TORIC SCHUR FUNCTIONS

$\mathrm{Gr}_{k n}$: Grassmann variety of k-subspaces of \mathbb{C}^{n}

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Gr}_{k n}=k(n-k)
$$

$\boldsymbol{H}^{*}\left(\mathrm{Gr}_{\boldsymbol{k n}}\right)=H^{*}\left(\mathrm{Gr}_{k n} ; \mathbb{Z}\right):$ cohomology ring (fundamental object for Schubert calculus)
basis for $H^{*}\left(\mathrm{Gr}_{k n}\right)$: Schubert classes $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and

$$
\lambda \subseteq \boldsymbol{k} \times(\boldsymbol{n}-\boldsymbol{k}),
$$

i.e.,

$$
n-k \geq \lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0
$$

Let $\boldsymbol{P}_{\boldsymbol{k} \boldsymbol{n}}$ be the set of all such partitions λ, so

$$
\# P_{k n}=\operatorname{rank} H^{*}\left(\operatorname{Gr}_{k n}\right)=\binom{n}{k}
$$

$\Omega_{\boldsymbol{\lambda}} \subset \mathrm{Gr}_{k n}:$ Schubert variety, defined by bounds on $\operatorname{dim} X \cap V_{i}$, for $X \in \mathrm{Gr}_{k n}$, where
$\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=\mathbb{C}^{n}$ is a fixed flag.

Multiplication in $H^{*}\left(\mathrm{Gr}_{k n}\right)$:

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \in P_{k n}} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

where $c_{\mu \nu}^{\lambda}$ is a Littlewood-Richardson coefficient.

$$
\Rightarrow c_{\mu \nu}^{\lambda}=\#\left(\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda \vee}\right),
$$

where $\tilde{\Omega}_{\nu}$ is a generic translate of Ω_{ν} and $\boldsymbol{\lambda}^{\vee}$ is the complementary partition

$$
\lambda^{\vee}=\left(n-k-\lambda_{k}, \ldots, n-k-\lambda_{1}\right) .
$$

$\mathrm{QH}^{*}\left(\mathrm{Gr}_{k n}\right)$: quantum deformation of $H^{*}\left(\operatorname{Gr}_{k n}\right)$
$\boldsymbol{\Lambda}_{\boldsymbol{k}}$: ring of symmetric polynomials over \mathbb{Z} in x_{1}, \ldots, x_{k}.

$$
\Lambda_{k}=\mathbb{Z}\left[e_{1}, \ldots, e_{k}\right],
$$

where $\boldsymbol{e}_{\boldsymbol{i}}$ is the i th elementary symmetric function in x_{1}, \ldots, x_{k}.
$\boldsymbol{h}_{\boldsymbol{i}}$: sum of all monomials of degree i (complete symmetric function)

$$
H^{*}\left(\operatorname{Gr}_{k n}\right) \cong \Lambda_{k} /\left(h_{n-k+1}, \ldots, h_{n}\right)
$$

$\mathrm{QH}^{*}\left(\operatorname{Gr}_{k n}\right) \cong$
$\Lambda_{k} \otimes \mathbb{Z}[q] /\left(h_{n-k+1}, \ldots, h_{n-1}, h_{n}+(-1)^{k} q\right)$
classical case: $q=0$

$$
H^{*}\left(\operatorname{Gr}_{k n}\right) \cong \Lambda_{k} /\left(h_{n-k+1}, \ldots, h_{n}\right)
$$

Basis $\boldsymbol{B}_{\boldsymbol{k n}}$ for $\Lambda_{k} /\left(h_{n-k+1}, \ldots, h_{n}\right)$:
Let λ be a partition.
semistandard Young tableau (SSYT) of shape λ :
\leqslant

$$
\begin{aligned}
\lambda & =(4,4,3,1) \\
x^{T} & =x_{1}^{2} x_{2} x_{3} x_{4}^{4} x_{6}^{3} x_{9}
\end{aligned}
$$

