(t) = F(at)F(xet)--- = exp(x1t+x2t+---
= exp(p1it) ZP1
n>0
n n hn
whence R, = PL_ & _ —1 (p, e, h, s-positive).
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Simple examples

1. F(t) =e€". Then

F(t) = F(at)F(at)--- = exp(x1t+x2t_|_ )
= exp(p1t) Zpl
n>0
n n hn
whence R, = PL_ & _ _1 (p, e, h, s-positive).
n! n! n!

2. F(t) =1+1t,s0 F(t) = (L +xat)(L + xot) -+ =3 ¢ ent”
whence R, = e, = s1n (e, s-positive, but not h-positive).

3. F(t)=1/(1—1t), so
F(t)=1/(1 —xit)(1 — xot) -~ = 3 5 hnt", whence
R, = h, = s, (h, s-positive, but not e-positive).

4. F(t)=1—tor et or e L or >0 Cit/, etc.: not s-positive.
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Five conditions

Let R=(Ry=1,R1,Ry,...) be a sequence of
symmetric functions. The following five conditions are equivalent.

(a) R is a sprout sequence.
(b) There exist elements by, by, --- € K such that

Iogz R,t" = Z b,,p,,t—r:.

n>0 n>1
(c) There exist elements ag = 1, a1, az,--- € K such that for all
n>1,
Rn = Z a>\la)\2 s My,
AFn
(d) There exist elements by = 1, by, by, ... in K such that for all

n>1,

R,, = z:z;lb)\llb\2 P
AbFn



Five conditions (cont.)

(e) (omitted)



Five conditions (cont.)

(e) (omitted)

Moreover, R has seed F(t) =3 a;t/ and

log F(t Zb

j>1



Five conditions (cont.)

(e) (omitted)

Moreover, R has seed F(t) =3 a;t/ and

log F(t Zb

j>1

Proofs are straighforward.
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Recall w: Ak — Ak is the linear transformation defined by
w(hy) = ex. Then w is a K-algebra automorphism, w? = 1,
w(sy) = sy, and w(pn) = (—1)"1p,.
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The involution w

Recall w: Ak — Ak is the linear transformation defined by
w(hy) = ex. Then w is a K-algebra automorphism, w? = 1,
w(sy) = sy, and w(p,) = (—1)""1p,.

Let R = (1,R1, Ry, ...) be a sprout sequence with seed
F(t). Then (1,wRy,wRy,...) is a sprout sequence with seed

1/F(—t).
Proof. Straightforward. (J

F(t)y=1+tand R, =e, Then 1/F(—t)=1/(1—1t)
and R, = h,.
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linear combination of Schur functions?
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(a) Each R, is Schur positive.
(b) We can write

1+ agt
F(t)y=e"]]
k>1

where v > 0 and the ay's and By 's are nonnegative real
numbers such that (ax + Bk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)



Schur positivity

Let K = R. When is each R, Schur positive, i.e., a nonnegative
linear combination of Schur functions?

Let R = (1, Ry, Ra,...) be a sprout sequence over R
with seed F(t) =) ajt/. The following conditions are equivalent.

(a) Each R, is Schur positive.
(b) We can write

1+ agt
F(t)y=e"]]
k>1

where v > 0 and the ay's and By 's are nonnegative real
numbers such that (ax + Bk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)

(c) The matrix [aj_j]i j>0 (where a, =0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.



Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.
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The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.

(@) < (o):

Let H = [hj_;]. Then every minor of H is either 0 or a
skew-Schur function (by the Jacobi-Trudi identity). Every Schur
function appears as a minor, and every skew Schur function is
Schur positive.



Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.

(@) < (o):

Let H = [hj_;]. Then every minor of H is either 0 or a
skew-Schur function (by the Jacobi-Trudi identity). Every Schur
function appears as a minor, and every skew Schur function is
Schur positive.

Consider the homomorphism ¢: Ax — K defined by
o(hp) = ap.



A corollary

Let d > 1. If the seed F(t) = Y_ a;t’ generates a Schur
positive sprout sequence R, then F4(t) := > aqit' generates a
Schur positive sprout sequence Ry.



A corollary

Let d > 1. If the seed F(t) = Y_ a;t’ generates a Schur
positive sprout sequence R, then F4(t) := > aqit' generates a
Schur positive sprout sequence Ry.

