Smith Normal Form and
Combinatorics

Richard P. Stanley



Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = dia,g(dl, dldg, Ce dldg s dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = diag(dl, dldg, Ce d1d2 T dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m x n.

(2) unit - det(A) = det(B) = d?dy ' -+ d,,.

Thus SNF is a refinement of det. I



Row and column operations

Can put a matrix into SNF by the following
operations.

» Add a multiple of a row to another row.
» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.

B



Row and column operations

Can put a matrix into SNF by the following
operations.

» Add a multiple of a row to another row.

» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form

(with all unit entries equal to 1).



Existence of SNF

If Ris a PID, such as Z or K|z] (K = field), then
A has a unigue SNF up to units.



Existence of SNF

If Ris a PID, such as Z or K|z] (K = field), then
A has a unigue SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.

B



Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A



Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A
Theorem.

R"/(vi,...,v,) Z(R/e1R)®--- D (R/e,R).
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Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(er, ea,...,e,): SNF of A
Theorem.

R"/(vi,...,v,) 2 (R/etR)®--- & (R/e,R).
R"/(vy,...,v,): (Kastelyn) cokernel of A

B



An explicit formula for SNF

R: aPID
A:ann x n matrix over R with det(A) # 0

diag(eq,eq,...,e,): SNF of A



An explicit formula for SNF

R: a PID
A:ann x n matrix over R with det(A) # 0
diag(eq,eq,...,e,): SNF of A

Theorem. eje, - - - ¢; IS the gecd of all v x ¢+ minors
of A.

minor: determinant of a square submatrix.

Special case: ¢, is the gcd of all entries of A.



An example

Reduced Laplacian matrix of /;:

3 —1 —1 |
A= | -1 3 -1
~1 -1 3




An example

Reduced Laplacian matrix of /{;:

A:

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.
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An example

Reduced Laplacian matrix of /{;:

A=

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.

What about SNF?
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An example (continued)

3 —1 —1
1 3 -1
1 -1 3

0 0 —1
— 10 4 0
4 —4 0

0O 0 —1
—4 4 —1
8 —4 3
0 0 —
— [ 0 4
4 0

0
4 4 0
8 —4 0
40 0
0 4 0
00 1

0 —1




Laplacian matrices

Ly(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. det Ly(G) = k(G), the
number of spanning trees of G5.



Laplacian matrices

Ly(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. det Ly(G) = k(G), the
number of spanning trees of G5.

Theorem. L((K,) EALY diag(1,n,n,...,n), a
refinement of Cayley’s theorem that

k(K,) =n""2.

B



Laplacian matrices

Ly(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. det Ly(G) = k(G), the
number of spanning trees of G5.

SNE ..
Theorem. Ly(K,) — diag(1,n,n,...,n), a
refinement of Cayley’s theorem that
k(K,) =n""2.

In general, SNF of Ly(G) not understood.

B



Chip firing

Abelian sandpile: a finite collection o of
indistinguishable chips distributed among the

vertices V' of a (finite) connected graph.
Equivalently,

o:V —1{0,1,2,... }.



Chip firing

Abelian sandpile: a finite collection o of
indistinguishable chips distributed among the

vertices V' of a (finite) connected graph.
Equivalently,

o:V —1{0,1,2,... }.

toppling of a vertex v: if o(v) > deg(v), then
send a chip to each neighboring vertex.

0 S 6 7

1] T

1 2 2 1 3




The sandpile group

Choose a vertex to be a sink, and ignore chips
falling into the sink.

stable configuration: no vertex can topple

Theorem (easy). After finitely many topples a
stable configuration will be reached, which is
Independent of the order of topples.
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The monoid of stable configurations

Define a commutative monoid M on the stable
configurations by vertex-wise addition followed

by stabilization.

ideal of M : subset J C M satistying oJ C J for
all c € M

B



The monoid of stable configurations

Define a commutative monoid M on the stable
configurations by vertex-wise addition followed
by stabilization.

ideal of M : subset J C M satistying oJ C J for
all c € M

Exercise. The (unigue) minimal ideal of a finite

commutative monoid is a group.