Schur function $\boldsymbol{s}_{\boldsymbol{\lambda}}$ of shape λ :

$$
s_{\lambda}=\sum_{T} x^{T},
$$

summed over all SSYT T of shape λ.

$$
\begin{aligned}
& B_{k n}=\left\{s_{\lambda}: \lambda \subseteq k \times(n-k)\right\}, \\
& H^{*}\left(\mathrm{Gr}_{k n}\right) \stackrel{\cong}{\rightrightarrows} \Lambda_{k} /\left(h_{n-k+1}, \ldots, h_{n}\right) \\
& \sigma_{\lambda} \mapsto s_{\lambda}
\end{aligned}
$$

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

$$
\begin{aligned}
s_{21}(a, b, c)= & a^{2} b+a b^{2}+a^{2} c+a c^{2} \\
& +b^{2} c+b c^{2}+2 a b c \\
s_{21}= & \sum_{i \neq j} x_{i}^{2} x_{j}+2 \sum_{i<j<k} x_{i} x_{j} x_{k} \\
s_{21}^{2}= & s_{42}+s_{33}+s_{411}+2 s_{321}+s_{222} \\
& +s_{3111}+s_{2211} \\
\rightarrow & s_{42}+s_{33} \text { in } H^{*}\left(\operatorname{Gr}_{26}\right)
\end{aligned}
$$

basis for $\mathrm{QH}^{*}\left(\mathrm{Gr}_{k n}\right)$ remains

$$
\left\{\sigma_{\lambda}: \lambda \subseteq k \times(n-k)\right\}
$$

quantum multiplication:

$$
\sigma_{\mu} * \sigma_{\nu}=\sum_{d \geq 0} \sum_{\substack{\lambda \vdash|\mu|+|\nu|-d n \\ \lambda \in P_{k n}}} q^{d} \boldsymbol{C}_{\mu \nu}^{\boldsymbol{\lambda}, \boldsymbol{d}} \sigma_{\lambda},
$$

where $C_{\mu \nu}^{\lambda, d} \in \mathbb{Z}$.
$C_{\mu \nu}^{\lambda, d}$: number of rational curves of degree d in $\operatorname{Gr}_{k n}$ meeting $\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda} \vee$, a 3 -point Gromov-Witten invariant

Naively, a rational curve of degree r in $\mathrm{Gr}_{k n}$ is a set

$$
\begin{aligned}
C=\{ & \left(f_{1}(s, t), f_{2}(s, t), \ldots, f_{\binom{n}{k}}(s, t)\right) \\
& \left.\in P^{\binom{n}{k}-1}(\mathbb{C}): s, t \in \mathbb{C}\right\},
\end{aligned}
$$

where $f_{1}(x, y), \ldots, f_{\binom{n}{k}}(x, y)$ are homogeneous polynomials of degree d such that $C \subset \mathrm{Gr}_{k n}$.

Rational curve of degree $d=0$ is a point.

Let λ / μ be a skew partition, i.e., $\mu \subseteq \lambda$.
semistandard Young tableau (SSYT) of shape λ / μ :

$$
\begin{aligned}
\lambda / \mu & =(4,4,3,1) /(2,1,1) \\
x^{T} & =x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{6}
\end{aligned}
$$

skew Schur function $s_{\lambda / \mu}$ of shape λ / μ :

$$
s_{\lambda / \mu}=\sum_{T} x^{T},
$$

summed over all SSYT T of shape λ / μ.

$$
\begin{gather*}
s_{\lambda}=s_{\lambda / \emptyset} \\
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}, \tag{1}
\end{gather*}
$$

where $c_{\mu \nu}^{\lambda}$ is a Littlewood-Richardson coefficient, i.e.,

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
$$

Want to generalize (1) to $C_{\mu \nu}^{\lambda, d}$.
toric shape τ in a 6×10 rectangle:

semistandard toric tableau (SSTT):
\leqslant

\wedge| 2 | 2 | 4 | 6 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | | | | | | | | |
| 4 | | | | | | | 1 | 2 | 4 |
| | | | 1 | 2 | 2 | 2 | 2 | 5 | |
| | | | 3 | 3 | 4 | 4 | 4 | | |
| | 1 | 2 | 4 | | | | | | |