Proof. Let My = [ag(j—j)lij>0. Every minor of M; is nonnegative
since R is Schur positive. But My is a submatrix of My, so every
minor of My is Schur positive. Hence Ry is Schur positive. [



e and h-positivity

e-positivity = Schur positivity and h-positivity = Schur
positivity.



e and h-positivity

e-positivity = Schur positivity and h-positivity = Schur
positivity.

(a) Ifall B; =0, then each R, is e-positive.
(b) If all j =0, then each R, is h-positive.
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Easy proof
(repeated).

(a) Ifall Bj =0, then each R, is e-positive.
(b) If all oj =0, then each R, is h-positive.

Proof. (a) Assume all 5; = 0. Then

> Rat" = [ [+ ayxit)
i

jz1

= e'yeltHH(]. + OéjX,'t)
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Jj n>0

(b) is completely analogous. [



Easy proof
(repeated).
(a) Ifall Bj =0, then each R, is e-positive.
(b) If all oj =0, then each R, is h-positive.
Proof. (a) Assume all 5; = 0. Then

> Rat" = [ [+ ayxit)
i

jz1

= e'yeltHH(]. + OéjX,'t)
Jj i
= e”eltH Zaj’-’e,,t” , etc.

Jj n>0

(b) is completely analogous. [
The converse holds. (True for e 7' F(t) € R(t).)



INTERMISSION




The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

1 4k(4k _ 1\B my
o) =TT (Semaen)

k=1

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.



The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

— o TTL (M- DB
P(A) = (2n)! kH:lmk!< (2k)(2k)! > ’

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.

Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).



Euler numbers E,,

Not hard to see that

o(N) €Z, Y |6\ = Ezn,

AFn

an Euler number or secant number, defined by

secx = Z E2,, 2n)|

n>0

. Epp is equal to the number of alternating
permutations ajay - - ax, € Gy, i€,

ar > axy<az >ag<--->agy.



Euler numbers E,,

Not hard to see that

o(N) €Z, Y |6\ = Ezn,

AFn

an Euler number or secant number, defined by

secx = Z E2,, 2n)|

n>0

. Epp is equal to the number of alternating
permutations ajay - - ax, € Gy, i€,

ar > axy<az >ag<--->agy.

what does |¢())| count?
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s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.



Record partitions

s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in w. (Always 1 € rec(w).)

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)



Record partitions

s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in w. (Always 1 € rec(w).)

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)

w = 772757478737 10767975 € Qll()v W= 7757871079;

I’1:1, I’2:3, I’3:4, I’2—I’1:2, I’3—I’2:1,6—I’3:2,
rp(W) = (2,2,1)



Combinatorial interpretation of ¢(\)

Theorem. |p(N)| = #{w € Az, : rp(W) = A}



Combinatorial interpretation of ¢(\)

Theorem. |p(N)| = #{w € Az, : rp(W) = A}

Recall
n k k my
1 (454" —1)By
N=0@n) || — | —m 5
9(3) = (2n) Hmk! < (2k)(2k)! ’
where A = (1™ ... n™) > im;. To get combinatorics into the

picture, use

[B2x|
2k

Remainder of proof is a bijective argument.

Epi_1 = 4K(4k — 1)



A symmetric function

The general form ¢(A\) = (2n)! ] mik!fkmk suggests defining a
symmetric function in the variables x = (x1,xp,...):

An=An(x) = [6(N)] - pa,

AFn

where p) is a power sum symmetric function.



Examples.

21 Ay
41 Ay
6! A3
81, As

4!A22

P1
3p; +2p2

15p; + 30p2p1 + 16p3
105p1% + 420p,p? + 140p3 + 448p3p1 + 272ps

w  w  rp(w)
2143 24 11
3142 34 11
3241 34 11
4132 43 2
4231 43 2



A sprout sequence

Theorem. Y~ Apt" =[], sec(yv/xit), i.e., A:= (Ao, A1,...) isa
sprout sequence with seed sec/t.



A sprout sequence

Theorem. Y~ Apt" =[], sec(yv/xit), i.e., A:= (Ao, A1,...) isa
sprout sequence with seed sec/t.

Proof. Manipulatorics (A. Garsia). O



h-positivity

Theorem. A,(x) is h-positive.



h-positivity
. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 — 7r2(24k7tz—1)2) implies:

k>1

F(t) = sec(\v/t)



h-positivity

. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 - 7r2(24k7t2—1)2) implies:

k>1

F(t) = sec(Vt) B
- (=)

jz1

This has the desired form e?* [](1 — 8;t)~! (with v =0,
Bj = 4/7%(2j — 1)?) for h-positivity. [



h-positivity

. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 - 7r2(24k7t2—1)2> implies:

k>1

F(t) = sec(V7) B
- (=)

jz1

This has the desired form e?* [](1 — 8;t)~! (with v =0,
Bj = 4/7%(2j — 1)?) for h-positivity. [

Very noncombinatorial formula for the coefficients!



