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Symmetric functions

K : a field of characteristic 0

ΛK = ΛK (x): ring of symmetric functions over K in the variables
x = (x1, x2, . . . )

bases mλ (monomial symmetric functions), pλ (power sums), hλ
(complete), eλ (elementary), sλ (Schur): knowledge assumed



Sprout sequences and their seeds

Definition. A sequence R = (R0 = 1,R1,R2, . . . ) of symmetric
functions is a sprout sequence if there exists a power series

F (t) =
∑

j≥0

aj t
j ∈ K [[t]], a0 = 1

such that
F(t) :=

∏

i

F (xi t) =
∑

n≥0

Rnt
n

Well-defined formally, and Rn is homogeneous of degree n
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n

Well-defined formally, and Rn is homogeneous of degree n

F (t) is the seed of the sprout sequence R.

We also call R0,R1, . . . sprout symmetric functions (with
respect to the seed F (t)). Note R0 = 1,R1 = a1

∑
xi = a1p1.



Simple examples

1. F (t) = et . Then

F(t) = F (x1t)F (x2t) · · · = exp(x1t + x2t + · · · )

= exp(p1t) =
∑
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2. F (t) = 1 + t, so F(t) = (1 + x1t)(1 + x2t) · · · =
∑

n≥0 ent
n,

whence Rn = en = s1n (e, s-positive, but not h-positive).

3. F (t) = 1/(1− t), so
F(t) = 1/(1 − x1t)(1− x2t) · · · =

∑

n≥0 hnt
n, whence

Rn = hn = sn (h, s-positive, but not e-positive).

4. F (t) = 1− t or et+t2 or ee
t−1 or

∑

j≥0 Cj t
j , etc.: not s-positive.
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Theorem. Let R = (R0 = 1,R1,R2, . . . ) be a sequence of
symmetric functions. The following five conditions are equivalent.

(a) R is a sprout sequence.

(b) There exist elements b1, b2, · · · ∈ K such that

log
∑

n≥0

Rnt
n =

∑

n≥1

bnpn
tn

n
.

(c) There exist elements a0 = 1, a1, a2, · · · ∈ K such that for all
n ≥ 1,

Rn =
∑

λ⊢n

aλ1
aλ2

· · ·mλ.

(d) There exist elements b0 = 1, b1, b2, . . . in K such that for all
n ≥ 1,

Rn =
∑

λ⊢n

z−1
λ bλ1

bλ2
· · · pλ.
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Five conditions (cont.)

(e) (omitted)

Moreover, R has seed F (t) =
∑

aj t
j and

log F (t) =
∑

j≥1

bj
t j

j
.

Proofs are straighforward.
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Recall ω : ΛK → ΛK is the linear transformation defined by
ω(hλ) = eλ. Then ω is a K -algebra automorphism, ω2 = 1,
ω(sλ) = sλ′ , and ω(pn) = (−1)n−1pn.

Theorem. Let R = (1,R1,R2, . . . ) be a sprout sequence with seed
F (t). Then (1, ωR1, ωR2, . . . ) is a sprout sequence with seed
1/F (−t).

Proof. Straightforward. �

Example. F (t) = 1 + t and Rn = en. Then 1/F (−t) = 1/(1 − t)
and Rn = hn.
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Schur positivity

Let K = R. When is each Rn Schur positive, i.e., a nonnegative
linear combination of Schur functions?

Theorem. Let R = (1,R1,R2, . . . ) be a sprout sequence over R
with seed F (t) =

∑
aj t

j . The following conditions are equivalent.

(a) Each Rn is Schur positive.

(b) We can write

F (t) = eγt
∏

k≥1

1 + αkt

1− βk t
,

where γ ≥ 0 and the αk ’s and βk ’s are nonnegative real
numbers such that

∑

j(αk + βk) is convergent. (This is an
analytic, not formal or combinatorial, statement.)

(c) The matrix [aj−i ]i ,j≥0 (where an = 0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.
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Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.

(a) ⇔ (c):

Hint #1. Let H = [hj−i ]. Then every minor of H is either 0 or a
skew-Schur function (by the Jacobi-Trudi identity). Every Schur
function appears as a minor, and every skew Schur function is
Schur positive.

Hint #2. Consider the homomorphism ϕ : ΛK → K defined by
ϕ(hn) = an.
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A corollary

Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur

positive sprout sequence R, then Fd(t) :=
∑

adi t
i generates a

Schur positive sprout sequence Rd .