Sandpile group

sandpile group of : the minimal ideal K (G) of
the monoid M

Fact. K(G) is independent of the choice of sink
up to isomorphism.

B



Sandpile group

sandpile group of : the minimal ideal K (G) of
the monoid M

Fact. K(G) is independent of the choice of sink
up to isomorphism.

Theorem. Let

L()(G) SNJ diag(el, Ce ,en_l).

KG)=2Z/enZ @ ---DLje, 7. I

Then



Second example

Some matrices connected with Young
diagrams



Extended Young diagrams

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3,1)




Extended Young diagrams

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3,1)

A*. X extended by a border strip along its entire
boundary
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Extended Young diagrams

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3,1)

A*. X extended by a border strip along its entire
boundary

(3,1)*=(4,4,2) I




Initialization

Insert 1 into each square of \*/\.

(3,1)* = (4,4,2)




M;

Let ¢ € \. Let M, be the largest square of \* with
t as the upper left-hand corner.



M

Lett € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




M

Lett € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.



Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.
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Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.

2
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Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.

—

B




Uniqueness

Easy to see: the numbers n; are well-defined and
unique.



Uniqueness

Easy to see: the numbers n; are well-defined and
unique.

Why? Expand det M; by the first row. The
coefficient of n; Is 1 by induction.

B



A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.



A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.

A= (4,4,3)




A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.

A= (4,4,3)
A(t) = (3,2)




ux = #{pn : p S A}



ux = #{p : p CA}
Example. U21) = D:




ux = #{p : p CA}
Example. U21) = D:

There is a determinantal formula for «,, due
essentially to MacMahon and later Kreweras

(not needed here).



Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).
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Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).

Theorem. n; = f(\(t)).

B



Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).

Theorem. n;, = f(A(t)).

Proofs. 1. Induction (row and column
operations).

2. Nonintersecting lattice paths.

B



An example

(|32
2




An example

3

2




Many indeterminates

For each square (i, j) € A\, associate an
indeterminate x;; (matrix coordinates).



Many indeterminates

For each square (i, j) € A\, associate an
indeterminate x;; (matrix coordinates).

X1 | %2 | K3

X21 X22




A refinement of u

’LL)\(CIZ)—Z H Tii

,uC)\ Zj E)\/,LL



A refinement of u

’LL)\(ZB)—Z H Tii

U (1,7)EN/ 1

H T;; = cde

(2,7)EX/ 1




An example

abcde+ bede+bee+cde | Peetcetrc -
+cetdetctetrl terl

det+et+1l e+l










A; = bedeghiklimo _I



The main theorem

Theorem. Lett = (i,7). Then M; has SNF
diag(AZ-j, Ai—l,j—la Cee 1)



The main theorem

Theorem. Lett = (i,7). Then M; has SNF
diag(Aij, Ai—l,j—la Cee 1)

Proof. 1. Explicit row and column operations
putting M; into SNF.

2. (C. Bessenrodt) Induction.

B



An example

abcde+ bede+ beer cde | Poetcetrc
+cetdetctet+l tetl

detet+l




An example

SNF = diag(abcde, e, 1) I



A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
Set each z;; = q¢.



A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
Set each z;; = q¢.




A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
Set each z;; = q¢.

us. () ‘x-.—q counts Dyck paths of length 2n by

(scaled) area, and is thus the well-known

g-analogue C,,(q) of the Catalan number C,,. I



A g-Catalan example

Fe w0 Gl=+@+20+]1



A g-Catalan example

e e 0 Gl=¢+P+2q+1

Ca(q) Cs(q) 1+4¢ .
Cs(q) 1+q 1 |~ diag(¢’,q,1)
14+ ¢ 1 '

B



A g-Catalan example

e e 0 Gl=¢+P+2q+1

Ca(q) Cs(q) 1+4¢ .
Cs(q) 1+q 1 |~ diag(¢’,q,1)
14+ ¢ 1 '

» ¢-Catalan determinant previously known

B

» SNF is new



SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PID.

