$\mathbb{R}^{1, n}=\mathbb{R} \times \mathbb{R}^{n}:(n+1)$-dimensional Minkowski spacetime

$$
\boldsymbol{p}=(t, \boldsymbol{x}) \in \mathbb{R}^{1, n}
$$

t : time coordinate
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$: space coordinate

Minkowski norm:

$$
\begin{aligned}
& \begin{aligned}
|(t, \boldsymbol{x})|^{2} & =t^{2}-|\boldsymbol{x}|^{2} \\
& =t^{2}-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)
\end{aligned} \\
& (t, \boldsymbol{x}) \text { is timelike }:|(t, \boldsymbol{x})|^{2}>0 \\
& (t, \boldsymbol{x}) \text { is lightlike }:|(t, \boldsymbol{x})|=0 \\
& (t, \boldsymbol{x}) \text { is spacelike }:|(t, \boldsymbol{x})|^{2}<0 .
\end{aligned}
$$

(s, \boldsymbol{x}) and (t, \boldsymbol{y}) are timelike separated if $(s, \boldsymbol{x})-(t, \boldsymbol{y})$ is timelike (similarly spacelike separated).

Timelike separated means the events are causally related; a signal (traveling slower than $c=1$) can reach one event from the other.
\boldsymbol{F}^{\prime} : second reference frame,
moving with constant velocity $\boldsymbol{v} \in \mathbb{R}^{n}$ with respect to the first F. An observer in the second frame measures coordinates $\left(t^{\prime}, \boldsymbol{x}^{\prime}\right)$, synchronized so that $t=t^{\prime}=0$ when the two frames coincide. Write

$$
\boldsymbol{v}=(\tanh \rho) \boldsymbol{u}
$$

where $\tanh \rho=|\boldsymbol{v}|$ (with $c=1$) and \boldsymbol{u} is a unit vector. The Lorentz transformation (for t^{\prime}):

$$
t^{\prime}=(\cosh \rho) t-(\sinh \rho) \boldsymbol{x} \cdot \boldsymbol{u}
$$

Two timelike separated events occur in the same order for any observers. (Otherwise causality would be violated.) Two spacelike separated events can always occur in either order in suitable reference frames.

Main problem. Given k events in $\mathbb{R}^{1, n}$, in what different orders can they occur for different observers? How many such orders are there? (suggested by ??, NSA)
E.g., given three events $\boldsymbol{p}_{\mathbf{1}}, \boldsymbol{p}_{\mathbf{2}}, \boldsymbol{p}_{\mathbf{3}}$ in $\mathbb{R}^{1,1}$, there do not exist three observers who see them in the orders

$$
p_{1}<p_{2}<p_{3}
$$

(i.e., $\boldsymbol{p}_{\mathbf{1}}$ before $\boldsymbol{p}_{\boldsymbol{2}}$ before $\boldsymbol{p}_{\mathbf{3}}$ in time)

$$
\begin{aligned}
& \boldsymbol{p}_{2}<\boldsymbol{p}_{3}<\boldsymbol{p}_{1} \\
& \boldsymbol{p}_{3}<\boldsymbol{p}_{1}<\boldsymbol{p}_{2}
\end{aligned}
$$

First assume all the events $\boldsymbol{p}_{\boldsymbol{i}}$ are spacelike separated (easy to construct). Let ($t_{i}, \boldsymbol{x}_{\boldsymbol{i}}$) be the coordinates of $\boldsymbol{p}_{\boldsymbol{i}}$ with respect to a fixed observer. An observer moving at velocity $\boldsymbol{v}=(\tanh \rho) \boldsymbol{u}$ sees $\boldsymbol{p}_{\boldsymbol{i}}$ occur at time

$$
t_{i}^{\prime}=(\cosh \rho) t_{i}-(\sinh \rho) \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{u}
$$

Hence $\boldsymbol{p}_{\boldsymbol{i}}$ occurs simultaneously to $\boldsymbol{p}_{\boldsymbol{j}}$ for this observer if $t_{i}^{\prime}=t_{j}^{\prime}$, i.e.,

$$
\begin{aligned}
& (\cosh \rho) t_{i}-(\sinh \rho) \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{u} \\
& =(\cosh \rho) t_{j}-(\sinh \rho) \boldsymbol{x}_{\boldsymbol{j}} \cdot \boldsymbol{u} .
\end{aligned}
$$

Equivalently,

$$
t_{i}-t_{j}=\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right) \cdot \boldsymbol{v}
$$

The set of such velocities \boldsymbol{v} forms a hyperplane in \mathbb{R}^{n}. The different sides of the hyperplanes determine whether $\boldsymbol{p}_{\boldsymbol{i}}$ occurs before or after $\boldsymbol{p}_{\boldsymbol{j}}$.

