Some Combinatorial Aspects of Cyclotomic Polynomials

Richard P. Stanley M.I.T. and U. Miami

February 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A theorem of Schur

Ρ

Theorem (Schur, 1926) The number f(n) of partitions of n for which no part appears exactly once equals the number of partitions of n into parts $\not\equiv \pm 1 \pmod{6}$.

Why does this work?

 $\Phi_n(\mathbf{x})$: the *n*th cyclotomic polynomial

$$\Phi_n(x) = \prod_{\substack{1 \le j \le n \\ \gcd(j,n)=1}} \left(x - e^{2\pi i j/n} \right) = \prod_{d|n} (1 - x^d)^{\mu(n/d)}$$

1. (the main point)

$$F(x) := \frac{1}{1-x} - x = \frac{\Phi_6(x)}{1-x} = \frac{1-x^6}{(1-x^2)(1-x^3)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Why does this work?

 $\Phi_n(\mathbf{x})$: the *n*th cyclotomic polynomial

$$\Phi_n(x) = \prod_{\substack{1 \leq j \leq n \\ \gcd(j,n)=1}} \left(x - e^{2\pi i j/n} \right) = \prod_{d|n} (1 - x^d)^{\mu(n/d)}$$

1. (the main point)

$$F(x) := \frac{1}{1-x} - x = \frac{\Phi_6(x)}{1-x} = \frac{1-x^6}{(1-x^2)(1-x^3)}$$

2. $F(x)F(x^2)F(x^3)\cdots = \frac{1}{(1-x^{a_1})(1-x^{a_2})\cdots}$,
where $1 \le a_1 < a_2 < \cdots$

Cyclotomic sets

Definition. A cyclotomic set is a subset *S* of $\mathbb{P} = \{1, 2, ...\}$ such that

$$F_{\mathcal{S}}(x) := rac{1}{1-x} - \sum_{j \in \mathcal{S}} x^j = rac{N_{\mathcal{S}}(x)}{1-x},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where $N_S(x)$ is a finite product of cyclotomic polynomials.

An example: $S = \{1, 2, 3, 5, 7, 11\}$

$$F_{S}(x) := \frac{1}{1-x} - (x + x^{2} + x^{3} + x^{5} + x^{7} + x^{11})$$

$$= \frac{\Phi_{6}(x)\Phi_{12}(x)\Phi_{18}(x)}{1-x}$$

$$= \frac{(1-x^{12})(1-x^{18})}{(1-x^{4})(1-x^{6})(1-x^{9})}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

An example: $S = \{1, 2, 3, 5, 7, 11\}$

$$F_{S}(x) := \frac{1}{1-x} - (x + x^{2} + x^{3} + x^{5} + x^{7} + x^{11})$$

$$= \frac{\Phi_{6}(x)\Phi_{12}(x)\Phi_{18}(x)}{1-x}$$

$$= \frac{(1-x^{12})(1-x^{18})}{(1-x^{4})(1-x^{6})(1-x^{9})}$$

$$F(x)F(x^2)F(x^3)\cdots = \prod_i (1-x^i)^{-1},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $i \equiv 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 \pmod{36}$. (*)

An example: $S = \{1, 2, 3, 5, 7, 11\}$

$$F_{S}(x) := \frac{1}{1-x} - (x + x^{2} + x^{3} + x^{5} + x^{7} + x^{11})$$

$$= \frac{\Phi_{6}(x)\Phi_{12}(x)\Phi_{18}(x)}{1-x}$$

$$= \frac{(1-x^{12})(1-x^{18})}{(1-x^{4})(1-x^{6})(1-x^{9})}$$

$$F(x)F(x^2)F(x^3)\cdots = \prod_i (1-x^i)^{-1},$$

 $i \equiv 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 \pmod{36}$. (*)

Theorem. For all $n \ge 0$, the number of partitions of n such that no part occurs exactly 1, 2, 3, 5, 7 or 11 times equals the number of partitions of n into parts i satisfying (*).

