Sprout Symmetric Functions

Tewodros Amdeberhan John Shareshian Richard Stanley (work in progress)

September 19, 2025

Symmetric functions

K: a field of characteristic 0

 $\Lambda_K = \Lambda_K(x)$: ring of symmetric functions over K in the variables $x = (x_1, x_2, ...)$

bases m_{λ} (monomial symmetric functions), p_{λ} (power sums), h_{λ} (complete), e_{λ} (elementary), s_{λ} (Schur): knowledge assumed

Sprout sequences and their seeds

Definition. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, ...)$ of symmetric functions is a **sprout sequence** if there exists a power series

$$F(t) = \sum_{j \geq 0} a_j t^j \in K[[t]], \ a_0 = 1$$

such that

$$\mathcal{F}(t) := \prod_{i} F(x_i t) = \sum_{n \geq 0} R_n t^n$$

Well-defined formally, and R_n is homogeneous of degree n

Sprout sequences and their seeds

Definition. A sequence $\mathfrak{R} = (R_0 = 1, R_1, R_2, ...)$ of symmetric functions is a **sprout sequence** if there exists a power series

$$F(t) = \sum_{j \geq 0} a_j t^j \in K[[t]], \ a_0 = 1$$

such that

$$\mathcal{F}(t) := \prod_{i} F(x_i t) = \sum_{n \geq 0} R_n t^n$$

Well-defined formally, and R_n is homogeneous of degree n

F(t) is the **seed** of the sprout sequence \Re .

We also call R_0, R_1, \ldots sprout symmetric functions (with respect to the seed F(t)). Note $R_0 = 1, R_1 = a_1 \sum x_i = a_1 p_1$.

1. $F(t) = e^{t}$. Then

$$F(t) = F(x_1t)F(x_2t)\cdots = \exp(x_1t + x_2t + \cdots)$$

$$= \exp(p_1t) = \sum_{n\geq 0} p_1^n \frac{t^n}{n!},$$

whence
$$R_n = \frac{p_1^n}{n!} = \frac{e_1^n}{n!} = \frac{h_1^n}{n!}$$
 (p, e, h, s-positive).

1. $F(t) = e^t$. Then

$$F(t) = F(x_1t)F(x_2t)\cdots = \exp(x_1t + x_2t + \cdots)$$

$$= \exp(p_1t) = \sum_{n\geq 0} p_1^n \frac{t^n}{n!},$$

whence
$$R_n = \frac{p_1^n}{n!} = \frac{e_1^n}{n!} = \frac{h_1^n}{n!}$$
 (p, e, h, s-positive).

2.
$$F(t) = 1 + t$$
, so $\mathcal{F}(t) = (1 + x_1 t)(1 + x_2 t) \cdots = \sum_{n \geq 0} e_n t^n$, whence $R_n = e_n = s_{1^n}$ (e, s-positive, but not h-positive).

1. $F(t) = e^t$. Then

$$\mathcal{F}(t) = F(x_1 t) F(x_2 t) \cdots = \exp(x_1 t + x_2 t + \cdots)$$

$$= \exp(p_1 t) = \sum_{n \ge 0} p_1^n \frac{t^n}{n!},$$

whence
$$R_n = \frac{p_1^n}{n!} = \frac{e_1^n}{n!} = \frac{h_1^n}{n!}$$
 (p, e, h, s-positive).

- 2. F(t) = 1 + t, so $F(t) = (1 + x_1 t)(1 + x_2 t) \cdots = \sum_{n \ge 0} e_n t^n$, whence $R_n = e_n = s_{1^n}$ (e, s-positive, but not h-positive).
- 3. F(t) = 1/(1-t), so $\mathcal{F}(t) = 1/(1-x_1t)(1-x_2t)\cdots = \sum_{n\geq 0} h_n t^n$, whence $R_n = h_n = s_n$ (h, s-positive, but not e-positive).

1. $F(t) = e^{t}$. Then

$$\mathcal{F}(t) = F(x_1 t) F(x_2 t) \cdots = \exp(x_1 t + x_2 t + \cdots)$$

$$= \exp(p_1 t) = \sum_{n \ge 0} p_1^n \frac{t^n}{n!},$$

whence
$$R_n = \frac{p_1^n}{n!} = \frac{e_1^n}{n!} = \frac{h_1^n}{n!}$$
 (p, e, h, s-positive).

- 2. F(t) = 1 + t, so $F(t) = (1 + x_1 t)(1 + x_2 t) \cdots = \sum_{n \ge 0} e_n t^n$, whence $R_n = e_n = s_{1^n}$ (e, s-positive, but not h-positive).
- 3. F(t) = 1/(1-t), so $\mathcal{F}(t) = 1/(1-x_1t)(1-x_2t)\cdots = \sum_{n\geq 0} h_n t^n$, whence $R_n = h_n = s_n$ (h, s-positive, but not e-positive).
- 4. F(t) = 1 t or e^{t+t^2} or e^{e^t-1} or $\sum_{j>0} C_j t^j$, etc.: not s-positive.

Theorem. Let $\mathfrak{R} = (R_0 = 1, R_1, R_2, ...)$ be a sequence of symmetric functions. The following five conditions are equivalent. (a) \mathfrak{R} is a sprout sequence.

Theorem. Let $\mathfrak{R} = (R_0 = 1, R_1, R_2, ...)$ be a sequence of symmetric functions. The following five conditions are equivalent.

- (a) \Re is a sprout sequence.
- (b) There exist elements $b_1, b_2, \dots \in K$ such that

$$\log \sum_{n\geq 0} R_n t^n = \sum_{n\geq 1} b_n p_n \frac{t^n}{n}.$$

Theorem. Let $\mathfrak{R} = (R_0 = 1, R_1, R_2, ...)$ be a sequence of symmetric functions. The following five conditions are equivalent.

- (a) \Re is a sprout sequence.
- (b) There exist elements $b_1, b_2, \dots \in K$ such that

$$\log \sum_{n\geq 0} R_n t^n = \sum_{n\geq 1} b_n \rho_n \frac{t^n}{n}.$$

(c) There exist elements $a_0 = 1, a_1, a_2, \dots \in K$ such that for all $n \ge 1$,

$$R_n = \sum_{\lambda \vdash n} a_{\lambda_1} a_{\lambda_2} \cdots m_{\lambda}.$$

Theorem. Let $\mathfrak{R} = (R_0 = 1, R_1, R_2, ...)$ be a sequence of symmetric functions. The following five conditions are equivalent.

- (a) \Re is a sprout sequence.
- (b) There exist elements $b_1, b_2, \dots \in K$ such that

$$\log \sum_{n\geq 0} R_n t^n = \sum_{n\geq 1} b_n p_n \frac{t^n}{n}.$$

(c) There exist elements $a_0 = 1, a_1, a_2, \dots \in K$ such that for all $n \ge 1$,

$$R_n = \sum_{\lambda \vdash n} a_{\lambda_1} a_{\lambda_2} \cdots m_{\lambda}.$$

(d) There exist elements $b_0 = 1, b_1, b_2, ...$ in K such that for all $n \ge 1$,

$$R_n = \sum_{\lambda \vdash n} z_{\lambda}^{-1} b_{\lambda_1} b_{\lambda_2} \cdots p_{\lambda}.$$

Five conditions (cont.)