Some data

20A; = hy
41A; = h? + 4hy
6!A3 = h3 + 12hyhy + 48h3
81A; = hj + 24hyh? + 256h3hy + 16h3 + 1088h,
101As = h3 4 40hyh3 4 800h3h? + 80h3 hy + 9280hs hy
+ 640h3 hy + 39680hs.
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Sum of coefficients is E>,. What are the
coefficients themselves?



Some data

20A; = hy
41A; = h? + 4hy
6!A3 = h3 + 12hyhy + 48h3
81A; = hj + 24hyh? + 256h3hy + 16h3 + 1088h,
101As = h3 4 40hyh3 4 800h3h? + 80h3 hy + 9280hs hy
+ 640h3hy + 39680hs.

Sum of coefficients is E>,. What are the
coefficients themselves?

Coefficient of h, is nEx,—1, the number of “cyclically
alternating” permutations in Goj,.



Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {vi,v2,...,vp}

X6 = Xg(x) = Z Xie(vi) X(v2) " X(vp)
k: V(G)—-P
uveE(G)=r(u)#k(v)



Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {vi,v2,...,vp}

X6 = Xg(x) := Z Xie(vi) X(v2) " X (vp)
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uveE(G)=r(u)#k(v)
XVP(X) = (X1 + X2 —l-‘”)p = ef
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Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {v1, v, ...

Xg = XG(X) = Z Xi(vi) Xr(vo) ~ " "
k: V(G)—-P
uveE(G)=r(u)#k(v)
XVP(X) = (X1 + X2 —l-‘”)p = ef

Xk,(x) = plep

XG(].,].,...,].,0,0,...) = X(.;(m),
N——
m1's

the chromatic polynomial of G.



Interval orders

T ={[a1, b1],---,[an, bn]}, a collection of closed intervals in R, so
a; < b;.

Gz: graph with vertex set Z, with [a;, b;] adjacent to [a;, bj] if

[ai, bi] N [aj, bj] # 0 (incomparability graph of the corresponding
interval order: [aj, bj] < [aj, bj] if bi < aj]).

M: a complete matching a1 by, axby, ..., a,b, on

[2n] :={1,2,...,2n}, with a; < b; (so {a1, b1,...,an, by} = [2n])

(M) :={[a1,b1],---,[an, bn]}



Interval orders

T ={[a1, b1],---,[an, bn]}, a collection of closed intervals in R, so
a; < b;.

Gz: graph with vertex set Z, with [a;, b;] adjacent to [a;, bj] if

[ai, bi] N [aj, bj] # 0 (incomparability graph of the corresponding
interval order: [aj, bj] < [aj, bj] if bi < aj]).

M: a complete matching a1 by, axby, ..., a,b, on

[2n] :={1,2,...,2n}, with a; < b; (so {a1, b1,...,an, by} = [2n])

I(M) :={[a1, b1],- .., [an, bn]}
(2t w(An) = 2o mem, Xezu where M, is the set of

all (2n — 1) complete matchings on [2n], and X¢,,, is the
chromatic symmetric function of the graph Gz(y).



The case n =2

matching M graph Gz(y) X6z
2

12, 34 . . e
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14, 23 ———e 26

4 w(Ar) = €@ + 4e



The case n =2

matching M graph Gz(y) X6z
2

12, 34 . . e
13, 24 o———o 2e)
14, 23 ———e 26

4lw(Az) = ef + 4ey
Equivalently, 414y = h? + 4hj,.



The case n =2

matching M graph Gz XGI(M)
2

12, 34 . . e
13, 24 o———o 2e)
14, 23 ———e 26

4lw(Az) = ef + 4ey
Equivalently, 414y = h? + 4hj,.

Are there other “nice” examples of sums (or linear
combinations) of X¢'s being e-positive?



Monomial symmetric functions

Example. Coefficient of m311 in (10)!As is the number of
w = ai,...,ain € o satisfying

a1 > ax<az >ag<as >ag ay > ag ag > aio -
—— ——

length 6=2X\; 2=2)X> 2=2)3



Monomial symmetric functions
Coefficient of m317 in (10)!As is the number of
w = ai,...,ain € o satisfying

a1 > ax<az >ag<as >ag ay > ag ag > aio -
—_—— N——
length 6=2)\; 2=2X\> 2=2)3

Proof sketch. Expand

3 vt = [t =TT (C

2n

Eoy Eoy. ---
2)\1,2)\2,...> 22

(2n)! [my]An = (2n)1[Mx02 - -] A, = <

etc.