Proof. Let Md = [ad(j−i)]i ,j≥0. Every minor of M1 is nonnegative
since R is Schur positive. But Md is a submatrix of M1, so every
minor of Md is Schur positive. Hence Rd is Schur positive. �.
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(a) If all βj = 0, then each Rn is e-positive.

(b) If all αj = 0, then each Rn is h-positive.

Proof. (a) Assume all βj = 0. Then

∑

Rnt
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∏
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(b) is completely analogous. �

Conjecture. The converse holds. (True for e−γtF (t) ∈ R(t).)





The function φ(λ)

Amdeberhan-Ono-Singh (2024):

φ(λ) := (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢ n =
∑

imi (λ is a partition of n with
mi i ’s) and B2k is a Bernoulli number.
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φ(λ) := (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢ n =
∑

imi (λ is a partition of n with
mi i ’s) and B2k is a Bernoulli number.

Original motivation. Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).



Euler numbers E2n

Our motivation. Not hard to see that

φ(λ) ∈ Z,
∑

λ⊢n

|φ(λ)| = E2n,

an Euler number or secant number, defined by

sec x =
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n≥0

E2n
x2n

(2n)!
.

Well-known: E2n is equal to the number of alternating
permutations a1a2 · · · a2n ∈ S2n, i.e.,

a1 > a2 < a3 > a4 < · · · > a2n.



Euler numbers E2n

Our motivation. Not hard to see that

φ(λ) ∈ Z,
∑

λ⊢n

|φ(λ)| = E2n,

an Euler number or secant number, defined by

sec x =
∑

n≥0

E2n
x2n

(2n)!
.

Well-known: E2n is equal to the number of alternating
permutations a1a2 · · · a2n ∈ S2n, i.e.,

a1 > a2 < a3 > a4 < · · · > a2n.

Question: what does |φ(λ)| count?
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If w = a1 > a2 < · · · > a2n ∈ A2n define ŵ = a1, a3, . . . , a2n−1.
Write ŵ = b1, b2, , . . . , bn.
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(in decreasing order)
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A2n := {w ∈ S2n : w alternating}
Recall

∑

λ⊢n |φ(λ)| = E2n = #A2n.

If w = a1 > a2 < · · · > a2n ∈ A2n define ŵ = a1, a3, . . . , a2n−1.
Write ŵ = b1, b2, , . . . , bn.

record set recrecrec(ŵ): set of indices 1 ≤ i ≤ n for which bi is a
left-to-right maximum (or record) in ŵ . (Always 1 ∈ rec(ŵ).)

record partition rp(ŵ): if rec(ŵ) = {r1, r2, . . . , rj}<, then rp(ŵ)
is the partition of n with parts r2 − r1, r3 − r2, r4 − r3, . . . , n+1− rj
(in decreasing order)

Example. w = 7, 2, 5, 4, 8, 3, 10, 6, 9, 5 ∈ A10, ŵ = 777, 5,888,101010, 9;
r1 = 1, r2 = 3, r3 = 4, r2 − r1 = 2, r3 − r2 = 1, 6− r3 = 2,
rp(ŵ ) = (2, 2, 1)
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Combinatorial interpretation of φ(λ)

Theorem. |φ(λ)| = #{w ∈ A2n : rp(ŵ) = λ}

Note on proof. Recall

φ(λ) = (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢∑ imi . To get combinatorics into the
picture, use

E2k−1 = 4k(4k − 1)
|B2k |
2k

.

Remainder of proof is a bijective argument.



A symmetric function

The general form φ(λ) = (2n)!
∏ 1

mk !
f mk

k suggests defining a
symmetric function in the variables x = (x1, x2, . . . ):

An = An(x) =
∑

λ⊢n

|φ(λ)| · pλ,

where pλ is a power sum symmetric function.



Examples.

2!A1 = p1

4!A2 = 3p21 + 2p2

6!A3 = 15p31 + 30p2p1 + 16p3

8!,A4 = 105p14 + 420p2p
2
1 + 140p22 + 448p3p1 + 272p4

4!A2:
w ŵ rp(ŵ)

2143 24 11
3142 34 11
3241 34 11
4132 43 2
4231 43 2



A sprout sequence

Theorem.
∑
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n =
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√
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A sprout sequence

Theorem.
∑

Ant
n =

∏

i sec(
√
xi t), i.e., A := (A0,A1, . . . ) is a

sprout sequence with seed sec
√
t.