(e) (omitted)

Five conditions (cont.)

(e) (omitted)

Moreover, \mathfrak{R} has seed $F(t) = \sum a_j t^j$ and

$$\log F(t) = \sum_{j>1} b_j \frac{t^j}{j}.$$

Five conditions (cont.)

(e) (omitted)

Moreover, \mathfrak{R} has seed $F(t) = \sum a_j t^j$ and

$$\log F(t) = \sum_{j \ge 1} b_j \frac{t^j}{j}.$$

Proofs are straighforward.

Recall ω : $\Lambda_K \to \Lambda_K$ is the linear transformation defined by $\omega(h_\lambda) = e_\lambda$. Then ω is a K-algebra automorphism, $\omega^2 = 1$, $\omega(s_\lambda) = s_{\lambda'}$, and $\omega(p_n) = (-1)^{n-1}p_n$.

Recall ω : $\Lambda_K \to \Lambda_K$ is the linear transformation defined by $\omega(h_\lambda) = e_\lambda$. Then ω is a K-algebra automorphism, $\omega^2 = 1$, $\omega(s_\lambda) = s_{\lambda'}$, and $\omega(p_n) = (-1)^{n-1}p_n$.

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence with seed F(t). Then $(1, \omega R_1, \omega R_2, ...)$ is a sprout sequence with seed 1/F(-t).

Recall ω : $\Lambda_K \to \Lambda_K$ is the linear transformation defined by $\omega(h_\lambda) = e_\lambda$. Then ω is a K-algebra automorphism, $\omega^2 = 1$, $\omega(s_\lambda) = s_{\lambda'}$, and $\omega(p_n) = (-1)^{n-1}p_n$.

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence with seed F(t). Then $(1, \omega R_1, \omega R_2, ...)$ is a sprout sequence with seed 1/F(-t).

Proof. Straightforward. \square

Recall ω : $\Lambda_K \to \Lambda_K$ is the linear transformation defined by $\omega(h_\lambda) = e_\lambda$. Then ω is a K-algebra automorphism, $\omega^2 = 1$, $\omega(s_\lambda) = s_{\lambda'}$, and $\omega(p_n) = (-1)^{n-1}p_n$.

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence with seed F(t). Then $(1, \omega R_1, \omega R_2, ...)$ is a sprout sequence with seed 1/F(-t).

Proof. Straightforward. \square

Example. F(t) = 1 + t and $R_n = e_n$. Then 1/F(-t) = 1/(1-t) and $R_n = h_n$.

Let $K = \mathbb{R}$. When is each R_n Schur positive, i.e., a nonnegative linear combination of Schur functions?

Let $K = \mathbb{R}$. When is each R_n Schur positive, i.e., a nonnegative linear combination of Schur functions?

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence over \mathbb{R} with seed $F(t) = \sum a_j t^j$. The following conditions are equivalent.

(a) Each R_n is Schur positive.

Let $K = \mathbb{R}$. When is each R_n Schur positive, i.e., a nonnegative linear combination of Schur functions?

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence over \mathbb{R} with seed $F(t) = \sum a_j t^j$. The following conditions are equivalent.

- (a) Each R_n is Schur positive.
- (b) We can write

$$F(t) = e^{\gamma t} \prod_{k \ge 1} \frac{1 + \alpha_k t}{1 - \beta_k t},$$

where $\gamma \geq 0$ and the α_k 's and β_k 's are nonnegative real numbers such that $\sum_j (\alpha_k + \beta_k)$ is convergent. (This is an analytic, not formal or combinatorial, statement.)

Let $K = \mathbb{R}$. When is each R_n Schur positive, i.e., a nonnegative linear combination of Schur functions?

Theorem. Let $\mathfrak{R} = (1, R_1, R_2, ...)$ be a sprout sequence over \mathbb{R} with seed $F(t) = \sum a_j t^j$. The following conditions are equivalent.

- (a) Each R_n is Schur positive.
- (b) We can write

$$F(t) = e^{\gamma t} \prod_{k>1} \frac{1 + \alpha_k t}{1 - \beta_k t},$$

where $\gamma \geq 0$ and the α_k 's and β_k 's are nonnegative real numbers such that $\sum_j (\alpha_k + \beta_k)$ is convergent. (This is an analytic, not formal or combinatorial, statement.)

(c) The matrix $[a_{j-i}]_{i,j\geq 0}$ (where $a_n=0$ if n<0) is **totally nonnegative**, i.e., every minor is nonnegative.

The equivalence of (b) and (c) is the **Edrei-Thoma theorem** from the theory of total positivity.

The equivalence of (b) and (c) is the **Edrei-Thoma theorem** from the theory of total positivity.

 $(a) \Leftrightarrow (c)$:

The equivalence of (b) and (c) is the **Edrei-Thoma theorem** from the theory of total positivity.

 $(a) \Leftrightarrow (c)$:

Hint #1. Let $H = [h_{j-i}]$. Then every minor of H is either 0 or a skew-Schur function (by the Jacobi-Trudi identity). Every Schur function appears as a minor, and every skew Schur function is Schur positive.

The equivalence of (b) and (c) is the **Edrei-Thoma theorem** from the theory of total positivity.

 $(a) \Leftrightarrow (c)$:

Hint #1. Let $H = [h_{j-i}]$. Then every minor of H is either 0 or a skew-Schur function (by the Jacobi-Trudi identity). Every Schur function appears as a minor, and every skew Schur function is Schur positive.

Hint #2. Consider the homomorphism φ : $\Lambda_K \to K$ defined by $\varphi(h_n) = a_n$.

A corollary

Corollary. Let $d \ge 1$. If the seed $F(t) = \sum a_i t^i$ generates a Schur positive sprout sequence \mathfrak{R} , then $F_d(t) := \sum a_{di} t^i$ generates a Schur positive sprout sequence \mathfrak{R}_d .

A corollary

Corollary. Let $d \ge 1$. If the seed $F(t) = \sum a_i t^i$ generates a Schur positive sprout sequence \mathfrak{R} , then $F_d(t) := \sum a_{di} t^i$ generates a Schur positive sprout sequence \mathfrak{R}_d .

Proof. Let $M_d = [a_{d(j-i)}]_{i,j \ge 0}$. Every minor of M_1 is nonnegative since \mathfrak{R} is Schur positive. But M_d is a submatrix of M_1 , so every minor of M_d is Schur positive. Hence \mathfrak{R}_d is Schur positive. \square .

e and h-positivity

Recall: e-positivity \Rightarrow Schur positivity and h-positivity \Rightarrow Schur positivity.

$$F(t) = e^{\gamma t} \prod_{j \ge 1} \frac{1 + \alpha_j t}{1 - \beta_j t}$$

e and h-positivity

Recall: e-positivity \Rightarrow Schur positivity and h-positivity \Rightarrow Schur positivity.

$$F(t) = e^{\gamma t} \prod_{j \ge 1} \frac{1 + \alpha_j t}{1 - \beta_j t}$$

Proposition.