Schur function expansion

To get the coefficient of ss317 in 20! - Aqg, take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape p(5311):

Row lengths are the parts of u.
Each row begins one square to the left of the row above.




Schur function expansion

To get the coefficient of ss317 in 20! - Aqg, take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape p(5311):

Row lengths are the parts of u.
Each row begins one square to the left of the row above.

For general \ = n, the coefficient of sy in (2n)!A, is the
number fPA) of standard Young tableaux of (skew) shape p(\).
(Well-known determinantal formula.)



First generalization

Let ¢ > 1 and

o= (548)

n>0



First generalization

Let ¢ > 1 and .

F(o = (X C0

= (cn)!

m, p, s-expansions straightforward generalizations of ¢ = 2 case.
In particular, there are "natural” skew shapes p(, c¢) for which

(cn)!R, = Z FPO)sy
AFn



h-expansion of R, for the seed F.(t)

We don't know poles of F.(t) (a Mittag-Leffler function)
explicitly for ¢ > 3, but can show F.(t) = [](1 — 3;t)~! either by
a direct analytic argument or the earlier corollary:

Let d > 1. If the seed F(t) = _ a;t' generates a Schur
positive sprout R, then F4(t) := ) aq4it' generates a Schur
positive sprout Ry.



h-expansion of R, for the seed F.(t)

We don't know poles of F.(t) (a Mittag-Leffler function)
explicitly for ¢ > 3, but can show F.(t) = [](1 — 3;t)~! either by
a direct analytic argument or the earlier corollary:

Let d > 1. If the seed F(t) = _ a;t' generates a Schur
positive sprout R, then F4(t) := ) aq4it' generates a Schur
positive sprout Ry.

Recall coefficients of h-expansion of (2n)! R, for F»(t) sum to Ejp,
and a combinatorial interpretation is open. For arbitrary c, the
coefficients sum to

#{w € &, : Des(w) = {c,2¢,3c,...,(n—1)c}},

where Des(w) denotes the descent set of w.



A g-analogue of F.(t)

Fc(t? CI) = (Z ((C]':'))n!in) )

n>0

where (m)!g =1-(1+q)(1+q+¢*)---(1+q+---+¢™?), the
standard g-analogue of m!.



A g-analogue of F.(t)
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Fc(t’ q) = Z (_1)ntn )

= (en)!y

where (m)!g =1-(1+q)(1+q+¢*)---(1+q+---+¢™?), the
standard g-analogue of m!.

If ¢ =2 then
@GR =(q"+ 0> +2¢° + q)hi + (q* + ¢ +2¢° + g — 1) hy,

so (h, q)-positivity fails even for ¢ = 2.



A g-analogue of F.(t)

-1

FC(t’ q) = Z (_1)ntn )

>0 (cn)!lq

where (m)!g =1-(1+q)(1+q+¢*)---(1+q+---+¢™?), the
standard g-analogue of m!.

If ¢ =2 then
()R = (¢* +¢° +2¢° + @) + (¢" + ¢° + 24" + g — 1),
so (h, q)-positivity fails even for ¢ = 2.

No nice g-analogue of total positivity or Edrei-Thoma is
known.



Schur expansion of R, for the seed F,(q,t)

Recall that for F(t) = (32(=1)"t"/(cn)!) ™" we have

(en)!R, = Z FPO)sy (%)

AbFn

for some “natural”’ skew shape p(\, ¢).



Schur expansion of R, for the seed F,(q,t)

Recall that for F(t) = (32(=1)"t"/(cn)!) ™" we have

(cn)!R, = Z FPO)sy (%)

AbFn

for some “natural”’ skew shape p(\, ¢).

Theorem. For the seed F.(q,t) we have

(en)'q Ry = Z Z g i sy,

AFn SYT T
sh(T)=p(\.c)

the “nicest” possible g-analogue of (*).



Second special case

F(t) = (Z(sl):tn) , d>1

n>0



Second special case

F(t) = (Z(;l):tn) , d>1

n>0

Theorem (Carlitz-Scoville-Vaughan (1976) for d = 2) Let d > 1

and
n

Fity=%" Vd(n)%.

n>0
Then

va(n) = #{(w1, ..., wy) € 69 : Des(wy)N--- N Des(wy) = 0}.