Theorem. The number of different orders in which the events $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ can occur is the number $\boldsymbol{r}(\mathcal{A})$ of regions of the arrangement

$$
\mathcal{A}=\mathcal{A}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}\right)
$$

with hyperplanes
$t_{i}-t_{j}=\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right) \cdot \boldsymbol{v}, \quad 1 \leq i<j \leq k$.
In general hopeless.
Assume therefore that $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ are generic (can be defined precisely).

Main tool: intersection poset $L_{\mathcal{A}}$, set of all nonempty intersections of hyperplanes in \mathcal{A} (including $\hat{0}=\mathbb{R}^{n}$), ordered by reverse inclusion.

Möbius function $\mu: L_{\mathcal{A}} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
\mu(\hat{0}) & =1 \\
\forall y>\hat{0}, \sum_{x \leq y} \mu(x) & =0 .
\end{aligned}
$$

Characteristic polynomial:

$$
\chi_{\mathcal{A}}(t)=\sum_{x \in L_{\mathcal{A}}} \mu(x) t^{\operatorname{dim}(x)} .
$$

Above example: $\chi_{\mathcal{A}}(t)=t^{2}-3 t+2$.

Theorem (Zaslavsky). Let $\operatorname{dim}(\mathcal{A})=$

 \boldsymbol{n}. Then$$
\begin{aligned}
r(\mathcal{A}) & =(-1)^{n} \chi_{\mathcal{A}}(-1) \\
& =\sum_{x \in L_{\mathcal{A}}}|\mu(x)|
\end{aligned}
$$

Example. Braid arrangement $\mathcal{B}_{k}: z_{i}=z_{j}, 1 \leq i<j \leq k$.

Intersection poset: $L_{\mathcal{B}_{k}}=\Pi_{k}$, the lattice of partitions of $\{1,2, \ldots, k\}$ ordered by refinement.

A partition such as 134-26-5 corresponds to the intersection

$$
z_{1}=z_{3}=z_{4}, \quad z_{2}=z_{6} .
$$

$$
\begin{aligned}
\chi_{\mathcal{B}_{k}}(t) & =t(t-1) \cdots(t-k+1) \\
& =\sum_{i=1}^{k}(-1)^{k-i} c(k, i) t^{i} .
\end{aligned}
$$

where $\boldsymbol{c}(\boldsymbol{k}, \boldsymbol{i})$ is a signless Stirling number of the first kind (number of permutations of $\{1,2, \ldots, k\}$ with i cycles).

Recall: want $r(\mathcal{A})$, where \mathcal{A} is given by:
$t_{i}-t_{j}=\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right) \cdot \boldsymbol{v}, \quad 1 \leq i<j \leq k$.
By genericity, no $n+1$ of these hyperplanes intersect. Any partition of $\{1,2, \ldots, k\}$ with at least $k-n$ blocks defines an intersection. E.g., 134-26-5 defines

$$
\begin{gathered}
\left(\boldsymbol{x}_{\mathbf{1}}-\boldsymbol{x}_{\mathbf{3}}\right) \cdot \boldsymbol{v}=t_{1}-t_{3},\left(\boldsymbol{x}_{\mathbf{3}}-\boldsymbol{x}_{\mathbf{4}}\right) \cdot \boldsymbol{v}=t_{3}-t_{4} \\
\left(\Rightarrow\left(\boldsymbol{x}_{\mathbf{1}}-\boldsymbol{x}_{\mathbf{4}}\right) \cdot \boldsymbol{v}=t_{1}-t_{4}\right) \\
\left(\boldsymbol{x}_{\mathbf{2}}-\boldsymbol{x}_{\mathbf{6}}\right) \cdot \boldsymbol{v}=t_{2}-t_{6}
\end{gathered}
$$

Hence $L(\mathcal{A})$ consists of all partitions of $\{1,2, \ldots, k\}$ with at most $k-n$ blocks (rank n truncation of Π_{k}).