B



Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.
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Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M
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Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M

Theorem. limy,_, pi(n, d) = 1/d" ¢(n?)

B



Work of Yinghui Wang



Work of Yinghui Wang (£#%)



Work of Yinghui Wang (£5i%)

Sample result. pi(n): probability that the SNF
of a random A € Mat,(n) satisfies e; = 2, e; = 6.

p(n) = lim pi(n).



Conclusion
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A note on the proof

uses a 2014 result of C. Feng, R. W. Nébrega, F.
R. Kschischang, and D. Silva, Communication
over finite-chain-ring matrix channels: number of
m X n matrices over Z/p°Z with specified SNF

B



A note on the proof

uses a 2014 result of C. Feng, R. W. Nébrega, F.
R. Kschischang, and D. Silva, Communication
over finite-chain-ring matrix channels: number of
m X n matrices over Z/p°Z with specified SNF

Note. Z/p*Z is not a PID, but SNF still exists
because its ideals form a finite chain.

B



Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF
diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.



Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.
H <1 | 1 | 1 | _|_ i)
[ p2 | p3 [ pn

Theorem. x(n) =




Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.
H <1 | 1 | 1 | _|_ i)
- ; | P2 | P> | P
eorem. —

w(n) C2)CE)
Corollary. . =\ _ 1

) = O T o)

~ 0.846936--- .



Third example

In collaboration with Tommy Wuxing Cai.



Third example

In collaboration with Z5=>%.



Third example

In collaboration with Z£R%.
Par(n): set of all partitions of n

E.g., Par(4) = {4,31,22,211,1111}.



Third example

In collaboration with Z£R%.
Par(n): set of all partitions of n
E.g., Par(4) = {4,31,22,211,1111}.

V... real vector space with basis Par(n)

B



U

DefineU =U,,: V,, — V, 1 by
UN) =D u
7

where i € Par(n+ 1) and p; > \; Vi.
Example.

U(42211) = 52211 + 43211 + 42221 + 422111

B



D

Dually, define D = D,,: V,, — V,,_; by

where v € Par(n — 1) and v; < \; Vi.

Example. D(42211) = 32211 + 42111 + 4221

B



Symmetric functions

NOTE. Identify V,, with the space Ag of all

homogeneous symmetric functions of degree n
over Q, and identify A € V,, with the Schur

function s,. Then

0
U(f) =p1f, D(f)za—p1 -

B



Commutation relation

DU —-UD =1

Allows computation of eigenvalues of
DUV, = V,.

Or note that the eigenvectors of 5,-p1 are the
DA S, A n.

B



Eigenvalues of DU

Let p(n) = #Par(n) = dim V,,.

Theorem. Let1 <:<n+1,i#n. Theni is an
eigenvalue of D,,.1U,, with multiplicity
p(n+1—14)—pn—1i). Hence

n—+1
det Dy U, = | [ =0pln=0),

1=1

B



Eigenvalues of DU

Let p(n) = #Par(n) = dim V,,.

Theorem. Let1 <:<n+1,i#n. Theni is an
eigenvalue of D,,.1U,, with multiplicity
p(n+1—14)—pn—1i). Hence

n—+1
det Dy U, = | [ =0pln=0),

1=1

What about SNF of the matrix |D,,,,1U,| (with

respect to the basis Par(n))? I



Conjecture of A. R. Miller, 2005

Conjecture (first form). Let e, ..., e, be the
eigenvalues of D, U,.. Then |D,,.,1U,| has the
same SNF as diag(ei, ..., eym)).



Conjecture of A. R. Miller, 2005

Conjecture (first form). Let e, ..., e, be the
eigenvalues of D, U,.. Then |D,,.,1U,| has the
same SNF as diag(ei, ..., eym)).

Conjecture (second form). The diagonal entries
of the SNF of |D,,,,1U,,| are:

» (n+ 1)(n—1)!, with multiplicity 1

» (n — k)! with multiplicity
p(k+1) =2p(k) +p(k—1),3<k<n-2

» 1, with multiplicity p(n) — p(n — 1) + p(n — 2). I



Not a trivial result

NOTE. {p)}.-n IS NOt an integral basis.