Proof. Manipulatorics (A. Garsia). �
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h-positivity

Theorem. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =
∏

k≥1

(

1− 4t2

π2(2k − 1)2

)

implies:

F (t) = sec(
√
t)

=
∏

j≥1

(

1− 4t

π2(2j − 1)2

)−1

.

This has the desired form eγt
∏
(1− βj t)

−1 (with γ = 0,
βj = 4/π2(2j − 1)2) for h-positivity. �

Very noncombinatorial formula for the coefficients!
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Some data

2!A1 = h1

4!A2 = h21 + 4h2

6!A3 = h31 + 12h2h1 + 48h3

8!A4 = h41 + 24h2h
2
1 + 256h3h1 + 16h22 + 1088h4

10!A5 = h51 + 40h2h
3
1 + 800h3h

2
1 + 80h22h1 + 9280h4h1

+ 640h3h2 + 39680h5.

Open problem. Sum of coefficients is E2n. What are the
coefficients themselves?

Note. Coefficient of hn is nE2n−1, the number of “cyclically
alternating” permutations in S2n.
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G : finite simple graph on vertex set V (G) = {v1, v2, . . . , vp}

XG = XG (x) :=
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κ : V (G)→P

uv∈E(G)⇒κ(u)6=κ(v)

xκ(v1)xκ(v2) · · · xκ(vp)
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Chromatic symmetric functions

G : finite simple graph on vertex set V (G) = {v1, v2, . . . , vp}

XG = XG (x) :=
∑

κ : V (G)→P

uv∈E(G)⇒κ(u)6=κ(v)

xκ(v1)xκ(v2) · · · xκ(vp)

XKp
(x) = (x1 + x2 + · · · )p = ep1

XKp
(x) = p! ep

XG (1, 1, . . . , 1
︸ ︷︷ ︸

m 1’s

, 0, 0, . . . ) = χG (m),

the chromatic polynomial of G .



Interval orders

I = {[a1, b1], . . . , [an, bn]}, a collection of closed intervals in R, so
ai < bi .

GI : graph with vertex set I, with [ai , bi ] adjacent to [aj , bj ] if
[ai , bi ] ∩ [aj , bj ] 6= ∅ (incomparability graph of the corresponding
interval order: [ai , bi ] < [aj , bj ] if bi < aj ]).

M : a complete matching a1b1, a2b2, . . . , anbn on
[2n] := {1, 2, . . . , 2n}, with ai < bi (so {a1, b1, . . . , an, bn} = [2n])

I(M) := {[a1, b1], . . . , [an, bn]}



Interval orders

I = {[a1, b1], . . . , [an, bn]}, a collection of closed intervals in R, so
ai < bi .

GI : graph with vertex set I, with [ai , bi ] adjacent to [aj , bj ] if
[ai , bi ] ∩ [aj , bj ] 6= ∅ (incomparability graph of the corresponding
interval order: [ai , bi ] < [aj , bj ] if bi < aj ]).

M : a complete matching a1b1, a2b2, . . . , anbn on
[2n] := {1, 2, . . . , 2n}, with ai < bi (so {a1, b1, . . . , an, bn} = [2n])

I(M) := {[a1, b1], . . . , [an, bn]}

Theorem. (2n)!ω(An) =
∑

M∈Mn
XGI(M)

, where Mn is the set of
all (2n − 1)!! complete matchings on [2n], and XGI(M)

is the
chromatic symmetric function of the graph GI(M).



The case n = 2

matching M graph GI(M) XGI(M)

12, 34 • • e21
13, 24 •−−−• 2e2
14, 23 •−−−• 2e2

4!ω(A2) = e21 + 4e2



The case n = 2

matching M graph GI(M) XGI(M)

12, 34 • • e21
13, 24 •−−−• 2e2
14, 23 •−−−• 2e2

4!ω(A2) = e21 + 4e2

Equivalently, 4!A2 = h21 + 4h2.



The case n = 2

matching M graph GI(M) XGI(M)

12, 34 • • e21
13, 24 •−−−• 2e2
14, 23 •−−−• 2e2

4!ω(A2) = e21 + 4e2

Equivalently, 4!A2 = h21 + 4h2.

Problem. Are there other “nice” examples of sums (or linear
combinations) of XG ’s being e-positive?