- (a) If all $\beta_i = 0$, then each R_n is e-positive.
- (b) If all $\alpha_i = 0$, then each R_n is h-positive.

Easy proof

Proposition (repeated).

- (a) If all $\beta_j = 0$, then each R_n is e-positive.
- (b) If all $\alpha_j = 0$, then each R_n is h-positive.

Easy proof

Proposition (repeated).

- (a) If all $\beta_j = 0$, then each R_n is e-positive.
- (b) If all $\alpha_j = 0$, then each R_n is h-positive.

Proof. (a) Assume all $\beta_j = 0$. Then

$$\sum R_n t^n = \prod_i e^{\gamma x_i t} \prod_{j \ge 1} (1 + \alpha_j x_i t)$$

$$= e^{\gamma e_1 t} \prod_j \prod_i (1 + \alpha_j x_i t)$$

$$= e^{\gamma e_1 t} \prod_i \left(\sum_{n \ge 0} \alpha_j^n e_n t^n \right), \text{ etc.}$$

(b) is completely analogous. □

Easy proof

Proposition (repeated).

- (a) If all $\beta_i = 0$, then each R_n is e-positive.
- (b) If all $\alpha_i = 0$, then each R_n is h-positive.

Proof. (a) Assume all $\beta_i = 0$. Then

$$\sum R_n t^n = \prod_i e^{\gamma x_i t} \prod_{j \ge 1} (1 + \alpha_j x_i t)$$

$$= e^{\gamma e_1 t} \prod_j \prod_i (1 + \alpha_j x_i t)$$

$$= e^{\gamma e_1 t} \prod_i \left(\sum_{n \ge 0} \alpha_j^n e_n t^n \right), \text{ etc.}$$

(b) is completely analogous.

Conjecture. The converse holds. (True for $e^{-\gamma t}F(t)\in\mathbb{R}(t)$.)

The function $\phi(\lambda)$

Amdeberhan-Ono-Singh (2024):

$$\phi(\lambda) := (2n)! \cdot \prod_{k=1}^{n} \frac{1}{m_{k}!} \left(\frac{4^{k}(4^{k}-1)B_{2k}}{(2k)(2k)!} \right)^{m_{k}},$$

where $\lambda = \langle 1^{m_1}, \dots, n^{m_n} \rangle \vdash n = \sum i m_i$ (λ is a partition of n with m_i i's) and B_{2k} is a Bernoulli number.

The function $\phi(\lambda)$

Amdeberhan-Ono-Singh (2024):

$$\phi(\lambda) := (2n)! \cdot \prod_{k=1}^{n} \frac{1}{m_{k}!} \left(\frac{4^{k}(4^{k}-1)B_{2k}}{(2k)(2k)!} \right)^{m_{k}},$$

where $\lambda = \langle 1^{m_1}, \dots, n^{m_n} \rangle \vdash n = \sum i m_i$ (λ is a partition of n with m_i i's) and B_{2k} is a Bernoulli number.

Original motivation. Express a certain theta function of Ramanujan in terms of Eisenstein series (not explained here).

Euler numbers E_{2n}

Our motivation. Not hard to see that

$$\phi(\lambda) \in \mathbb{Z}, \quad \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n},$$

an Euler number or secant number, defined by

$$\sec x = \sum_{n>0} E_{2n} \frac{x^{2n}}{(2n)!}.$$

Well-known: E_{2n} is equal to the number of alternating permutations $a_1 a_2 \cdots a_{2n} \in \mathfrak{S}_{2n}$, i.e.,

$$a_1 > a_2 < a_3 > a_4 < \cdots > a_{2n}$$
.

Euler numbers E_{2n}

Our motivation. Not hard to see that

$$\phi(\lambda) \in \mathbb{Z}, \quad \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n},$$

an Euler number or secant number, defined by

$$\sec x = \sum_{n \ge 0} E_{2n} \frac{x^{2n}}{(2n)!}.$$

Well-known: E_{2n} is equal to the number of alternating permutations $a_1 a_2 \cdots a_{2n} \in \mathfrak{S}_{2n}$, i.e.,

$$a_1 > a_2 < a_3 > a_4 < \cdots > a_{2n}$$
.

Question: what does $|\phi(\lambda)|$ count?

Record partitions

$$\mathfrak{A}_{2n}:=\{w\in\mathfrak{S}_{2n}\,:\,w\,\,\text{alternating}\}$$
 Recall $\sum_{\lambda\vdash n}|\phi(\lambda)|=E_{2n}=\#\mathfrak{A}_{2n}.$

Record partitions

```
\mathfrak{A}_{2n} := \{ w \in \mathfrak{S}_{2n} : w \text{ alternating} \}
Recall \sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n} = \#\mathfrak{A}_{2n}.
If w = a_1 > a_2 < \dots > a_{2n} \in \mathfrak{A}_{2n} define \hat{\mathbf{w}} = a_1, a_3, \dots, a_{2n-1}.
Write \hat{w} = b_1, b_2, \dots, b_n
record set rec(\hat{w}): set of indices 1 \le i \le n for which b_i is a
left-to-right maximum (or record) in \hat{w}. (Always 1 \in rec(\hat{w}).)
record partition rp(\hat{w}): if rec(\hat{w}) = \{r_1, r_2, \dots, r_i\}_{<}, then rp(\hat{w})
is the partition of n with parts r_2 - r_1, r_3 - r_2, r_4 - r_3, ..., n + 1 - r_i
(in decreasing order)
```

Record partitions

 $rp(\hat{w}) = (2, 2, 1)$

$$\mathfrak{A}_{2n} := \{ w \in \mathfrak{S}_{2n} : w \text{ alternating} \}$$
 Recall $\sum_{\lambda \vdash n} |\phi(\lambda)| = E_{2n} = \#\mathfrak{A}_{2n}.$ If $w = a_1 > a_2 < \cdots > a_{2n} \in \mathfrak{A}_{2n}$ define $\hat{\mathbf{w}} = a_1, a_3, \ldots, a_{2n-1}.$ Write $\hat{w} = b_1, b_2, \ldots, b_n.$ record set $\operatorname{rec}(\hat{w})$: set of indices $1 \leq i \leq n$ for which b_i is a left-to-right maximum (or record) in \hat{w} . (Always $1 \in \operatorname{rec}(\hat{w})$.) record partition $\operatorname{rp}(\hat{w})$: if $\operatorname{rec}(\hat{w}) = \{r_1, r_2, \ldots, r_j\}_{<}$, then $\operatorname{rp}(\hat{w})$ is the partition of n with parts $r_2 - r_1, r_3 - r_2, r_4 - r_3, \ldots, n+1-r_j$ (in decreasing order)