Rank two truncation of Π_{4} :

Recall: $\chi_{\mathcal{B}_{k}}(t)=\sum_{i=1}^{k}(-1)^{k-i} c(k, i) t^{i}$. Hence:

Theorem. For k generic spacelike separated events in $\mathbb{R}^{1, n}$, the number of orders in which these events can be seen by observers in different reference frames is
$r(\mathcal{A})=c(k, k)+c(k, k-1)+\cdots+c(k, k-n)$.
(Maximum possible for any k events.)

What if events are not all spacelike separated?

Recall: if (s, \boldsymbol{x}) and (t, \boldsymbol{y}) are timelike separated, then they appear in the same order in all reference frames.

In that case, solutions \boldsymbol{v} to

$$
s-t=(\boldsymbol{x}-\boldsymbol{y}) \cdot \boldsymbol{v}
$$

satisfy $|v|>1$.
Let $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ be any k events in $\mathbb{R}^{1, n}$.

Separation graph: $G=G\left(p_{1}, \ldots, p_{k}\right)$:
$V(G)=\{1, \ldots, k\}$
$E(G)=\left\{i j: \boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{j}}\right.$ spacelike separated $\}$.

Theorem. The number of different orders in which the events $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ can occur is the number $\boldsymbol{r}\left(\mathcal{A}_{G}\right)$ of regions of the arrangement

$$
\mathcal{A}_{G}=\mathcal{A}_{G}\left(p_{1}, \ldots, p_{k}\right)
$$

with hyperplanes

$$
t_{i}-t_{j}=\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right) \cdot \boldsymbol{v}, \quad i j \in E(G)
$$

Let G be given, and $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ otherwise generic.

Graphical arrangement:

$$
\mathcal{B}_{G}: \quad z_{i}=z_{j}, i j \in E(G)
$$

Intersection poset: $L_{\mathcal{B}_{G}}=$ the lattice of partitions of $\{1,2, \ldots, k\}$ whose blocks induce connected subgraphs of G, ordered by refinement.

$$
\chi_{\mathcal{B}_{G}}(t)=\chi_{G}(t),
$$

the chromatic polynomial of G.
For $q \in \mathbb{P}$,

$$
\begin{gathered}
\chi_{G}(q)=\#\{\kappa: V \rightarrow\{1, \ldots, q\} \mid \\
i j \in E \Rightarrow \kappa(i) \neq \kappa(j)\} .
\end{gathered}
$$

Exactly as for $\mathcal{B}_{n}=\mathcal{B}_{K_{n}}$, we get:
Theorem. Let $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{k}} \in \mathbb{R}^{1, n}$ be generic events with separation graph G. Let $\chi_{G}(t)=t^{k}-a_{1} t^{k-1}+\cdots+$ $a_{k-1} t$. The number of different orders in which these events can be seen by observers in different reference frames is

$$
r\left(\mathcal{B}_{G}\right)=1+a_{1}+a_{2}+\cdots+a_{n} .
$$

Note added $4 / 4 / 05$. The above theorem is incorrect. It is being revised.

What separation graphs G can occur?
Suppose (s, \boldsymbol{x}) and (t, \boldsymbol{y}) are timelike separated, as well as (t, \boldsymbol{y}) and (u, \boldsymbol{z}), with $s<t<u$. Then

$$
\begin{aligned}
t-s & >|\boldsymbol{y}-\boldsymbol{x}| \\
u-t & >|\boldsymbol{z}-\boldsymbol{y}| \\
\Rightarrow u-s & >|\boldsymbol{y}-\boldsymbol{x}|+|\boldsymbol{z}-\boldsymbol{y}| \\
& \geq|\boldsymbol{z}-\boldsymbol{x}|,
\end{aligned}
$$

so \boldsymbol{x} and \boldsymbol{z} are also timelike separated.
Thus the (edge) complement \bar{G} of a separation graph is a comparability graph, i.e., the graph of (distinct) comparable elements of a poset P, and separation graphs G are incomparability graphs.

Call P a timelike poset.