A further example

 $S = \{2, 3, 4, \dots\}$ is cyclotomic:

$$\frac{1}{1-x} - (x^2 + x^3 + \cdots) = 1 + x = \frac{1-x^2}{1-x}$$

A further example

$$S = \{2, 3, 4, \dots\}$$
 is cyclotomic:
$$\frac{1}{1-x} - (x^2 + x^3 + \dots) = 1 + x = \frac{1-x^2}{1-x}$$

Theorem (Euler). The number of partitions of *n* into distinct parts equals the number of partitions of *n* into odd parts.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Properties of finite cyclotomic sets

Classification: wide open.

Properties of finite cyclotomic sets

Classification: wide open.

1. If S is a finite cyclotomic set, then max(S) is odd. **Proof.** We have deg $\Phi_n(x)$ is even for n > 2. Since $N_S(x) = 1 - (1 - x) \sum_{j \in S} x^j$ we have deg $N_S(x) = 1 + \max(S)$. Thus it suffices to show that $N_S(x)$ isn't divisible by $\Phi_1(x) = x - 1$ or $\Phi_2(x) = x + 1$. But $N_S(\pm 1)$ is odd. \Box

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Properties of finite cyclotomic sets

Classification: wide open.

1. If S is a finite cyclotomic set, then max(S) is odd.

Proof. We have deg $\Phi_n(x)$ is even for n > 2. Since $N_S(x) = 1 - (1 - x) \sum_{j \in S} x^j$ we have deg $N_S(x) = 1 + \max(S)$. Thus it suffices to show that $N_S(x)$ isn't divisible by $\Phi_1(x) = x - 1$ or $\Phi_2(x) = x + 1$. But $N_S(\pm 1)$ is odd. \Box

2. If $N_S(x)$ is divisible by $\Phi_n(x)$ then $n \neq 1$ (by above) and $n \neq p^r$, p prime.

Proof. Suppose

$$1-(1-x)\sum_{j\in S}x^j=\Phi_{p^r}(x)A(x), \ A(x)\in \mathbb{Z}[x].$$

Set x = 1 to get 1 = pA(1), a contradiction.

Further properties

3. For $0 \le j \le d = \max(S)$, exactly one of j and d - j belongs to S. Hence #S = (d + 1)/2 (yielding another proof that d is odd).

Proof. Symmetry or antisymmetry of $\Phi_n(x)$ implies

$$P_{\mathcal{S}}(x)+x^d P_{\mathcal{S}}(1/x)=1+x+\cdots+x^d, \text{ where } P_{\mathcal{S}}(x)=\sum_{i\in \mathcal{S}}x^i.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Further properties

3. For $0 \le j \le d = \max(S)$, exactly one of j and d - j belongs to S. Hence #S = (d + 1)/2 (yielding another proof that d is odd).

Proof. Symmetry or antisymmetry of $\Phi_n(x)$ implies

$$P_{\mathcal{S}}(x)+x^d P_{\mathcal{S}}(1/x)=1+x+\cdots+x^d, \text{ where } P_{\mathcal{S}}(x)=\sum_{i\in \mathcal{S}}x^i.$$

Let d be odd. There are 2^{(d-1)/2} sets S ⊂ P with max(S) = d such that N_S(x) is symmetric. Let f(d) be the number of these that are cyclotomic. Then

d	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29
f(d)	1	2	3	5	5	9	10	12	18	22	22	37	39	41	54

Cleanness

Note. Any $f(x) \in \mathbb{Z}[[x]]$ with f(0) = 1 can be uniquely written (formally) as

$$f(x) = \prod_{n \ge 1} (1 - x^n)^{-a_n}, \quad a_n \in \mathbb{Z}.$$

Cleanness

Note. Any $f(x) \in \mathbb{Z}[[x]]$ with f(0) = 1 can be uniquely written (formally) as

$$f(x) = \prod_{n \ge 1} (1 - x^n)^{-a_n}, \quad a_n \in \mathbb{Z}.$$

Let **S** be a subset of \mathbb{P} and

$$\mathbf{F}(\mathbf{x}) = \frac{1}{1-x} - \sum_{j \in S} x^j.$$

S is clean if

$$F(x)F(x^2)F(x^3)\cdots = \prod_{n\geq 1} (1-x^n)^{-a_n},$$

where each $a_n = 0, 1$. (Get a "clean" partition identity—no weighted or colored parts.)