Example. $w = 7, 2, 5, 4, 8, 3, 10, 6, 9, 5 \in \mathfrak{A}_{10}, \ \hat{w} = 7, 5, 8, 10, 9;$ $r_1 = 1, r_2 = 3, r_3 = 4, r_2 - r_1 = 2, r_3 - r_2 = 1, 6 - r_3 = 2,$

Combinatorial interpretation of $\phi(\lambda)$

Theorem.
$$|\phi(\lambda)| = \#\{w \in \mathfrak{A}_{2n} : \operatorname{rp}(\hat{w}) = \lambda\}$$

Combinatorial interpretation of $\phi(\lambda)$

Theorem.
$$|\phi(\lambda)| = \#\{w \in \mathfrak{A}_{2n} : \operatorname{rp}(\hat{w}) = \lambda\}$$

Note on proof. Recall

$$\phi(\lambda) = (2n)! \cdot \prod_{k=1}^{n} \frac{1}{m_{k}!} \left(\frac{4^{k}(4^{k}-1)B_{2k}}{(2k)(2k)!} \right)^{m_{k}},$$

where $\lambda = \langle 1^{m_1}, \dots, n^{m_n} \rangle \vdash \sum im_i$. To get combinatorics into the picture, use

$$E_{2k-1} = 4^k (4^k - 1) \frac{|B_{2k}|}{2k}.$$

Remainder of proof is a bijective argument.

A symmetric function

The general form $\phi(\lambda) = (2n)! \prod \frac{1}{m_k!} f_k^{m_k}$ suggests defining a symmetric function in the variables $\mathbf{x} = (x_1, x_2, \dots)$:

$$A_n = A_n(\mathbf{x}) = \sum_{\lambda \vdash n} |\phi(\lambda)| \cdot p_{\lambda},$$

where p_{λ} is a power sum symmetric function.

Examples.

$$2! A_1 = p_1$$

$$4! A_2 = 3p_1^2 + 2p_2$$

$$6! A_3 = 15p_1^3 + 30p_2p_1 + 16p_3$$

$$8!, A_4 = 105p_1^4 + 420p_2p_1^2 + 140p_2^2 + 448p_3p_1 + 272p_4$$

4! *A*₂:

W	ŵ	$\operatorname{rp}(\hat{w})$
2143	24	11
3142	34	11
3241	34	11
4132	43	2
4231	43	2

A sprout sequence

Theorem. $\sum A_n t^n = \prod_i \sec(\sqrt{x_i t})$, i.e., $\mathfrak{A} := (A_0, A_1, ...)$ is a sprout sequence with seed $\sec \sqrt{t}$.

A sprout sequence

Theorem. $\sum A_n t^n = \prod_i \sec(\sqrt{x_i t})$, i.e., $\mathfrak{A} := (A_0, A_1, ...)$ is a sprout sequence with seed $\sec \sqrt{t}$.

Proof. Manipulatorics (A. Garsia). \square

Theorem. $A_n(x)$ is h-positive.

Theorem. $A_n(x)$ is h-positive.

Proof. Weierstrass product formula

$$cos(t) = \prod_{k \ge 1} \left(1 - \frac{4t^2}{\pi^2(2k-1)^2}\right)$$
 implies:

$$F(t) = \sec(\sqrt{t})$$

$$= \prod_{i>1} \left(1 - \frac{4t}{\pi^2(2j-1)^2}\right)^{-1}.$$

Theorem. $A_n(x)$ is h-positive.

Proof. Weierstrass product formula

$$cos(t) = \prod_{k>1} \left(1 - \frac{4t^2}{\pi^2(2k-1)^2}\right)$$
 implies:

$$F(t) = \sec(\sqrt{t})$$

$$= \prod_{i>1} \left(1 - \frac{4t}{\pi^2(2j-1)^2}\right)^{-1}.$$

This has the desired form $e^{\gamma t} \prod (1 - \beta_j t)^{-1}$ (with $\gamma = 0$, $\beta_j = 4/\pi^2 (2j-1)^2$) for *h*-positivity. \square

Theorem. $A_n(x)$ is h-positive.

Proof. Weierstrass product formula

$$cos(t) = \prod_{k \ge 1} \left(1 - \frac{4t^2}{\pi^2 (2k-1)^2} \right)$$
 implies:

$$F(t) = \sec(\sqrt{t})$$

$$= \prod_{i>1} \left(1 - \frac{4t}{\pi^2(2j-1)^2}\right)^{-1}.$$

This has the desired form $e^{\gamma t} \prod (1 - \beta_j t)^{-1}$ (with $\gamma = 0$, $\beta_j = 4/\pi^2 (2j-1)^2$) for *h*-positivity. \square

Very noncombinatorial formula for the coefficients!

Some data

$$2!A_1 = h_1$$

$$4!A_2 = h_1^2 + 4h_2$$

$$6!A_3 = h_1^3 + 12h_2h_1 + 48h_3$$

$$8!A_4 = h_1^4 + 24h_2h_1^2 + 256h_3h_1 + 16h_2^2 + 1088h_4$$

$$10!A_5 = h_1^5 + 40h_2h_1^3 + 800h_3h_1^2 + 80h_2^2h_1 + 9280h_4h_1$$

$$+ 640h_3h_2 + 39680h_5.$$

Some data

$$2!A_{1} = h_{1}$$

$$4!A_{2} = h_{1}^{2} + 4h_{2}$$

$$6!A_{3} = h_{1}^{3} + 12h_{2}h_{1} + 48h_{3}$$

$$8!A_{4} = h_{1}^{4} + 24h_{2}h_{1}^{2} + 256h_{3}h_{1} + 16h_{2}^{2} + 1088h_{4}$$

$$10!A_{5} = h_{1}^{5} + 40h_{2}h_{1}^{3} + 800h_{3}h_{1}^{2} + 80h_{2}^{2}h_{1} + 9280h_{4}h_{1} + 640h_{3}h_{2} + 39680h_{5}.$$

Open problem. Sum of coefficients is E_{2n} . What are the coefficients themselves?

Some data

$$2!A_{1} = h_{1}$$

$$4!A_{2} = h_{1}^{2} + 4h_{2}$$

$$6!A_{3} = h_{1}^{3} + 12h_{2}h_{1} + 48h_{3}$$

$$8!A_{4} = h_{1}^{4} + 24h_{2}h_{1}^{2} + 256h_{3}h_{1} + 16h_{2}^{2} + 1088h_{4}$$

$$10!A_{5} = h_{1}^{5} + 40h_{2}h_{1}^{3} + 800h_{3}h_{1}^{2} + 80h_{2}^{2}h_{1} + 9280h_{4}h_{1} + 640h_{3}h_{2} + 39680h_{5}.$$

Open problem. Sum of coefficients is E_{2n} . What are the coefficients themselves?

Note. Coefficient of h_n is nE_{2n-1} , the number of "cyclically alternating" permutations in \mathfrak{S}_{2n} .

