Some Combinatorial Aspects of Cyclotomic Polynomials J

Richard P. Stanley
M.L.T. and U. Miami

February 2024



A theorem of Schur

(Schur, 1926) The number f(n) of partitions of n for
which no part appears exactly once equals the number of partitions
of n into parts # £1 (mod 6).
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Why does this work?

®,(x): the nth cyclotomic polynomial
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Cyclotomic sets

Definition. A cyclotomic set is a subset S of P = {1,2,...}
such that

Fs(x) :=

1—x
JjES

where Ns(x) is a finite product of cyclotomic polynomials.



An example: S = {1,2,3,5,7,11}
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An example: S = {1,2,3,5,7,11}

Fs(x) = % —(x+ X2+ + X+ xT X1
¢6(X)¢12(X)¢18(X)
1—x
(1 - x2)(1 - %)
(1 —x*)(1—x%)(1—x9

FOOFOA)F(R) - = [ =),

i
i=0,4,6,8,9,12,16, 18,20, 24,27, 28,30, 32 (mod 36). (x)
For all n > 0, the number of partitions of n such that

no part occurs exactly 1,2,3,5,7 or 11 times equals the number of
partitions of n into parts i satisfying (*).



A further example
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A further example

$=1{2,3,4,...} is cyclotomic:

_l—x2

—(X2—|—X3—|—”‘):1+X—

1—x 1—x

Theorem (Euler). The number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.
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isn't divisible by ®1(x) = x — 1 or ®p(x) = x+ 1. But
Ns(+£1) is odd. O



Properties of finite cyclotomic sets
: wide open.

1. If S is a finite cyclotomic set, then max(S) is odd.
Proof. We have deg ®,(x) is even for n > 2. Since
Ns(x) =1—(1=x)> s x/ we have
deg Ns(x) = 1+ max(S). Thus it suffices to show that Ns(x)
isn't divisible by ®1(x) = x — 1 or ®p(x) = x+ 1. But
Ns(+£1) is odd. O

2. If Ns(x) is divisible by ®,(x) then n # 1 (by above) and
n# p", p prime.

Proof. Suppose
1-(1—x) ZXJ A(x), A(x) € Z[x].
jES

Set x =1 to get 1 = pA(1), a contradiction. [



Further properties

3. For 0 <j < d = max(S), exactly one of j and d — j belongs
to S. Hence #S = (d +1)/2 (yielding another proof that d is
odd).

Proof. Symmetry or antisymmetry of ®,(x) implies

Ps(x)+x9Ps(1/x) = 14-x+---+x9, where Ps(x) = Zx O
icS



Further properties

3. For 0 <j < d = max(S), exactly one of j and d — j belongs
to S. Hence #S = (d +1)/2 (yielding another proof that d is
odd).

Proof. Symmetry or antisymmetry of ®,(x) implies

Ps(x)+x9Ps(1/x) = 14-x+---+x9, where Ps(x) = Zx O
icS

4. Let d be odd. There are 2(41)/2 sets S P with
max(S) = d such that Ns(x) is symmetric. Let f(d) be the
number of these that are cyclotomic. Then

d |1 357 9 11 13 15 17 19 21 23 25 27 29
f(d)|[1 2 3 55

5
3 9 10 12 18 22 22 37 39 41 54



Cleanness

Any f(x) € Z[[x]] with f(0) =1 can be uniquely written
(formally) as

F)=J[@-x")"", a,€Z

n>1



Cleanness

Any f(x) € Z[[x]] with f(0) =1 can be uniquely written
(formally) as

F)=J[@-x")"", a,€Z

n>1

Let S be a subset of P and

F(x) = lix ) X

Jjes

S is clean if

FOFGA)FOE) - = [T —xm),

n>1

where each a, = 0,1. (Get a “clean” partition identity—no
weighted or colored parts.)



An example

Not every cyclotomic set S is clean, e.g., S ={1,5,7,8,9,11}, for
which
F(X)F(X2)F(X3) —_—
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An example

Not every cyclotomic set S is clean, e.g., S ={1,5,7,8,9,11}, for
which
F(x)F(x2)F(x3) —_—

(1 —x%)(1 — x?®)(1 — x¥)(1 - x5®)-..

(1—x2)(1—x3)(1 —x*)(1—x5)(1 —x8)(1 —x9)(1 — x10)(1 — x'2)..."

No nice theory of clean sets.
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Numerical semigroups

A numerical semigroup is a submonoid M of
N ={0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.