Monomial symmetric functions

Example. Coefficient of m311 in (10)!A5 is the number of
w = a1, . . . , a10 ∈ S10 satisfying

a1 > a2 < a3 > a4 < a5 > a6
︸ ︷︷ ︸

length 6=2λ1

a7 > a8
︸ ︷︷ ︸

2=2λ2

a9 > a10
︸ ︷︷ ︸

2=2λ3

.



Monomial symmetric functions

Example. Coefficient of m311 in (10)!A5 is the number of
w = a1, . . . , a10 ∈ S10 satisfying

a1 > a2 < a3 > a4 < a5 > a6
︸ ︷︷ ︸

length 6=2λ1

a7 > a8
︸ ︷︷ ︸

2=2λ2

a9 > a10
︸ ︷︷ ︸

2=2λ3

.

Proof sketch. Expand

∑

n

Ant
n =

∏

i

sec(
√
xi t) =

∏

i

(
∑

n

E2n
xni t

n

(2n)!

)

(2n)! [mλ]An = (2n)![xλ1
1 xλ2

2 · · · ]An =

(
2n

2λ1, 2λ2, . . .

)

E2λ1
E2λ2

· · · ,

etc.



Schur function expansion

Example. To get the coefficient of s5311 in 20! · A10, take the
conjugate partition 42211 and double each part: µ = 84422. Form
the skew shape ρ(5311):

Row lengths are the parts of µ.
Each row begins one square to the left of the row above.



Schur function expansion

Example. To get the coefficient of s5311 in 20! · A10, take the
conjugate partition 42211 and double each part: µ = 84422. Form
the skew shape ρ(5311):

Row lengths are the parts of µ.
Each row begins one square to the left of the row above.

Theorem. For general λ ⊢ n, the coefficient of sλ in (2n)!An is the
number f ρ(λ) of standard Young tableaux of (skew) shape ρ(λ).
(Well-known determinantal formula.)



First generalization

Let c ≥ 1 and

Fc(t) =




∑

n≥0

(−1)ntn

(cn)!





−1

.



First generalization

Let c ≥ 1 and

Fc(t) =




∑

n≥0

(−1)ntn

(cn)!





−1

.

m, p, s-expansions straightforward generalizations of c = 2 case.
In particular, there are “natural” skew shapes ρ(λ, c) for which

(cn)!Rn =
∑

λ⊢n

f ρ(λ,c)sλ.



h-expansion of Rn for the seed Fc(t)

We don’t know poles of Fc(t) (a Mittag-Leffler function)
explicitly for c ≥ 3, but can show Fc(t) =

∏
(1− βj t)

−1 either by
a direct analytic argument or the earlier corollary:

Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur

positive sprout R, then Fd (t) :=
∑

adi t
i generates a Schur

positive sprout Rd .



h-expansion of Rn for the seed Fc(t)

We don’t know poles of Fc(t) (a Mittag-Leffler function)
explicitly for c ≥ 3, but can show Fc(t) =

∏
(1− βj t)

−1 either by
a direct analytic argument or the earlier corollary:

Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur

positive sprout R, then Fd (t) :=
∑

adi t
i generates a Schur

positive sprout Rd .

Recall coefficients of h-expansion of (2n)!Rn for F2(t) sum to E2n,
and a combinatorial interpretation is open. For arbitrary c , the
coefficients sum to

#{w ∈ Scn : Des(w) = {c , 2c , 3c , . . . , (n − 1)c}},

where Des(w) denotes the descent set of w .



A q-analogue of Fc(t)

Fc(t, q) =




∑

n≥0

(−1)ntn

(cn)!q





−1

,

where (m)!q = 1 · (1 + q)(1 + q+ q2) · · · (1 + q+ · · ·+ qm−1), the
standard q-analogue of m!.
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Fc(t, q) =




∑

n≥0

(−1)ntn

(cn)!q





−1

,

where (m)!q = 1 · (1 + q)(1 + q+ q2) · · · (1 + q+ · · ·+ qm−1), the
standard q-analogue of m!.

If c = 2 then

(4)!q R2 = (q4 + q3 + 2q2 + q)h21 + (q4 + q3 + 2q2 + q − 1)h2,

so (h, q)-positivity fails even for c = 2.



A q-analogue of Fc(t)

Fc(t, q) =




∑

n≥0

(−1)ntn

(cn)!q





−1

,

where (m)!q = 1 · (1 + q)(1 + q+ q2) · · · (1 + q+ · · ·+ qm−1), the
standard q-analogue of m!.

If c = 2 then

(4)!q R2 = (q4 + q3 + 2q2 + q)h21 + (q4 + q3 + 2q2 + q − 1)h2,

so (h, q)-positivity fails even for c = 2.