Chromatic symmetric functions

G: finite simple graph on vertex set $V(G) = \{v_1, v_2, \dots, v_p\}$

$$X_G = X_G(x) := \sum_{\substack{\kappa : V(G) \to \mathbb{P} \\ uv \in E(G) \Rightarrow \kappa(u) \neq \kappa(v)}} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_p)}$$

Chromatic symmetric functions

G: finite simple graph on vertex set $V(G) = \{v_1, v_2, \dots, v_p\}$

$$\mathbf{X}_{\mathbf{G}} = \mathbf{X}_{\mathbf{G}}(\mathbf{x}) := \sum_{\substack{\kappa : V(G) \to \mathbb{P} \\ uv \in E(G) \Rightarrow \kappa(u) \neq \kappa(v)}} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_p)}$$

$$X_{\overline{K}_p}(\mathbf{x}) = (x_1 + x_2 + \cdots)^p = e_1^p$$

 $X_{K_p}(\mathbf{x}) = p! e_p$

Chromatic symmetric functions

G: finite simple graph on vertex set $V(G) = \{v_1, v_2, \dots, v_p\}$

$$X_{G} = X_{G}(x) := \sum_{\substack{\kappa : V(G) \to \mathbb{P} \\ uv \in E(G) \Rightarrow \kappa(u) \neq \kappa(v)}} X_{\kappa(v_{1})} X_{\kappa(v_{2})} \cdots X_{\kappa(v_{p})}$$

$$X_{\overline{K}_p}(\mathbf{x}) = (x_1 + x_2 + \cdots)^p = e_1^p$$

 $X_{K_p}(\mathbf{x}) = p! e_p$

$$X_G(\underbrace{1,1,\ldots,1}_{m \text{ 1's}},0,0,\ldots)=\chi_G(m),$$

the **chromatic polynomial** of G.

Interval orders

 $\mathcal{I} = \{[a_1, b_1], \dots, [a_n, b_n]\}$, a collection of closed intervals in \mathbb{R} , so $a_i < b_i$.

G_{\mathcal{I}}: graph with vertex set \mathcal{I} , with $[a_i, b_i]$ adjacent to $[a_j, b_j]$ if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (incomparability graph of the corresponding interval order: $[a_i, b_i] < [a_j, b_j]$ if $b_i < a_j$).

M: a complete matching $a_1b_1, a_2b_2, \ldots, a_nb_n$ on $[2n] := \{1, 2, \ldots, 2n\}$, with $a_i < b_i$ (so $\{a_1, b_1, \ldots, a_n, b_n\} = [2n]$)

$$\mathcal{I}(M) := \{[a_1, b_1], \ldots, [a_n, b_n]\}$$

Interval orders

 $\mathcal{I} = \{[a_1, b_1], \dots, [a_n, b_n]\}$, a collection of closed intervals in \mathbb{R} , so $a_i < b_i$.

G_{\mathcal{I}}: graph with vertex set \mathcal{I} , with $[a_i, b_i]$ adjacent to $[a_j, b_j]$ if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (incomparability graph of the corresponding interval order: $[a_i, b_i] < [a_j, b_j]$ if $b_i < a_j$).

M: a complete matching $a_1b_1, a_2b_2, ..., a_nb_n$ on $[2n] := \{1, 2, ..., 2n\}$, with $a_i < b_i$ (so $\{a_1, b_1, ..., a_n, b_n\} = [2n]$)

$$\mathcal{I}(M) := \{[a_1, b_1], \dots, [a_n, b_n]\}$$

Theorem. $(2n)! \omega(A_n) = \sum_{M \in \mathcal{M}_n} X_{G_{\mathcal{I}(M)}}$, where \mathcal{M}_n is the set of all (2n-1)!! complete matchings on [2n], and $X_{G_{\mathcal{I}(M)}}$ is the chromatic symmetric function of the graph $G_{\mathcal{I}(M)}$.

The case n = 2

matching M	graph $G_{\mathcal{I}(M)}$	$X_{G_{\mathcal{I}(M)}}$		
12, 34	• •	e_1^2		
13, 24	••	2 <i>e</i> ₂		
14, 23	••	$2e_{2}$		
$4!\omega(A_2)=e_1^2+4e_2$				

The case n = 2

matching M	graph $G_{\mathcal{I}(M)}$	$X_{G_{\mathcal{I}(M)}}$
12, 34	• •	e_1^2
13, 24	••	2 <i>e</i> ₂
14, 23	●●	2 <i>e</i> ₂
41. (4) 2 . 4	

$$4!\,\omega(A_2)=e_1^2+4e_2$$

Equivalently, $4!A_2 = h_1^2 + 4h_2$.

The case n=2

matching M	graph $G_{\mathcal{I}(M)}$	$X_{G_{\mathcal{I}(M)}}$
12, 34	• •	e_1^2
13, 24	••	2 <i>e</i> ₂
14, 23	••	2 <i>e</i> ₂

$$4!\,\omega(A_2)=e_1^2+4e_2$$

Equivalently, $4!A_2 = h_1^2 + 4h_2$.

Problem. Are there other "nice" examples of sums (or linear combinations) of X_G 's being e-positive?

Monomial symmetric functions

Example. Coefficient of m_{311} in $(10)!A_5$ is the number of $w = a_1, \ldots, a_{10} \in \mathfrak{S}_{10}$ satisfying

$$\underbrace{a_1 > a_2 < a_3 > a_4 < a_5 > a_6}_{\text{length } 6 = 2\lambda_1} \underbrace{a_7 > a_8}_{2 = 2\lambda_2} \underbrace{a_9 > a_{10}}_{2 = 2\lambda_3}.$$

Monomial symmetric functions

Example. Coefficient of m_{311} in $(10)!A_5$ is the number of $w = a_1, \ldots, a_{10} \in \mathfrak{S}_{10}$ satisfying

$$\underbrace{a_1 > a_2 < a_3 > a_4 < a_5 > a_6}_{\text{length } 6 = 2\lambda_1} \underbrace{a_7 > a_8}_{2 = 2\lambda_2} \underbrace{a_9 > a_{10}}_{2 = 2\lambda_3}.$$

Proof sketch. Expand

$$\sum_{n} A_{n}t^{n} = \prod_{i} \sec(\sqrt{x_{i}t}) = \prod_{i} \left(\sum_{n} E_{2n} \frac{x_{i}^{n}t^{n}}{(2n)!} \right)$$

$$(2n)! [m_{\lambda}] A_n = (2n)! [x_1^{\lambda_1} x_2^{\lambda_2} \cdots] A_n = {2n \choose 2\lambda_1, 2\lambda_2, \dots} E_{2\lambda_1} E_{2\lambda_2} \cdots,$$

etc.

Schur function expansion

Example. To get the coefficient of s_{5311} in $20! \cdot A_{10}$, take the conjugate partition 42211 and double each part: $\mu = 84422$. Form the skew shape $\rho(5311)$:

Row lengths are the parts of μ .

Each row begins one square to the left of the row above.

Schur function expansion

Example. To get the coefficient of s_{5311} in $20! \cdot A_{10}$, take the conjugate partition 42211 and double each part: $\mu = 84422$. Form the skew shape $\rho(5311)$:

Row lengths are the parts of μ .

Each row begins one square to the left of the row above.

