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A theorem of Schur

Theorem (Schur, 1926) The number f (n) of partitions of n for
which no part appears exactly once equals the number of partitions
of n into parts 6≡ ±1 (mod 6).

Proof.
∑

n≥0

f (n)xn =
∏

i≥1

(1 + x2i + x3i + x4i + · · · )

=
∏

i≥1

(

1

1− x i
− x i

)

=
∏

i≥1

1− x i + x2i

1− x i

=
∏

i≥1

1− x6i

(1− x2i )(1− x3i )

= 1/
∏

j 6≡±1mod 6)

(1− x j). �



Why does this work?

Φn(x): the nth cyclotomic polynomial

Φn(x) =
∏

1≤j≤n
gcd(j ,n)=1

(

x − e2πij/n
)

=
∏

d|n

(1− xd )µ(n/d)

1. (the main point)

F (x) :=
1

1− x
− x =

Φ6(x)

1− x
=

1− x6

(1− x2)(1 − x3)



Why does this work?

Φn(x): the nth cyclotomic polynomial

Φn(x) =
∏

1≤j≤n
gcd(j ,n)=1

(

x − e2πij/n
)

=
∏

d|n

(1− xd )µ(n/d)

1. (the main point)

F (x) :=
1

1− x
− x =

Φ6(x)

1− x
=

1− x6

(1− x2)(1 − x3)

2. F (x)F (x2)F (x3) · · · =
1

(1− xa1)(1− xa2) · · ·
,

where 1 ≤ a1 < a2 < · · ·



Cyclotomic sets

Definition. A cyclotomic set is a subset S of P = {1, 2, . . . }
such that

FS(x) :=
1

1− x
−

∑

j∈S

x j =
NS(x)

1− x
,

where NS (x) is a finite product of cyclotomic polynomials.



An example: S = {1, 2, 3, 5, 7, 11}

FS(x) :=
1

1− x
− (x + x2 + x3 + x5 + x7 + x11)

=
Φ6(x)Φ12(x)Φ18(x)
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An example: S = {1, 2, 3, 5, 7, 11}

FS(x) :=
1

1− x
− (x + x2 + x3 + x5 + x7 + x11)

=
Φ6(x)Φ12(x)Φ18(x)

1− x

=
(1− x12)(1− x18)

(1− x4)(1 − x6)(1 − x9)

F (x)F (x2)F (x3) · · · =
∏

i

(1− x i )−1,

i ≡ 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 (mod 36). (∗)

Theorem. For all n ≥ 0, the number of partitions of n such that
no part occurs exactly 1, 2, 3, 5, 7 or 11 times equals the number of
partitions of n into parts i satisfying (*).



A further example

S = {2, 3, 4, . . . } is cyclotomic:

1

1− x
− (x2 + x3 + · · · ) = 1 + x =

1− x2

1− x



A further example

S = {2, 3, 4, . . . } is cyclotomic:

1

1− x
− (x2 + x3 + · · · ) = 1 + x =

1− x2

1− x

Theorem (Euler). The number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.
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1. If S is a finite cyclotomic set, then max(S) is odd.

Proof. We have deg Φn(x) is even for n > 2. Since
NS (x) = 1− (1− x)

∑

j∈S x
j we have

degNS (x) = 1 + max(S). Thus it suffices to show that NS(x)
isn’t divisible by Φ1(x) = x − 1 or Φ2(x) = x + 1. But
NS (±1) is odd. �



Properties of finite cyclotomic sets

Classification: wide open.

1. If S is a finite cyclotomic set, then max(S) is odd.

Proof. We have deg Φn(x) is even for n > 2. Since
NS (x) = 1− (1− x)

∑

j∈S x
j we have

degNS (x) = 1 + max(S). Thus it suffices to show that NS(x)
isn’t divisible by Φ1(x) = x − 1 or Φ2(x) = x + 1. But
NS (±1) is odd. �

2. If NS (x) is divisible by Φn(x) then n 6= 1 (by above) and
n 6= pr , p prime.

Proof. Suppose

1− (1− x)
∑

j∈S

x j = Φpr (x)A(x), A(x) ∈ Z[x ].

Set x = 1 to get 1 = pA(1), a contradiction. �



Further properties

3. For 0 ≤ j ≤ d = max(S), exactly one of j and d − j belongs
to S . Hence #S = (d +1)/2 (yielding another proof that d is
odd).