the toric shape

$$
\begin{aligned}
\tau & =\boldsymbol{\lambda} / \boldsymbol{d} / \boldsymbol{\mu} \\
& =(9,7,6,2,2,0) / 2 /(9,9,7,3,3,1):
\end{aligned}
$$

toric Schur function:

$$
\boldsymbol{s}_{\boldsymbol{\lambda} / \boldsymbol{d} / \boldsymbol{\mu}}=\sum_{T} x^{T}
$$

summed over all SSTT of shape $\lambda / d / \mu$
Theorem. Let $\lambda / d / \mu$ be a toric shape contained in a $k \times(n-k)$ torus.
Then

$$
s_{\lambda / d / \mu}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\nu \in P_{k n}} C_{\mu \nu}^{\lambda, d} s_{\nu}\left(x_{1}, \ldots, x_{k}\right) .
$$

Compare the case $d=0$: If

$$
\lambda / \mu \subseteq k \times(n-k)
$$

then

$$
s_{\lambda / \mu}\left(x_{1},, \ldots, x_{k}\right)=\sum_{\nu \in P_{k n}} c_{\mu \nu}^{\lambda} s_{\nu}\left(x_{1}, \ldots, x_{k}\right)
$$

TORIC h-VECTORS AND INTERSECTION COHOMOLOGY

convex polytope: convex hull \mathcal{P} of a finite set in \mathbb{R}^{n}
$d=\operatorname{dim} \mathcal{P}$
face: intersection of \mathcal{P} with a supporting hyperplane
f_{i} : number of i-dimensional faces
$\left(f_{-1}=1\right)$
f-vector: $f(\mathcal{P})=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$

$$
\begin{aligned}
f(\text { pentagon }) & =(5,5) \\
f(3 \text {-cube }) & =(8,12,6)
\end{aligned}
$$

simplicial polytope: every proper face is a simplex (e.g., tetrahedron, octahedron, icosahedron)
\boldsymbol{h}-vector: $\boldsymbol{h}(\mathcal{P})=\left(h_{0}, \ldots, h_{d}\right)$ defined by:

$$
\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}=\sum_{i=0}^{d} \boldsymbol{h}_{\boldsymbol{i}} x^{d-i}
$$

g-theorem: $\left(h_{0}, \ldots, h_{d}\right) \in \mathbb{Z}^{d+1}$ is $h(\mathcal{P})$ for some simplicial \mathcal{P} if and only if:
$\left(\mathbf{G}_{1}\right) h_{0}=1$
$\left(\mathrm{G}_{2}\right) h_{i}=h_{d-i}$ (Dehn-Sommerville equations)
$\left(\mathbf{G}_{3}\right) h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}(\mathbf{G L B C})$
$\left(\mathrm{G}_{4}\right)$ Non-polynomial inequalities (\boldsymbol{g}-inequalities) on rate of growth of $\boldsymbol{g}_{\boldsymbol{i}}:=$ $h_{i}-h_{i-1}$

Proof of necessity. $\left(\mathrm{G}_{1}\right)$ trivial
$\left(\mathrm{G}_{2}\right)$ "classical" (not difficult)
$\left(\mathrm{G}_{3}\right)$ Perturb \mathcal{P} to have rational vertices. Let $\boldsymbol{X}_{\mathcal{P}}$ be the toric variety corresponding to the normal fan $\boldsymbol{\Sigma}_{\mathcal{P}}$ of \mathcal{P}.