Theorem. For general $\lambda \vdash n$, the coefficient of s_{λ} in $(2n)!A_n$ is the number $f^{\rho(\lambda)}$ of standard Young tableaux of (skew) shape $\rho(\lambda)$. (Well-known determinantal formula.)

First generalization

Let $c \geq 1$ and

$$F_c(t) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{(cn)!}\right)^{-1}.$$

First generalization

Let $c \geq 1$ and

$$F_c(t) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{(cn)!}\right)^{-1}.$$

m, p, s-expansions straightforward generalizations of c=2 case. In particular, there are "natural" skew shapes $\rho(\lambda, c)$ for which

$$(cn)!R_n = \sum_{\lambda \vdash n} f^{\rho(\lambda,c)} s_{\lambda}.$$

h-expansion of R_n for the seed $F_c(t)$

We don't know poles of $F_c(t)$ (a Mittag-Leffler function) explicitly for $c \geq 3$, but can show $F_c(t) = \prod (1 - \beta_j t)^{-1}$ either by a direct analytic argument or the earlier corollary:

Corollary. Let $d \ge 1$. If the seed $F(t) = \sum a_i t^i$ generates a Schur positive sprout \Re , then $F_d(t) := \sum a_{di} t^i$ generates a Schur positive sprout \Re_d .

h-expansion of R_n for the seed $F_c(t)$

We don't know poles of $F_c(t)$ (a Mittag-Leffler function) explicitly for $c \geq 3$, but can show $F_c(t) = \prod (1 - \beta_j t)^{-1}$ either by a direct analytic argument or the earlier corollary:

Corollary. Let $d \ge 1$. If the seed $F(t) = \sum a_i t^i$ generates a Schur positive sprout \mathfrak{R} , then $F_d(t) := \sum a_{di} t^i$ generates a Schur positive sprout \mathfrak{R}_d .

Recall coefficients of h-expansion of $(2n)! R_n$ for $F_2(t)$ sum to E_{2n} , and a combinatorial interpretation is open. For arbitrary c, the coefficients sum to

$$\#\{w \in \mathfrak{S}_{cn} : \mathrm{Des}(w) = \{c, 2c, 3c, \dots, (n-1)c\}\},\$$

where Des(w) denotes the descent set of w.

A q-analogue of $F_c(t)$

$$F_c(t,q) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{(cn)!_q}\right)^{-1},$$

where $(m)!_q = 1 \cdot (1+q)(1+q+q^2) \cdots (1+q+\cdots+q^{m-1})$, the standard *q*-analogue of m!.

A q-analogue of $F_c(t)$

$$F_c(t,q) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{(cn)!_q}\right)^{-1},$$

where $(m)!_q = 1 \cdot (1+q)(1+q+q^2) \cdots (1+q+\cdots+q^{m-1})$, the standard *q*-analogue of m!.

If c = 2 then

$$(4)!_q R_2 = (q^4 + q^3 + 2q^2 + q)h_1^2 + (q^4 + q^3 + 2q^2 + q - 1)h_2,$$

so (h, q)-positivity fails even for c = 2.

A q-analogue of $F_c(t)$

$$F_c(t,q) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{(\boldsymbol{cn})!_q}\right)^{-1},$$

where $(m)!_q = 1 \cdot (1+q)(1+q+q^2) \cdots (1+q+\cdots+q^{m-1})$, the standard *q*-analogue of *m*!.

If c = 2 then

$$(4)!_q R_2 = (q^4 + q^3 + 2q^2 + q)h_1^2 + (q^4 + q^3 + 2q^2 + q - 1)h_2,$$

so (h, q)-positivity fails even for c = 2.

Note. No nice q-analogue of total positivity or Edrei-Thoma is known.

Schur expansion of R_n for the seed $F_d(q,t)$

Recall that for $F_c(t) = (\sum (-1)^n t^n/(cn)!)^{-1}$ we have

$$(cn)!R_n = \sum_{\lambda \vdash n} f^{\rho(\lambda,c)} s_{\lambda}. \qquad (*)$$

for some "natural" skew shape $\rho(\lambda, c)$.

Schur expansion of R_n for the seed $F_d(q,t)$

Recall that for $F_c(t) = \left(\sum (-1)^n t^n/(cn)!\right)^{-1}$ we have

$$(cn)!R_n = \sum_{\lambda \vdash n} f^{\rho(\lambda,c)} s_{\lambda}.$$
 (*)

for some "natural" skew shape $\rho(\lambda, c)$.

Theorem. For the seed $F_c(q,t)$ we have

$$egin{aligned} egin{aligned} (extbf{\emph{cn}})!_q R_n &= \sum_{\lambda \vdash n} \left(\sum_{\substack{ ext{SYT } T \ ext{sh}(T) =
ho(\lambda, c)}} q^{ ext{maj}(T)}
ight) s_{\lambda}, \end{aligned}$$

the "nicest" possible q-analogue of (*).

Second special case

$$F(t) = \left(\sum_{n \geq 0} \frac{(-1)^n t^n}{n!^d}\right)^{-1}, \quad d \geq 1$$

Second special case

$$F(t) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{n!^d}\right)^{-1}, \quad d\geq 1$$

Theorem (Carlitz-Scoville-Vaughan (1976) for d=2) Let $d \ge 1$ and

$$F(t) = \sum_{n \geq 0} v_d(n) \frac{t^n}{n!^d}.$$

Then

$$v_d(n) = \#\{(w_1,\ldots,w_d) \in \mathfrak{S}_n^d : \operatorname{Des}(w_1) \cap \cdots \cap \operatorname{Des}(w_d) = \emptyset\}.$$

First problem

Problem 1. Let
$$F(t) = \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{n!^d}\right)^{-1}$$
.
E.g., $d = 2$, $3!^2 R_3 = s_{111} + 8s_{21} + 19s_3$.
dim $3!^2 R_3 = \langle p_1^3, 3!^2 R_3 \rangle$
 $= f^{111} + 8f^{21} + 19f^3 = 3!^2$

$$19 = [s_3]3!^2 R_3 = \#\{(u,v) \in \mathfrak{S}_n^2 : D(u) \cap D(v) = \emptyset\} = v_2(3)$$

What statistic on $\mathfrak{S}_3 \times \mathfrak{S}_3$ (or $\mathfrak{S}_n \times \mathfrak{S}_n$ in general) do the other coefficients count? (open)

Second problem

Analytic methods (M. Kwaśnicki, MO 477780) show that

$$F(t) := \left(\sum_{n \geq 0} \frac{(-1)^n t^n}{n!^d}\right)^{-1} = \prod (1 - \beta_i t)^{-1},$$

where $\beta_i \geq 0$, $\sum \beta_i < \infty$. Hence R_n is h-positive. Some data for d=2:

Second problem

Analytic methods (M. Kwaśnicki, MO 477780) show that

$$F(t) := \left(\sum_{n \geq 0} \frac{(-1)^n t^n}{n!^d}\right)^{-1} = \prod (1 - \beta_i t)^{-1},$$

where $\beta_i \geq 0$, $\sum \beta_i < \infty$. Hence R_n is h-positive. Some data for d=2:

$$R_1 = h_1$$

 $2!^2 R_2 = h_1^2 + 2h_2$
 $3!^2 R_3 = h_1^3 + 6h_2h_1 + 12h_3$
 $4!^2 R_4 = h_1^4 + 12h_2h_1^2 + 60h_3h_1 + 6h_2^2 + 132h_4$

Second problem

Analytic methods (M. Kwaśnicki, MO 477780) show that

$$F(t) := \left(\sum_{n \geq 0} \frac{(-1)^n t^n}{n!^d}\right)^{-1} = \prod (1 - \beta_i t)^{-1},$$

where $\beta_i \geq 0$, $\sum \beta_i < \infty$. Hence R_n is h-positive. Some data for d=2:

$$R_1 = h_1$$

$$2!^2 R_2 = h_1^2 + 2h_2$$

$$3!^2 R_3 = h_1^3 + 6h_2h_1 + 12h_3$$

$$4!^2 R_4 = h_1^4 + 12h_2h_1^2 + 60h_3h_1 + 6h_2^2 + 132h_4$$

Problem 2. For general d, sum of the coefficients for h-expansion of $n!^d R_n$ is $v_d(n)$. What do they count? (open)

The whole shebang

Let $w = a_1, a_2, \dots, a_{cn} \in \mathfrak{S}_{cn}$ with $D(w) \subseteq \{c, 2c, \dots, (n-1)c\}$. Define

$$Asc_c(w) = \#\{1 \le i \le n-1 : a_{ic} < a_{ic+1}\}.$$

Let

$$F(t) := \left(\sum_{n\geq 0} \frac{(-1)^n t^n}{(c_1 n)!_{q_1} \cdots (c_d n)!_{q_d}}\right)^{-1}$$

$$= \sum_{n\geq 0} v_n(c_1, \dots, c_d) \frac{t^n}{(c_1 n)!_{q_1} \cdots (c_d n)!_{q_d}}.$$

The whole shebang

Let $w = a_1, a_2, \ldots, a_{cn} \in \mathfrak{S}_{cn}$ with $D(w) \subseteq \{c, 2c, \ldots, (n-1)c\}$. Define

$$Asc_c(w) = \#\{1 \le i \le n-1 : a_{ic} < a_{ic+1}\}.$$

Let

$$F(t) := \left(\sum_{n \geq 0} \frac{(-1)^n t^n}{(c_1 n)!_{q_1} \cdots (c_d n)!_{q_d}} \right)^{-1}$$

$$= \sum_{n \geq 0} v_n(c_1, \dots, c_d) \frac{t^n}{(c_1 n)!_{q_1} \cdots (c_d n)!_{q_d}}.$$

Then

$$v_n(c_1,\ldots,c_d) = \sum_{\substack{w_1 \in \mathfrak{S}_{nc_1},\ldots,w_d \in \mathfrak{S}_{nc_d} \ \operatorname{Asc}_{c_1}(w_1) \cap \cdots \cap \operatorname{Asc}_{c_d}(w_d) = \emptyset}} q_1^{\operatorname{inv}(w_1)} \cdots q_d^{\operatorname{inv}(w_d)}.$$

The example d = 2, $c_1 = 1$, $c_2 = 2$

w_1	$\mathrm{Asc}_1(w_1)$	$\operatorname{inv}(w_1)$	w_2	$\mathrm{Asc}_2(w_2)$	$inv(w_2)$
12	{1}	0	1324	Ø	1
12	$\{1\}$	0	1423	Ø	2
12	$\{1\}$	0	2314	Ø	2
12	{1}	0	2413	Ø	3
12	{1}	0	3412	Ø	4
21	Ø	1	1234	$\{1\}$	0
21	Ø	1	1324	Ø	1
21	Ø	1	1423	Ø	2
21	Ø	1	2314	Ø	2
21	Ø	1	2413	Ø	3
21	Ø	1	3412	Ø	4

The example d = 2, $c_1 = 1$, $c_2 = 2$

w_1	$\mathrm{Asc}_1(w_1)$	$\operatorname{inv}(w_1)$	W_2	$\mathrm{Asc}_2(w_2)$	$\operatorname{inv}(w_2)$
12	{1}	0	1324	Ø	1
12	$\{1\}$	0	1423	Ø	2
12	$\{1\}$	0	2314	Ø	2
12	{1}	0	2413	Ø	3
12	{1}	0	3412	Ø	4
21	Ø	1	1234	$\{1\}$	0
21	Ø	1	1324	Ø	1
21	Ø	1	1423	Ø	2
21	Ø	1	2314	Ø	2
21	Ø	1	2413	Ø	3
21	Ø	1	3412	Ø	4
	$\Rightarrow v_3(1,2) =$	$= qr^4 + qr$	$x^{-3} + 2qr$	$r^2 + qr + q$	$+r^3+2r^2+$

where $q_1 = q$, $q_2 = r$.

Conjecture. F(t) is an (s, q_1, \ldots, q_d) -positive seed.

Conjecture. F(t) is an (s, q_1, \ldots, q_d) -positive seed.

Example.
$$d = 2, c_1 = 1, c_2 = 2, F(t) = \sum_{n \ge 0} t^n / (n)!_q (2n)!_r$$

$$(3)!_{q} (6)!_{r}R_{3} = s_{111} + (q^{2}r^{8} + q^{2}r^{7} + qr^{8} + 2q^{2}r^{6} + qr^{7} + r^{8} + 2q^{2}r^{5} + 2qr^{6} + r^{7} + 3q^{2}r^{4} + 2qr^{5} + 2r^{6} + 2q^{2}r^{3} + 3qr^{4} + 2r^{5} + 2q^{2}r^{2} + 2qr^{3} + 3r^{4} + q^{2}r + 2qr^{2} + 2r^{3} + q^{2} + qr + 2r^{2} + q + r)s_{21} + (q^{3}r^{12} + 2q^{3}r^{11} + 2q^{2}r^{12} + 5q^{3}r^{10} + 4q^{2}r^{11} + 2qr^{12} + 7q^{3}r^{9} + 10q^{2}r^{10} + 4qr^{11} + r^{12} + 11q^{3}r^{8} + 14q^{2}r^{9} + 10qr^{10} + 2r^{11} + 12q^{3}r^{7} + 20q^{2}r^{8} + 14qr^{9} + 5r^{10} + 14q^{3}r^{6} + 22q^{2}r^{7} + 20qr^{8} + 7r^{9} + 12q^{3}r^{5} + 24q^{2}r^{6} + 22qr^{7} + 9r^{8} + 12q^{3}r^{4} + 20q^{2}r^{5} + 24qr^{6} + 10r^{7} + 7q^{3}r^{3} + 16q^{2}r^{4} + 20qr^{5} + 10r^{6} + 5q^{3}r^{2} + 10q^{2}r^{3} + 16qr^{4} + 8r^{5} + 2q^{3}r + 6q^{2}r^{2} + 10qr^{3} + 5r^{4} + q^{3} + 2q^{2}r + 6qr^{2} + 3r^{3} + 2qr + r^{2})s_{3}$$

Conjecture. F(t) is an $(s, q_1, ..., q_d)$ -positive seed.