First problem

Let F(t)= [ > (=1

nld
n>0
E.g..d =2, 312R; = s111 + 8sp1 + 19s3.
dim31°R; = (p},31°R;)
= 48t +10F° = 31
19 = [3]31°Rs = #{(u,v) € &2 : D(u)ND(v) = 0} = w(3)

What statistic on &3 x &3 (or &, X &, in general) do the other
coefficients count? (open)



Second problem

Analytic methods (M. Kwasnicki, MO 477780) show that

-1

F(t):= Z(_j!)d"t" =[Ja-817,

n>0

where 3; > 0, > ;i < co. Hence R, is h-positive. Some data for
d=2:



Second problem

Analytic methods (M. Kwasnicki, MO 477780) show that

-1

F(t):= Z(_j!)d"t" =[Ja-817,

n>0

where 3; > 0, > ;i < co. Hence R, is h-positive. Some data for

d=2:

Ry
212R,
31%R;
412R,

h

hs + 2h,

h3 + 6hyhy + 12h3

ht + 12hoh? + 60hshy + 6h3 + 132h,



Second problem

Analytic methods (M. Kwasnicki, MO 477780) show that

-1

F(t) = Z(_j!)d"t" =[[a-817",

n>0

where 3; > 0, > ;i < co. Hence R, is h-positive. Some data for
d=2:

Rt = M
2R, = h2+42h
312Rs = h3 +6hohy + 12h3
412R, = hi + 12hyh? + 60h3hy + 6h3 + 132hy

For general d, sum of the coefficients for h-expansion
of nlR, is v4(n). What do they count? (open)



The whole shebang

Let w = a1, a2,...,ac € Scp with D(w) C {c,2¢,...,(n—1)c}.
Define
Asce(w) =#{1<i<n—1": aj < ajcy1}-

Let

-1
tn
Al = (Z (cln)' (cdn)'qd)
= Zv,,(cl,...,cd) "

R (eam)lq, - (€am)lq,




The whole shebang

Let w = a1, a2,...,ac € Scp with D(w) C {c,2¢,...,(n—1)c}.
Define
Asce(w) =#{1<i<n—1": aj < ajcy1}-

Let
-1
F(t) = Z(C : )" '
1") (Cd") Yag
#n
- ;)V"(Cl""’cd)(qn)!ql---(cdn)!qd'
Then
va(cr, ..., cq) = Z qilnv(m) o q;nv(wd)'

Wleencl 7~~'7Wd€6ncd
Ascey (w1)N -NAsce, (wg)=0



The exampled =2, ¢ =1, cp =2

wi  Asci(wi) inv(wy)  wa  Asca(we)  inv(ws)
12 {1} 0 1324 ] 1
12 {1} 0 1423 0 2
12 {1 0 2314 0 2
12 {1} 0 2413 0 3
12 {1 0 3412 0 4
21 0 1 1234 {1} 0
21 0 1 1324 0 1
21 0 1 1423 0 2
21 0 1 2314 0 2
21 0 1 2413 0 3
21 0 1 3412 0 4



The exampled =2, ¢ =1, cp =2

wi  Asci(wi) inv(wy)  wa  Asca(we)  inv(ws)
12 {1} 0 1324 ] 1
12 {1} 0 1423 0 2
12 {1 0 2314 0 2
12 {1} 0 2413 0 3
12 {1 0 3412 0 4
21 0 1 1234 {1} 0
21 0 1 1324 0 1
21 0 1 1423 0 2
21 0 1 2314 0 2
21 0 1 2413 0 3
21 0 1 3412 0 4

=w(1,2)=gr* +qr* +29r* +qr+q+r3 +2r° +r,

where g1 = q, g2 = r.



Schur positivity

Conjecture. F(t)is an (s, qi,...,qq)-positive seed.