(b) Every submonoid of N is finitely-generated.

Define Apg(x) = >y X"



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.

Example. M = (a, b), where a,b > 2, gcd(a, b) = 1. Then

1_Xab

Al = Ty T by

so M is a cyclotomic semigroup (and clean).

Example. (a) M = (4,6,7) = N —{1,2,3,5,9} is cyclotomic.
(b) M =(5,6,7) = N —{1,2,3,4,9} is not cyclotomic.



Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup
M is .
KM =K[z' : i e M].

Let M = (ay,...,a,). M is a complete intersection
if all the relations among the generators z%1, ... z% are
consequences of r — 1 of them (the minimum possible).
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Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup
M is .
KM =K[z' : i e M].

Let M = (ay,...,a,). M is a complete intersection
if all the relations among the generators z%1, ... z% are
consequences of r — 1 of them (the minimum possible).

By elementary commutative algebra, if K[M] is a complete
intersection, then M is cyclotomic.

Converse is (main open problem on cyclotomic numerical
semigrops).



An example

Example. M = (4,6,7) = N—{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:

@ =p ?b=c? a =c* b =c°....



An example

M= (4,6,7) =N —{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:

@ =p ?b=c? a =c* b =c°....

All are consequences of the first two, so K[M] is a complete
intersection. E.g.,

ct= (b =t ="l =4



An example
M= (4,6,7) =N —{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:
B =b,a°b=c? a'=c* b =c" .. ..

All are consequences of the first two, so K[M] is a complete
intersection. E.g.,

ct= (b =t ="l =4

The relation a® = b? has degree 3-4=6-2 = 12.
The relation a®b = ¢ has degree 2 - 4 +6=2-7 =14

(1 — x12)(1 — x)

= Aum(x) = (1 —x*)(1—x5)(1—x7)’
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Polynomials over finite fields

Fix a prime power q.

B(n): number of monic irreducible polynomials of degree n over
Fq.

B(n) = %Zu(d)q"/d (irrelevant)
d|n

There are g” monic polynomials of degree n over F,. Every such
polynomial is uniquely (up to order of factors) a product of monic
irreducible polynomials. Hence

Zq l_qX—Hl—x Blm).

n>0 m>1




Powerful polynomials

Example. Let f(n) be the number of monic polynomials of degree
n over g such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus



Powerful polynomials

Let f(n) be the number of monic polynomials of degree
n over g such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus

S fxm = T+ 3T )P

n>0 m>1
1— X6m B(m)
- 1 (i)
1— gx®

(1—gx?)(1 - gx3)

T+x+x2+x3  x(1+x+x3)

1—gx? 1—gx3
= f(n) = ql"/? 4 gln/2-1 _ gln=-1)/3],



Generalization.

Let S be a cyclotomic subset of P, so

1 : 1—x\)%
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where the products are finite. Let f(n) be the number of monic
polynomials of degree n over I such that no irreducible factor has
multiplicity m € S. Then

o I @y
2 = L= q



Generalization.

Let S be a cyclotomic subset of P, so

\ar
oy - dE
1=x i€S H(I_XJ)J

where the products are finite. Let f(n) be the number of monic

polynomials of degree n over I such that no irreducible factor has
multiplicity m € S. Then

o I @y
R i

Can convert to a partial fraction in g and find an explicit (though
in general very lengthy) formula for f(n).



Another example
Let S ={2,3,4,...}. Recall
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f(n): number of squarefree monic polynomials of degree n over
Fg. Then
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n>0
= f(n)=(q—1)g""* (well-known),




Another example

Let S ={2,3,4,...}. Recall
1 i 1—X2
1—x ZX X 1—x

i€S

f(n): number of squarefree monic polynomials of degree n over
Fg. Then

Z f(n)x" = 1- o<

= 1—gx

= Y (q-1)g" X"

n>0

= f(n)=(q—1)g" ! (well-known),

a kind of analogue (though not a g-analogue in the usual sense) of
Euler's result on partitions of n into distinct parts and into odd
parts.
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A generalization

» Argument did not involve 3(d).
» Hence works for other situations with unique factorization.
» What about Z7?

Let S be a finite cyclotomic subset of P, so

x)?

W (finite products).

Let ¢ denote the Riemann zeta function. Then

-5 __ HC(b,S)
2” " TIC(Gs)

where n ranges over all positive integers such that if k € S, then
no prime p divides n with multiplicity m € S.



Happy 70th birthday, Bruce!