Proof. Symmetry or antisymmetry of Φn(x) implies

PS(x)+xdPS(1/x) = 1+x+· · ·+xd , where PS(x) =
∑

i∈S

x i . �



Further properties

3. For 0 ≤ j ≤ d = max(S), exactly one of j and d − j belongs
to S . Hence #S = (d +1)/2 (yielding another proof that d is
odd).

Proof. Symmetry or antisymmetry of Φn(x) implies

PS(x)+xdPS(1/x) = 1+x+· · ·+xd , where PS(x) =
∑

i∈S

x i . �

4. Let d be odd. There are 2(d−1)/2 sets S ⊂ P with
max(S) = d such that NS(x) is symmetric. Let f (d) be the
number of these that are cyclotomic. Then

d 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

f (d) 1 2 3 5 5 9 10 12 18 22 22 37 39 41 54



Cleanness

Note. Any f (x) ∈ Z[[x ]] with f (0) = 1 can be uniquely written
(formally) as

f (x) =
∏

n≥1

(1− xn)−an , an ∈ Z.



Cleanness

Note. Any f (x) ∈ Z[[x ]] with f (0) = 1 can be uniquely written
(formally) as

f (x) =
∏

n≥1

(1− xn)−an , an ∈ Z.

Let S be a subset of P and

F (x) =
1

1− x
−

∑

j∈S

x j .

S is clean if

F (x)F (x2)F (x3) · · · =
∏

n≥1

(1− xn)−an ,

where each an = 0, 1. (Get a “clean” partition identity—no
weighted or colored parts.)



An example

Not every cyclotomic set S is clean, e.g., S = {1, 5, 7, 8, 9, 11}, for
which

F (x)F (x2)F (x3) · · · =

(1− x5)(1− x25)(1− x35)(1− x55) · · ·

(1− x2)(1 − x3)(1 − x4)(1 − x6)(1 − x8)(1 − x9)(1 − x10)(1 − x12) · · ·
.



An example

Not every cyclotomic set S is clean, e.g., S = {1, 5, 7, 8, 9, 11}, for
which

F (x)F (x2)F (x3) · · · =

(1− x5)(1− x25)(1− x35)(1− x55) · · ·

(1− x2)(1 − x3)(1 − x4)(1 − x6)(1 − x8)(1 − x9)(1 − x10)(1 − x12) · · ·
.

No nice theory of clean sets.
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Numerical semigroups

Definition. A numerical semigroup is a submonoid M of
N = {0, 1, 2, . . . } (under addition) such that N−M is finite.

Note. (a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n ≥ 1.

(b) Every submonoid of N is finitely-generated.

Define AM(x) =
∑

i∈M x i .



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1− x)AM(x) is a product of cyclotomic
polynomials. Equivalently, N−M is a cyclotomic set.



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1− x)AM(x) is a product of cyclotomic
polynomials. Equivalently, N−M is a cyclotomic set.

Example. M = 〈a, b〉, where a, b ≥ 2, gcd(a, b) = 1. Then

AM(x) =
1− xab

(1− xa)(1− xb)
,

so M is a cyclotomic semigroup (and clean).

Example. (a) M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9} is cyclotomic.

(b) M = 〈5, 6, 7〉 = N− {1, 2, 3, 4, 9} is not cyclotomic.



Semigroup algebra

The semigroup algebra K [M ] (over K ) of a numerical semigroup
M is

K [M] = K [z i : i ∈ M].

Definition. Let M = 〈a1, . . . , ar 〉. M is a complete intersection

if all the relations among the generators za1 , . . . , zar are
consequences of r − 1 of them (the minimum possible).
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Semigroup algebra

The semigroup algebra K [M ] (over K ) of a numerical semigroup
M is

K [M] = K [z i : i ∈ M].

Definition. Let M = 〈a1, . . . , ar 〉. M is a complete intersection

if all the relations among the generators za1 , . . . , zar are
consequences of r − 1 of them (the minimum possible).

By elementary commutative algebra, if K [M] is a complete
intersection, then M is cyclotomic.

Converse is open (main open problem on cyclotomic numerical
semigrops).
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Example. M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9}. Generators of K [M]
are a = z4, b = z6, c = z7. Some relations:

a3 = b2, a2b = c2, a7 = c4, b7 = c6, . . . .
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An example

Example. M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9}. Generators of K [M]
are a = z4, b = z6, c = z7. Some relations:

a3 = b2, a2b = c2, a7 = c4, b7 = c6, . . . .