Not every cyclotomic set S is clean, e.g., $S = \{1, 5, 7, 8, 9, 11\}$, for which

$$F(x)F(x^{2})F(x^{3})\cdots =$$

$$\frac{(1-x^{5})(1-x^{25})(1-x^{35})(1-x^{55})\cdots}{(1-x^{2})(1-x^{3})(1-x^{4})(1-x^{6})(1-x^{8})(1-x^{9})(1-x^{10})(1-x^{12})\cdots}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Not every cyclotomic set S is clean, e.g., $S = \{1, 5, 7, 8, 9, 11\}$, for which

$$F(x)F(x^{2})F(x^{3})\cdots =$$

$$\frac{(1-x^{5})(1-x^{25})(1-x^{35})(1-x^{55})\cdots}{(1-x^{2})(1-x^{3})(1-x^{4})(1-x^{6})(1-x^{8})(1-x^{9})(1-x^{10})(1-x^{12})\cdots}$$
No nice theory of clean sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

o mee theor OF CIERTI SELS.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N} = \{0, 1, 2, ...\}$ (under addition) such that $\mathbb{N} - M$ is finite.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N} = \{0, 1, 2, ...\}$ (under addition) such that $\mathbb{N} - M$ is finite.

Note. (a) Every submonoid of \mathbb{N} is either $\{0\}$ or of the form nM, where M is a numerical semigroup and $n \ge 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(b) Every submonoid of \mathbb{N} is finitely-generated.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N} = \{0, 1, 2, ...\}$ (under addition) such that $\mathbb{N} - M$ is finite.

Note. (a) Every submonoid of \mathbb{N} is either $\{0\}$ or of the form nM, where M is a numerical semigroup and $n \ge 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(b) Every submonoid of \mathbb{N} is finitely-generated.

Define $A_M(x) = \sum_{i \in M} x^i$.

Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is **cyclotomic** if $(1 - x)A_M(x)$ is a product of cyclotomic polynomials. Equivalently, $\mathbb{N} - M$ is a cyclotomic set.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is **cyclotomic** if $(1 - x)A_M(x)$ is a product of cyclotomic polynomials. Equivalently, $\mathbb{N} - M$ is a cyclotomic set.

Example. $M = \langle a, b \rangle$, where $a, b \ge 2$, gcd(a, b) = 1. Then

$$A_M(x) = rac{1-x^{ab}}{(1-x^a)(1-x^b)},$$

so M is a cyclotomic semigroup (and clean).

Example. (a) $M = \langle 4, 6, 7 \rangle = \mathbb{N} - \{1, 2, 3, 5, 9\}$ is cyclotomic. (b) $M = \langle 5, 6, 7 \rangle = \mathbb{N} - \{1, 2, 3, 4, 9\}$ is not cyclotomic.

Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup M is

$$K[M] = K[z^i : i \in M].$$

Definition. Let $M = \langle a_1, \ldots, a_r \rangle$. *M* is a **complete intersection** if all the relations among the generators z^{a_1}, \ldots, z^{a_r} are consequences of r - 1 of them (the minimum possible).

Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup M is

$$K[M] = K[z^i : i \in M].$$

Definition. Let $M = \langle a_1, \ldots, a_r \rangle$. *M* is a **complete intersection** if all the relations among the generators z^{a_1}, \ldots, z^{a_r} are consequences of r - 1 of them (the minimum possible).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

By elementary commutative algebra, if K[M] is a complete intersection, then M is cyclotomic.

Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup M is

$$K[M] = K[z^i : i \in M].$$

Definition. Let $M = \langle a_1, \ldots, a_r \rangle$. *M* is a **complete intersection** if all the relations among the generators z^{a_1}, \ldots, z^{a_r} are consequences of r - 1 of them (the minimum possible).

By elementary commutative algebra, if K[M] is a complete intersection, then M is cyclotomic.

Converse is **open** (main open problem on cyclotomic numerical semigrops).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example. $M = \langle 4, 6, 7 \rangle = \mathbb{N} - \{1, 2, 3, 5, 9\}$. Generators of K[M] are $a = z^4$, $b = z^6$, $c = z^7$. Some relations:

$$a^3 = b^2, \ a^2 b = c^2, \ a^7 = c^4, \ b^7 = c^6, \ldots$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example. $M = \langle 4, 6, 7 \rangle = \mathbb{N} - \{1, 2, 3, 5, 9\}$. Generators of K[M] are $a = z^4$, $b = z^6$, $c = z^7$. Some relations:

$$a^3 = b^2$$
, $a^2b = c^2$, $a^7 = c^4$, $b^7 = c^6$,....

All are consequences of the first two, so K[M] is a complete intersection. E.g.,

$$c^4 = (a^2b)^2 = a^4b^2 = a^4a^3 = a^7.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Example. $M = \langle 4, 6, 7 \rangle = \mathbb{N} - \{1, 2, 3, 5, 9\}$. Generators of K[M] are $a = z^4$, $b = z^6$, $c = z^7$. Some relations:

$$a^3 = b^2$$
, $a^2 b = c^2$, $a^7 = c^4$, $b^7 = c^6$,....

All are consequences of the first two, so K[M] is a complete intersection. E.g.,

$$c^4 = (a^2b)^2 = a^4b^2 = a^4a^3 = a^7.$$

The relation $a^3 = b^2$ has degree $3 \cdot 4 = 6 \cdot 2 = 12$. The relation $a^2b = c^2$ has degree $2 \cdot 4 + 6 = 2 \cdot 7 = 14$

$$\Rightarrow A_M(x) = rac{(1-x^{12})(1-x^{14})}{(1-x^4)(1-x^6)(1-x^7)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Polynomials over finite fields

Fix a prime power **q**.

 $\beta(n)$: number of monic irreducible polynomials of degree *n* over \mathbb{F}_q .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Polynomials over finite fields

Fix a prime power **q**.

 $\beta(n)$: number of monic irreducible polynomials of degree *n* over \mathbb{F}_q .

$$eta(n) = rac{1}{n} \sum_{d \mid n} \mu(d) q^{n/d} \; \; (\mathrm{irrelevant})$$

Polynomials over finite fields

Fix a prime power **q**.

 $\beta(n)$: number of monic irreducible polynomials of degree *n* over \mathbb{F}_q .

$$\beta(n) = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}$$
 (irrelevant)

There are q^n monic polynomials of degree n over \mathbb{F}_q . Every such polynomial is uniquely (up to order of factors) a product of monic irreducible polynomials. Hence

$$\sum_{n\geq 0} q^n x^n = \frac{1}{1-qx} = \prod_{m\geq 1} (1-x^m)^{-\beta(m)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Powerful polynomials

Example. Let f(n) be the number of monic polynomials of degree n over \mathbb{F}_q such that every irreducible factor has multiplicity at least two (powerful polynomials). Thus