Schur positivity

F(t)isan (s,q1,...,qq)-positive seed.

d=2,c1=1,¢0 =2, F(t) = ano t”/(n)!q(2n)!,

(3)!q (6)! R3=s111+(q?r8+q?r"+qr3+2q% O +qr’ +r8+2¢r°+2qrb+r"+34¢%r*
+2qr°4+2r%4-2¢2r34-3qr*4-2r°4-2¢%r?4-2qr3 +-3r* +q? r4+-2qr> +2r3+ g% +qr4+-2r2 +-q+r)sx
+(g3r2+2q3 1 4 2q2 245630+ 4¢2 1 +-2gr12 +7q3 9 +102 r'0+ 4grit 4112
+11¢3r8+14¢%r9+10gr94+2r11+12¢3r74+20g2 r8+14qr9+5r10
+14¢3r%4+22¢2r"+20qr84+7r94-12¢%r°4-24¢%r84-22qr" +9r8 +12¢3 r* +20¢° >
+24qr94+10r"+7¢%r3+16¢%r*4+20qr°4+10r%4+-5¢3r>+10¢%r3+16gr* +8r°4+-2¢3r
+6G°r24+10qr3+-5r*+q3 422 r+6qr2+3r3+2qr+r?)s;



Schur positivity

F(t)isan (s,q1,...,qq)-positive seed.

d=2,c1=1,¢0 =2, F(t) = ano t”/(n)!q(2n)!,

(3)!q (6)! R3=s111+(q?r8+q?r"+qr3+2q% O +qr’ +r8+2¢r°+2qrb+r"+34¢%r*
+2qr°4+2r%4-2¢2r34-3qr*4-2r°4-2¢%r?4-2qr3 +-3r* +q? r4+-2qr> +2r3+ g% +qr4+-2r2 +-q+r)sx
+(g3r2+2q3 1 4 2q2 245630+ 4¢2 1 +-2gr12 +7q3 9 +102 r'0+ 4grit 4112
+11¢3r8+14¢%r9+10gr94+2r11+12¢3r74+20g2 r8+14qr9+5r10
+14g3r%4+22¢2r" +20qr84+-7r2+12¢3r°4-24¢%r%4-22qr” +9r8 +12¢3r* +20¢2 r®
+24qr94+10r"+7¢%r3+169%r*4+20qr°4+10r%4+-5¢3r>+10¢%r3+16qr* +8r°4+-2¢3r
+6G°r24+10qr3+5r*+q3+2q2r+6qr2+3r3+2qr+r?)s;



Schur positivity

F(t)isan (s,q1,...,qq)-positive seed.

d=2,c1=1,¢0 =2, F(t) = ano t”/(n)!q(2n)!,

(3)!q (6)! R3=s111+(q?r8+q?r"+qr3+2q% O +qr’ +r8+2¢r°+2qrb+r"+34¢%r*
+2qr°4+2r%4-2¢2r34-3qr*4-2r°4-2¢%r?4-2qr3 +-3r* +q? r4+-2qr> +2r3+ g% +qr4+-2r2 +-q+r)sx
+(g3r2+2q3 1 4 2q2 245630+ 4¢2 1 +-2gr12 +7q3 9 +102 r'0+ 4grit 4112
+11¢3r8+14¢%r9+10gr94+2r11+12¢3r74+20g2 r8+14qr9+5r10
+14¢3r%4+22¢2r"+20qr84+7r94-12¢%r°4-24¢%r84-22qr" +9r8 +11¢3 r* +20¢° r®
+24qr94+10r"+7¢%r3+16¢%r*4+20qr°4+10r%4+-5¢3r>+10¢%r3+16gr* +8r°4+-2¢3r
+6G°r24+10qr3+-5r*+q3 422 r+6qr2+3r3+2qr+r?)s;



Schur positivity

F(t)isan (s,q1,...,qq)-positive seed.

d=2,c1=1,¢0 =2, F(t) = ano t”/(n)!q(2n)!,

(3)!q (6)! R3=s111+(q?r8+q?r"+qr3+2q% O +qr’ +r8+2¢r°+2qrb+r"+34¢%r*
+2qr°4+2r%4-2¢2r34-3qr*4-2r°4-2¢%r?4-2qr3 +-3r* +q? r4+-2qr> +2r3+ g% +qr4+-2r2 +-q+r)sx
+(g3r2+2q3 1 4 2q2 245630+ 4¢2 1 +-2gr12 +7q3 9 +102 r'0+ 4grit 4112
+11¢3r8+14¢%r9+10gr94+2r11+12¢3r74+20g2 r8+14qr9+5r10
+14¢3r%4+22¢2r"+20qr84+7r94-12¢%r°4-24¢%r84-22qr" +9r8 +11¢3 r* +20¢° r®
+24qr94+10r"+7¢%r3+16¢%r*4+20qr°4+10r%4+-5¢3r>+10¢%r3+16gr* +8r°4+-2¢3r
+6G°r24+10qr3+-5r*+q3 422 r+6qr2+3r3+2qr+r?)s;

What do the coefficients count? Coefficient of s, is v,(c1, ..., cq).



The final slide



The final slide