All are consequences of the first two, so K [M] is a complete
intersection. E.g.,

c4 = (a2b)2 = a4b2 = a4a3 = a7.

The relation a3 = b2 has degree 3 · 4 = 6 · 2 = 12.
The relation a2b = c2 has degree 2 · 4 + 6 = 2 · 7 = 14

⇒ AM(x) =
(1− x12)(1− x14)

(1− x4)(1 − x6)(1 − x7)
.



Polynomials over finite fields

Fix a prime power q.

β(n): number of monic irreducible polynomials of degree n over
Fq.
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Polynomials over finite fields

Fix a prime power q.

β(n): number of monic irreducible polynomials of degree n over
Fq.

β(n) =
1

n

∑

d|n

µ(d)qn/d (irrelevant)

There are qn monic polynomials of degree n over Fq. Every such
polynomial is uniquely (up to order of factors) a product of monic
irreducible polynomials. Hence

∑

n≥0

qnxn =
1

1− qx
=

∏

m≥1

(1− xm)−β(m).



Powerful polynomials

Example. Let f (n) be the number of monic polynomials of degree
n over Fq such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus



Powerful polynomials

Example. Let f (n) be the number of monic polynomials of degree
n over Fq such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus

∑

n≥0

f (n)xn =
∏

m≥1

(1 + x2m + x3m + · · · )β(m)

=
∏

m≥1

(

1− x6m

(1− x2m)(1− x3m)

)β(m)

=
1− qx6

(1− qx2)(1 − qx3)

=
1 + x + x2 + x3

1− qx2
−

x(1 + x + x2)

1− qx3

⇒ f (n) = q⌊n/2⌋ + q⌊n/2⌋−1 − q⌊(n−1)/3⌋.



Generalization.

Theorem. Let S be a cyclotomic subset of P, so

1

1− x
−

∑

i∈S

x i =

∏
(

1− x i
)ai

∏

(1− x j )bj
,

where the products are finite. Let f (n) be the number of monic
polynomials of degree n over Fq such that no irreducible factor has
multiplicity m ∈ S. Then

∑

f (n)xn =

∏

i(1− qx i )ai
∏

j(1− qx j )bj
.



Generalization.

Theorem. Let S be a cyclotomic subset of P, so

1

1− x
−

∑

i∈S

x i =

∏
(

1− x i
)ai

∏

(1− x j )bj
,

where the products are finite. Let f (n) be the number of monic
polynomials of degree n over Fq such that no irreducible factor has
multiplicity m ∈ S. Then

∑

f (n)xn =

∏

i(1− qx i )ai
∏

j(1− qx j )bj
.

Can convert to a partial fraction in q and find an explicit (though
in general very lengthy) formula for f (n).



Another example

Let S = {2, 3, 4, . . . }. Recall

1

1− x
−

∑

i∈S

x i = 1 + x =
1− x2

1− x
.

f (n): number of squarefree monic polynomials of degree n over
Fq. Then

∑

n≥0

f (n)xn =
1− qx2

1− qx

=
∑

n≥0

(q − 1)qn−1xn

⇒ f (n) = (q − 1)qn−1 (well-known),



Another example

Let S = {2, 3, 4, . . . }. Recall

1

1− x
−

∑

i∈S

x i = 1 + x =
1− x2

1− x
.

f (n): number of squarefree monic polynomials of degree n over
Fq. Then

∑

n≥0

f (n)xn =
1− qx2

1− qx

=
∑

n≥0

(q − 1)qn−1xn

⇒ f (n) = (q − 1)qn−1 (well-known),

a kind of analogue (though not a q-analogue in the usual sense) of
Euler’s result on partitions of n into distinct parts and into odd
parts.



A generalization

◮ Argument did not involve β(d).
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A generalization

◮ Argument did not involve β(d).

◮ Hence works for other situations with unique factorization.

◮ What about Z?

Theorem. Let S be a finite cyclotomic subset of P, so

1

1− x
−

∑

i∈S

x i =

∏

(1− x)ai
∏

(1− x)bj
(finite products).

Let ζ denote the Riemann zeta function. Then

∑

n

n−s =

∏

ζ(bis)
∏

ζ(ajs)
,

where n ranges over all positive integers such that if k ∈ S, then
no prime p divides n with multiplicity m ∈ S.



Happy 70th birthday, Bruce!