Many known characterizations of comparability graphs. E.g.:

Theorem (Ghoulà-Houri, Gilmore and Hoffman). $G=(V, E)$ is a comparability graph if and only if there is no sequence ($v_{1}, v_{2}, \ldots, v_{2 n+1}$) of (not necessarily distinct) $v_{i} \in V$, with $n \geq 2$, such that $v_{i} v_{i+1} \in E$ and $v_{i} v_{i+2} \notin E$ (cyclically).

Another viewpoint.

Given $\boldsymbol{p}=(s, \boldsymbol{x}) \in \mathbb{R}^{1, n}$, define the (open) future light cone $C(\boldsymbol{p})$ by

$$
\begin{aligned}
C(\boldsymbol{p})= & \left\{\boldsymbol{q}=(t, \boldsymbol{y}) \in \mathbb{R}^{1, n}:\right. \\
& t>s ; \boldsymbol{p}, \boldsymbol{q} \text { timelike sep. }\} \\
= & \left\{\boldsymbol{q} \in \mathbb{R}^{1, n}:\right.
\end{aligned}
$$

$$
t-s>|\boldsymbol{y}-\boldsymbol{x}|\}
$$

a half-cone with apex \boldsymbol{p}, slope 45°, and opening in the t-direction.

Note. If $\boldsymbol{q} \in C(\boldsymbol{p})$ then $C(\boldsymbol{q}) \subset$ $C(\boldsymbol{p})$. Thus

$$
\boldsymbol{q} \in C(\boldsymbol{p}), \boldsymbol{r} \in C(\boldsymbol{q}) \Rightarrow \boldsymbol{r} \in C(\boldsymbol{p}),
$$

so again \bar{G} is a comparability graph. In fact, \bar{G} is a half-cone graph, i.e., isomorphic to a set of half-cones, with an edge from C to C^{\prime} if $C \subset C^{\prime}$ or $C^{\prime} \subset C$.

By intersecting the half-cones with a hyperplane $t=t_{0}$ for $t_{0} \gg 0$, we see that half-cone orders are sphere orders.

What more can be said about timelike posets (or sphere orders) P ? A poset P has dimension d if

$$
P \subset \mathbb{R}^{d}, \quad P \not \subset \mathbb{R}^{d-1}
$$

Large literature on sphere orders and poset dimension.

Easy. The timelike posets for $n=1$ (i.e., events in $\mathbb{R}^{1,1}$) are just the posets of dimension 2 .

Theorem (Felsner, Trotter, Fishburn). Not every finite poset is a sphere order.

Suppose $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ are generic spacelike separated events in $\mathbb{R}^{1, n}$.

Recall: number of different orders in which the events can be seen in different reference frames is
$r(\mathcal{A})=c(k, k)+c(k, k-1)+\cdots+c(k, k-n)$. What sets of orders (permutations of $1, \ldots, k)$ are possible?

How many sets of permutations of the events are there?

Assume $n=1$, so $\boldsymbol{v}=v \in \mathbb{R}$.
As v increases from $-\infty$ to ∞, the order of the events $\boldsymbol{p}_{\boldsymbol{i}}$ and $\boldsymbol{p}_{\boldsymbol{j}}$ will change as v passes through

$$
v_{i j}:=\frac{t_{i}-t_{j}}{x_{i}-x_{j}}
$$

Thus get a sequence

$$
\boldsymbol{\Lambda}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{\binom{k}{2}}\right)
$$

of permutations of $1,2, \ldots, k$. Assume (without loss of generality) that for $v=$ 0 the permutation is $1,2, \ldots, k$, ie.,

$$
t_{1}<t_{2}<\cdots<t_{k}
$$

Varying the $\boldsymbol{p}_{\boldsymbol{i}}$'s, the sequence Λ will change when

$$
\frac{t_{i}-t_{j}}{x_{i}-x_{j}}=\frac{t_{r}-t_{s}}{x_{r}-x_{s}}
$$

Theorem. The number of different Λ is the number of "effective regions" of the arrangement

$$
\frac{t_{i}-t_{j}}{x_{i}-x_{j}}=\frac{t_{r}-t_{s}}{x_{r}-x_{s}}
$$

$1 \leq i<j \leq k, 1 \leq r<s \leq k$, of quadric hypersurfaces in $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

Example. $\left(\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\mathbf{4}}\right)=(01,13,42,77)$. Then $v_{12}=(1-0) /(3-1)=1 / 2$, etc. $v_{23}<0<v_{12}<v_{34}<v_{14}<v_{24}<v_{13}$, SO
$\Lambda=(1324,1234,2134,2143,2413,4213,4231)$.