Example.
$$d = 2, c_1 = 1, c_2 = 2, F(t) = \sum_{n \ge 0} t^n / (n)!_q (2n)!_r$$

$$\begin{aligned} & \textbf{(3)!}_{q} \textbf{(6)!}_{r} R_{3} = s_{111} + (q^{2}r^{8} + q^{2}r^{7} + qr^{8} + 2q^{2}r^{6} + qr^{7} + r^{8} + 2q^{2}r^{5} + 2qr^{6} + r^{7} + 3q^{2}r^{4} \\ & + 2qr^{5} + 2r^{6} + 2q^{2}r^{3} + 3qr^{4} + 2r^{5} + 2q^{2}r^{2} + 2qr^{3} + 3r^{4} + q^{2}r + 2qr^{2} + 2r^{3} + q^{2} + qr + 2r^{2} + q + r)s_{21} \\ & + (q^{3}r^{12} + 2q^{3}r^{11} + 2q^{2}r^{12} + 5q^{3}r^{10} + 4q^{2}r^{11} + 2qr^{12} + 7q^{3}r^{9} + 10q^{2}r^{10} + 4qr^{11} + r^{12} \\ & + 11q^{3}r^{8} + 14q^{2}r^{9} + 10qr^{10} + 2r^{11} + 12q^{3}r^{7} + 20q^{2}r^{8} + 14qr^{9} + 5r^{10} \\ & + 14q^{3}r^{6} + 22q^{2}r^{7} + 20qr^{8} + 7r^{9} + 12q^{3}r^{5} + 24q^{2}r^{6} + 22qr^{7} + 9r^{8} + \mathbf{12}q^{3}r^{4} + 20q^{2}r^{5} \\ & + 24qr^{6} + 10r^{7} + 7q^{3}r^{3} + 16q^{2}r^{4} + 20qr^{5} + 10r^{6} + 5q^{3}r^{2} + 10q^{2}r^{3} + 16qr^{4} + 8r^{5} + 2q^{3}r \\ & + 6q^{2}r^{2} + 10qr^{3} + 5r^{4} + q^{3} + 2q^{2}r + 6qr^{2} + 3r^{3} + 2qr + r^{2})s_{3} \end{aligned}$$

Conjecture. F(t) is an (s, q_1, \ldots, q_d) -positive seed.

Example.
$$d = 2, c_1 = 1, c_2 = 2, F(t) = \sum_{n \ge 0} t^n / (n)!_q (2n)!_r$$

$$\begin{aligned} & \textbf{(3)!}_{q} \textbf{(6)!}_{r} R_{3} = s_{111} + (q^{2}r^{8} + q^{2}r^{7} + qr^{8} + 2q^{2}r^{6} + qr^{7} + r^{8} + 2q^{2}r^{5} + 2qr^{6} + r^{7} + 3q^{2}r^{4} \\ & + 2qr^{5} + 2r^{6} + 2q^{2}r^{3} + 3qr^{4} + 2r^{5} + 2q^{2}r^{2} + 2qr^{3} + 3r^{4} + q^{2}r + 2qr^{2} + 2r^{3} + q^{2} + qr + 2r^{2} + q + r)s_{21} \\ & + (q^{3}r^{12} + 2q^{3}r^{11} + 2q^{2}r^{12} + 5q^{3}r^{10} + 4q^{2}r^{11} + 2qr^{12} + 7q^{3}r^{9} + 10q^{2}r^{10} + 4qr^{11} + r^{12} \\ & + 11q^{3}r^{8} + 14q^{2}r^{9} + 10qr^{10} + 2r^{11} + 12q^{3}r^{7} + 20q^{2}r^{8} + 14qr^{9} + 5r^{10} \\ & + 14q^{3}r^{6} + 22q^{2}r^{7} + 20qr^{8} + 7r^{9} + 12q^{3}r^{5} + 24q^{2}r^{6} + 22qr^{7} + 9r^{8} + 11q^{3}r^{4} + 20q^{2}r^{5} \\ & + 24qr^{6} + 10r^{7} + 7q^{3}r^{3} + 16q^{2}r^{4} + 20qr^{5} + 10r^{6} + 5q^{3}r^{2} + 10q^{2}r^{3} + 16qr^{4} + 8r^{5} + 2q^{3}r \\ & + 6q^{2}r^{2} + 10qr^{3} + 5r^{4} + q^{3} + 2q^{2}r + 6qr^{2} + 3r^{3} + 2qr + r^{2})s_{3} \end{aligned}$$

Conjecture. F(t) is an (s, q_1, \ldots, q_d) -positive seed.

Example.
$$d = 2, c_1 = 1, c_2 = 2, F(t) = \sum_{n \ge 0} t^n / (n)!_q (2n)!_r$$

$$(3)!_{q} (6)!_{r} R_{3} = s_{111} + (q^{2}r^{8} + q^{2}r^{7} + qr^{8} + 2q^{2}r^{6} + qr^{7} + r^{8} + 2q^{2}r^{5} + 2qr^{6} + r^{7} + 3q^{2}r^{4}$$

$$+ 2qr^{5} + 2r^{6} + 2q^{2}r^{3} + 3qr^{4} + 2r^{5} + 2q^{2}r^{2} + 2qr^{3} + 3r^{4} + q^{2}r + 2qr^{2} + 2r^{3} + q^{2} + qr + 2r^{2} + q + r)s_{21}$$

$$+ (q^{3}r^{12} + 2q^{3}r^{11} + 2q^{2}r^{12} + 5q^{3}r^{10} + 4q^{2}r^{11} + 2qr^{12} + 7q^{3}r^{9} + 10q^{2}r^{10} + 4qr^{11} + r^{12}$$

$$+ 11q^{3}r^{8} + 14q^{2}r^{9} + 10qr^{10} + 2r^{11} + 12q^{3}r^{7} + 20q^{2}r^{8} + 14qr^{9} + 5r^{10}$$

$$+ 14q^{3}r^{6} + 22q^{2}r^{7} + 20qr^{8} + 7r^{9} + 12q^{3}r^{5} + 24q^{2}r^{6} + 22qr^{7} + 9r^{8} + 11q^{3}r^{4} + 20q^{2}r^{5}$$

$$+ 24qr^{6} + 10r^{7} + 7q^{3}r^{3} + 16q^{2}r^{4} + 20qr^{5} + 10r^{6} + 5q^{3}r^{2} + 10q^{2}r^{3} + 16qr^{4} + 8r^{5} + 2q^{3}r$$

$$+ 6q^{2}r^{2} + 10qr^{3} + 5r^{4} + q^{3} + 2q^{2}r + 6qr^{2} + 3r^{3} + 2qr + r^{2})s_{3}$$

What do the coefficients count? Coefficient of s_n is $v_n(c_1, \ldots, c_d)$.

The final slide

The final slide