Another form

m4(A\): number of 1'sin A

M (n): multiset of all numbers m(\) + 1,
A\ € Par(n)

Let SNF of | D, 1U,| be diag(fi, fo, ..., fym))-

Conjecture (third form). f; is the product of the
distinct entries of My(n); f, is the product of the

remaining distinct entries of M (n), etc.



An example: n = 6

Par(6) = {6,51,42,33,411, 321,222, 3111,
2211,21111,111111}

Mq(6) = {1,2,1,1,3,2,1,4,3,5,7}

(fiooo. fu) = (7-5-4-3-2-1,3-2-1,
17171 17 717171 1)
— (840,6,1,1,1,1,1,1,1,1,1)

B

p ]
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Yet another form

Conjecture (fourth form). The matrix
'D,+1U, + xI| has an SNF over Z|z|.

Note that Z|x| is not a PID.



Resolution of conjecture

Theorem. The conjecture of Miller is true.



Resolution of conjecture

Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis
{8aFaepar(n) (Schur functions) for Ag, use the

basis {hA} \ePar(n) (COMplete symmetric

functions). Since the two bases differ by a matrix
in SL(p(n),Z), the SNF’s stay the same.

B



Conclusion of proof

(second step) Row and column operations.



Conclusion of proof

(second step) Row and column operations.

Not very insightful.



Conclusion of proof

(second step) Row and column operations.

Not very insightful. (e,



An unsolved conjecture

m;(A): number of j's in A

M (n): multiset of all numbers j(m;(\) + 1),
A\ € Par(n)

p;: power sum symmetric function 3" 2/

Let SNF of the operator f — (;Zj p; f with respect
to the basis {s\} be diag(gi, g2, - - -, 9pm))-

B



An unsolved conjecture

m;(A): number of j's in A

M (n): multiset of all numbers j(m;(\) + 1),
A\ € Par(n)

p;: power sum symmetric function 3" 2/

Let SNF of the operator f — (;; p; f with respect
to the basis {s\} be diag(gi, g2, - - -, 9pm))-

Conjecture.g, is the product of the distinct
entries of M (n); g, is the product of the

remaining distinct entries of M (n), etc. I



Jacobi-Trudi specialization

Jacobi-Trudi identity:
sy = det|hy, i),

where s, is a Schur function and h; is a
complete symmetric function.

B



Jacobi-Trudi specialization

Jacobi-Trudi identity:
sy = det|hy, i),

where s, is a Schur function and h; is a
complete symmetric function.

We consider the specialization
r1 =29 =---=ux, =1, other ; = 0. Then

hi%< 7;_ ) _I



Specialized Schur function

UEN

c(u): content of the square «

0|1 2 3| 4
-1/ 0 1| 2
-2/-11 0| 1




Diagonal hooks D4,..., D,

A= (5,4,4,2)



Diagonal hooks D4,..., D,




Diagonal hooks D4,..., D,




Diagonal hooks D4,..., D,




SNF result

R = Q[n]
Let
SNF {(n A\ z ] 1
Ai — 14
Then
n—+ c
€;, —
h(u
eD,,




Idea of proof

n + c(u)
S ST

UED y,—i41

Then f, f5|--- f; is the value of the lower-left ¢ x i
minor. (Special argument for 0 minors.)

B



Idea of proof

P H n + c(u)

UED y,—i41

Then f, f5|--- f; is the value of the lower-left ¢ x i
minor. (Special argument for 0 minors.)

Every ¢ x ¢ minor is a specialized skew Schur
function s, /,. Let s, correspond to the lower left

7 X 7 minor.



Conclusion of proof

Let

_E p
Sujv = CpSp-

P
By Littlewood-Richardson rule,

¢,, 70 <= aCp.



Conclusion of proof

Let

_E v
plv = CupSp-

P
By Littlewood-Richardson rule,

¢,, 70 <= aCp.

Hence

€

Ci—1 I

fi = ged (7 X @ minors) =



The last slide



/,m'\

The last slide = 2



The last slide
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