Note. No nice q-analogue of total positivity or Edrei-Thoma is
known.



Schur expansion of Rn for the seed Fd(q, t)

Recall that for Fc(t) = (
∑

(−1)ntn/(cn)!)−1 we have

(cn)!Rn =
∑

λ⊢n

f ρ(λ,c)sλ. (∗)

for some “natural” skew shape ρ(λ, c).



Schur expansion of Rn for the seed Fd(q, t)

Recall that for Fc(t) = (
∑

(−1)ntn/(cn)!)−1 we have

(cn)!Rn =
∑

λ⊢n

f ρ(λ,c)sλ. (∗)

for some “natural” skew shape ρ(λ, c).

Theorem. For the seed Fc(q, t) we have

(cn)!q Rn =
∑

λ⊢n







∑

SYTT
sh(T )=ρ(λ,c)

qmaj(T )







sλ,

the “nicest” possible q-analogue of (*).



Second special case

F (t) =




∑

n≥0

(−1)ntn

n!d





−1

, d ≥ 1



Second special case

F (t) =




∑

n≥0

(−1)ntn

n!d





−1

, d ≥ 1

Theorem (Carlitz-Scoville-Vaughan (1976) for d = 2) Let d ≥ 1
and

F (t) =
∑

n≥0

vd (n)
tn

n!d
.

Then

vd (n) = #{(w1, . . . ,wd ) ∈ S
d
n : Des(w1) ∩ · · · ∩Des(wd ) = ∅}.



First problem

Problem 1. Let F (t) =




∑

n≥0

(−1)ntn

n!d





−1

.

E.g.,d = 2, 3!2R3 = s111 + 8s21 + 19s3.

dim 3!2R3 = 〈p31 , 3!2R3〉
= f 111 + 8f 21 + 19f 3 = 3!2

19 = [s3]3!
2R3 = #{(u, v) ∈ S

2
n : D(u) ∩ D(v) = ∅} = v2(3)

What statistic on S3 ×S3 (or Sn ×Sn in general) do the other
coefficients count? (open)



Second problem

Analytic methods (M. Kwaśnicki, MO 477780) show that

F (t) :=




∑

n≥0

(−1)ntn

n!d





−1

=
∏

(1− βi t)
−1,

where βi ≥ 0,
∑

βi < ∞. Hence Rn is h-positive. Some data for
d = 2:
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



−1

=
∏

(1− βi t)
−1,

where βi ≥ 0,
∑

βi < ∞. Hence Rn is h-positive. Some data for
d = 2:

R1 = h1

2!2R2 = h21 + 2h2

3!2R3 = h31 + 6h2h1 + 12h3

4!2R4 = h41 + 12h2h
2
1 + 60h3h1 + 6h22 + 132h4



Second problem

Analytic methods (M. Kwaśnicki, MO 477780) show that

F (t) :=




∑

n≥0

(−1)ntn

n!d





−1

=
∏

(1− βi t)
−1,

where βi ≥ 0,
∑

βi < ∞. Hence Rn is h-positive. Some data for
d = 2:

R1 = h1

2!2R2 = h21 + 2h2

3!2R3 = h31 + 6h2h1 + 12h3

4!2R4 = h41 + 12h2h
2
1 + 60h3h1 + 6h22 + 132h4

Problem 2. For general d , sum of the coefficients for h-expansion
of n!dRn is vd (n). What do they count? (open)



The whole shebang

Let w = a1, a2, . . . , acn ∈ Scn with D(w) ⊆ {c , 2c , . . . , (n − 1)c}.
Define

Ascc(w) = #{1 ≤ i ≤ n − 1 : aic < aic+1}.
Let

F (t) :=




∑

n≥0

(−1)ntn

(c1n)!q1 · · · (cdn)!qd





−1

=
∑

n≥0

vn(c1, . . . , cd )
tn

(c1n)!q1 · · · (cdn)!qd
.



The whole shebang

Let w = a1, a2, . . . , acn ∈ Scn with D(w) ⊆ {c , 2c , . . . , (n − 1)c}.
Define

Ascc(w) = #{1 ≤ i ≤ n − 1 : aic < aic+1}.
Let

F (t) :=




∑

n≥0

(−1)ntn

(c1n)!q1 · · · (cdn)!qd





−1

=
∑

n≥0

vn(c1, . . . , cd )
tn

(c1n)!q1 · · · (cdn)!qd
.