1324	1234	2134	2143	2413	4213	4231

In general,

$$
\begin{aligned}
\Lambda & =\sigma \cdot\left(\pi_{0}, \pi_{1}, \ldots, \pi_{\binom{k}{2}}\right) \\
& =\left(\sigma \pi_{0}, \sigma \pi_{1}, \ldots, \sigma \pi_{\binom{k}{2}}\right),
\end{aligned}
$$

where $\sigma \in \mathfrak{S}_{k}$, some $\pi_{i}=\sigma^{-1}$, and $\left(\pi_{0}, \pi_{1}, \ldots, \pi_{\binom{k}{2}}\right)$ is a maximal chain in the weak Bruhat order of \mathfrak{S}_{k}.

Number of such $\sigma \cdot\left(\pi_{0}, \pi_{1}, \ldots, \pi_{\binom{k}{2}}\right)$ is

$$
\left(1+\binom{k}{2}\right) f^{(k-1, k-2, \ldots, 1)}
$$

where $f^{(k-1, k-2, \ldots, 1)}$ is the number of standard Young tableaux of shape

$$
\begin{aligned}
(k- & 1, k-2, \ldots, 1): \\
& =\frac{f^{(k-1, k-2, \ldots, 1)}}{1^{k-1} 3^{k-2} 5^{k-3} \cdots(2 k-3)^{1}}
\end{aligned}
$$

(upper bound on number of sequences
$\left.\Lambda=\Lambda\left(\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}\right)\right)$

Is the converse true, i.e., does every such sequence $\sigma \cdot\left(\pi_{0}, \ldots, \pi_{\binom{k}{2}}\right)$ arise as some Λ ?

Theorem. No for $k \geq 5$.
But yes when $k=3$. The different Λ are
$(123,132,312,321),(213,123,132,312)$
$(231,213,123,132),(321,231,213,123)$
$(321,312,132,123),(312,132,123,213)$
$(132,123,213,231),(123,213,231,321)$.
In particular, none contain all of $123,231,312$.
Also yes for $k=4: 7 \cdot 16$ different Λ.
Equivalent to theory of allowable sequences (Goodman-Pollack).

A CLASSICAL ANALOGUE

$p_{1}, \ldots, p_{k} \in \mathbb{R}^{n}$ (Euclidean space)
At time $t=0$, each point $\boldsymbol{p}_{\boldsymbol{i}}$ emits a flash of light. In how many orders can these events be observed from different points \boldsymbol{x} ?

Only consider \boldsymbol{x} for which no two events are observed simultaneously.
\boldsymbol{p} and \boldsymbol{q} are observed simultaneously at points \boldsymbol{x} on the perpendicular bisector of \boldsymbol{p} and \boldsymbol{q}, with equation

$$
(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{x}=\frac{1}{2}\left(|\boldsymbol{p}|^{2}-|\boldsymbol{q}|^{2}\right) .
$$

Compare $(\boldsymbol{x}-\boldsymbol{y}) \cdot \boldsymbol{v}=s-t$.

Hence:

Theorem. The number of different orders in which $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ can be observed is the number $r(\mathcal{C})$ of regions of the arrangement \mathcal{C} with hyperplanes

$$
\left(\boldsymbol{p}_{\boldsymbol{i}}-\boldsymbol{p}_{\boldsymbol{j}}\right) \cdot \boldsymbol{x}=\frac{1}{2}\left(\left|\boldsymbol{p}_{\boldsymbol{i}}\right|^{2}-\left|\boldsymbol{p}_{\boldsymbol{j}}\right|^{2}\right) .
$$

Assume $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{k}}$ are generic. Then $r(\mathcal{C})$ is computed exactly as before:

Theorem.
$r(\mathcal{C})=c(k, k)+c(k, k-1)+\cdots+c(k, k-n)$.
Good-Tideman (1977): voting theory
Zaslavsky (2002): arrangements
Kamiya-Orlik-Takemura-Terao (2004): ranking patterns