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Powerful polynomials

Example. Let f(n) be the number of monic polynomials of degree n over \mathbb{F}_q such that every irreducible factor has multiplicity at least two (powerful polynomials). Thus

$$\begin{split} \sum_{n \ge 0} f(n) x^n &= \prod_{m \ge 1} (1 + x^{2m} + x^{3m} + \cdots)^{\beta(m)} \\ &= \prod_{m \ge 1} \left(\frac{1 - x^{6m}}{(1 - x^{2m})(1 - x^{3m})} \right)^{\beta(m)} \\ &= \frac{1 - qx^6}{(1 - qx^2)(1 - qx^3)} \\ &= \frac{1 + x + x^2 + x^3}{1 - qx^2} - \frac{x(1 + x + x^2)}{1 - qx^3} \\ &\Rightarrow f(n) = q^{\lfloor n/2 \rfloor} + q^{\lfloor n/2 \rfloor - 1} - q^{\lfloor (n-1)/3 \rfloor}. \end{split}$$

Generalization.

Theorem. Let S be a cyclotomic subset of \mathbb{P} , so

$$\frac{1}{1-x} - \sum_{i \in S} x^{i} = \frac{\prod (1-x^{i})^{a_{i}}}{\prod (1-x^{j})^{b_{j}}}$$

where the products are finite. Let f(n) be the number of monic polynomials of degree n over \mathbb{F}_q such that no irreducible factor has multiplicity $m \in S$. Then

$$\sum f(n)x^n = \frac{\prod_i (1-qx^i)^{a_i}}{\prod_j (1-qx^j)^{b_j}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generalization.

Theorem. Let S be a cyclotomic subset of \mathbb{P} , so

$$\frac{1}{1-x} - \sum_{i \in S} x^{i} = \frac{\prod (1-x^{i})^{a_{i}}}{\prod (1-x^{j})^{b_{j}}}$$

where the products are finite. Let f(n) be the number of monic polynomials of degree n over \mathbb{F}_q such that no irreducible factor has multiplicity $m \in S$. Then

$$\sum f(n)x^n = \frac{\prod_i (1-qx^i)^{a_i}}{\prod_j (1-qx^j)^{b_j}}.$$

Can convert to a partial fraction in q and find an explicit (though in general very lengthy) formula for f(n).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Another example

Let
$$S = \{2, 3, 4, \dots\}$$
. Recall
$$\frac{1}{1-x} - \sum_{i \in S} x^i = 1 + x = \frac{1-x^2}{1-x}.$$

f(n): number of squarefree monic polynomials of degree n over \mathbb{F}_q . Then

$$\sum_{n \ge 0} f(n)x^n = \frac{1 - qx^2}{1 - qx}$$
$$= \sum_{n \ge 0} (q - 1)q^{n-1}x^n$$
$$\Rightarrow f(n) = (q - 1)q^{n-1} \text{ (well-known)},$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Another example

Let
$$S = \{2, 3, 4, \dots\}$$
. Recall $\frac{1}{1-x} - \sum_{i \in S} x^i = 1 + x = \frac{1-x^2}{1-x}.$

f(n): number of squarefree monic polynomials of degree n over \mathbb{F}_q . Then

$$\sum_{n \ge 0} f(n)x^n = \frac{1 - qx^2}{1 - qx}$$
$$= \sum_{n \ge 0} (q - 1)q^{n-1}x^n$$
$$\Rightarrow f(n) = (q - 1)q^{n-1} \text{ (well-known)},$$

a kind of analogue (though not a q-analogue in the usual sense) of Euler's result on partitions of n into distinct parts and into odd parts.

Argument did not involve $\beta(d)$.

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

► What about Z?

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.
- ▶ What about Z?

Theorem. Let S be a finite cyclotomic subset of \mathbb{P} , so

$$\frac{1}{1-x} - \sum_{i \in S} x^i = \frac{\prod (1-x)^{a_i}}{\prod (1-x)^{b_j}} \quad \text{(finite products)}.$$

Let ζ denote the Riemann zeta function. Then

$$\sum_{n} n^{-s} = \frac{\prod \zeta(b_i s)}{\prod \zeta(a_j s)},$$

where n ranges over all positive integers such that if $k \in S$, then no prime p divides n with multiplicity $m \in S$.

Happy 70th birthday, Bruce!