Then

vn(c1, . . . , cd ) =
∑

w1∈Snc1 ,...,wd∈Sncd

Ascc1(w1)∩ ···∩Asccd (wd )=∅

q
inv(w1)
1 · · · qinv(wd )

d .



The example d = 2, c1 = 1, c2 = 2

w1 Asc1(w1) inv(w1) w2 Asc2(w2) inv(w2)

12 {1} 0 1324 ∅ 1
12 {1} 0 1423 ∅ 2
12 {1} 0 2314 ∅ 2
12 {1} 0 2413 ∅ 3
12 {1} 0 3412 ∅ 4
21 ∅ 1 1234 {1} 0
21 ∅ 1 1324 ∅ 1
21 ∅ 1 1423 ∅ 2
21 ∅ 1 2314 ∅ 2
21 ∅ 1 2413 ∅ 3
21 ∅ 1 3412 ∅ 4



The example d = 2, c1 = 1, c2 = 2

w1 Asc1(w1) inv(w1) w2 Asc2(w2) inv(w2)

12 {1} 0 1324 ∅ 1
12 {1} 0 1423 ∅ 2
12 {1} 0 2314 ∅ 2
12 {1} 0 2413 ∅ 3
12 {1} 0 3412 ∅ 4
21 ∅ 1 1234 {1} 0
21 ∅ 1 1324 ∅ 1
21 ∅ 1 1423 ∅ 2
21 ∅ 1 2314 ∅ 2
21 ∅ 1 2413 ∅ 3
21 ∅ 1 3412 ∅ 4

⇒ v3(1, 2) = qr4 + qr3 + 2qr2 + qr + q + r3 + 2r2 + r ,

where q1 = q, q2 = r .



Schur positivity

Conjecture. F (t) is an (s, q1, . . . , qd )-positive seed.



Schur positivity

Conjecture. F (t) is an (s, q1, . . . , qd )-positive seed.

Example. d = 2, c1 = 1, c2 = 2,F (t) =
∑

n≥0 t
n/(n)!q(2n)!r

(3)!q (6)!rR3=s111+(q2r8+q2r7+qr8+2q2r6+qr7+r8+2q2r5+2qr6+r7+3q2r4

+2qr5+2r6+2q2r3+3qr4+2r5+2q2r2+2qr3+3r4+q2r+2qr2+2r3+q2+qr+2r2+q+r)s21

+(q3r12+2q3r11+2q2r12+5q3r10+4q2r11+2qr12+7q3r9+10q2r10+4qr11+r12

+11q3r8+14q2r9+10qr10+2r11+12q3r7+20q2r8+14qr9+5r10

+14q3r6+22q2r7+20qr8+7r9+12q3r5+24q2r6+22qr7+9r8+12q3r4+20q2r5

+24qr6+10r7+7q3r3+16q2r4+20qr5+10r6+5q3r2+10q2r3+16qr4+8r5+2q3r

+6q2r2+10qr3+5r4+q3+2q2r+6qr2+3r3+2qr+r2)s3
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Conjecture. F (t) is an (s, q1, . . . , qd )-positive seed.
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Schur positivity

Conjecture. F (t) is an (s, q1, . . . , qd )-positive seed.

Example. d = 2, c1 = 1, c2 = 2,F (t) =
∑

n≥0 t
n/(n)!q(2n)!r

(3)!q (6)!rR3=s111+(q2r8+q2r7+qr8+2q2r6+qr7+r8+2q2r5+2qr6+r7+3q2r4

+2qr5+2r6+2q2r3+3qr4+2r5+2q2r2+2qr3+3r4+q2r+2qr2+2r3+q2+qr+2r2+q+r)s21

+(q3r12+2q3r11+2q2r12+5q3r10+4q2r11+2qr12+7q3r9+10q2r10+4qr11+r12

+11q3r8+14q2r9+10qr10+2r11+12q3r7+20q2r8+14qr9+5r10

+14q3r6+22q2r7+20qr8+7r9+12q3r5+24q2r6+22qr7+9r8+11q3r4+20q2r5

+24qr6+10r7+7q3r3+16q2r4+20qr5+10r6+5q3r2+10q2r3+16qr4+8r5+2q3r

+6q2r2+10qr3+5r4+q3+2q2r+6qr2+3r3+2qr+r2)s3

What do the coefficients count? Coefficient of sn is vn(c1, . . . , cd ).



The final slide
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