Cohomology ring:

$$
\begin{aligned}
& H^{*}\left(X_{\mathcal{P}} ; \mathbb{R}\right)=H^{0}\left(X_{\mathcal{P}} ; \mathbb{R}\right) \oplus H^{2}\left(X_{\mathcal{P}} ; \mathbb{R}\right) \\
& \oplus \cdots \oplus H^{2 d}\left(X_{\mathcal{P}} ; \mathbb{R}\right)
\end{aligned}
$$

where

$$
\operatorname{dim} H^{2 i}\left(X_{\mathcal{P}} ; \mathbb{R}\right)=h_{i}(\mathcal{P})
$$

Hard Lefschetz theorem for $X_{\mathcal{P}}$: if $\omega \in H^{2}$ is the class of a hyperplane section, then

$$
\omega^{d-i}: H^{2 i} \rightarrow H^{2(d-i)}
$$

is a bijection, $0 \leq i<d / 2$. Hence

$$
\omega: H^{i} \rightarrow H^{i+1}
$$

is injective for $0 \leq i<d / 2$, so

$$
h_{i} \leq h_{i+1}
$$

$\left(\mathrm{G}_{4}\right)$ Use that $H^{*}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$ is generated by H^{2} as an \mathbb{R}-algebra.

If \mathcal{P} is nonsimplicial and rational, can still define $X_{\mathcal{P}}$, but $H^{*}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$ is "bad." Instead use intersection cohomology (Goresky-MacPherson):

$$
\begin{aligned}
\operatorname{IH}\left(X_{\mathcal{P}} ; \mathbb{R}\right) & =\mathrm{IH}^{0}\left(X_{\mathcal{P}} ; \mathbb{R}\right) \oplus \mathrm{IH}^{2}\left(X_{\mathcal{P}} ; \mathbb{R}\right) \oplus \\
& \cdots \oplus \mathrm{IH}^{2 d}\left(X_{\mathcal{P}} ; \mathbb{R}\right) .
\end{aligned}
$$

Let $\boldsymbol{h}_{\boldsymbol{i}}=h_{i}(\mathcal{P})=\operatorname{dim} \operatorname{IH}^{2 i}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$
(independent of embedding of \mathcal{P}).
toric h-vector:

$$
\boldsymbol{h}(\mathcal{P})=\left(h_{0}, h_{1}, \ldots, h_{d}\right)
$$

Computation of $h(\mathcal{P})$. Define $\boldsymbol{f}(\mathcal{P}, \boldsymbol{x})$ and $\boldsymbol{g}(\mathcal{P}, \boldsymbol{x})$ by

- $f(\emptyset, x)=g(\emptyset, x)=1$
- If $\mathcal{P} \neq \emptyset$ then

$$
f(\mathcal{P}, x)=\sum_{\mathcal{Q}} g(\mathcal{Q}, x)(x-1)^{\operatorname{dim} \mathcal{P}-\operatorname{dim} \mathcal{Q}-1}
$$

where \mathcal{Q} ranges over all faces of \mathcal{P} (including \emptyset) except \mathcal{P}.

- If $\operatorname{dim} \mathcal{P}=d \geq 0, \boldsymbol{m}=\lfloor d / 2\rfloor$, and $f(\mathcal{P}, x)=h_{0}+h_{1} x+\cdots$, then

$$
\begin{aligned}
g(\mathcal{P}, x)= & h_{0}+\left(h_{1}-h_{0}\right) x+\left(h_{2}-h_{1}\right) x^{2}+ \\
& \cdots+\left(h_{m}-h_{m-1}\right) x^{m}
\end{aligned}
$$

Example. Let $\sigma_{j}=j$-simplex,
$\mathcal{C}_{j}=j$-cube. Say we know

$$
\begin{gathered}
g\left(\sigma_{0}, x\right)=g\left(\sigma_{1}, x\right)=1 \\
g\left(\mathcal{C}_{2}, x\right)=1+x
\end{gathered}
$$

Then

$$
\begin{aligned}
f\left(\mathcal{C}_{3}, x\right)= & 6(x+1)+12(x-1) \\
& +8(x-1)^{2}+(x-1)^{3} \\
= & x^{3}+5 x^{2}+5 x+1 \\
g\left(\mathcal{C}_{3}, x\right)= & 1+4 x .
\end{aligned}
$$

Note. $f\left(\mathcal{C}_{n}, 1\right)=2\binom{2 n-2}{n-1}$

$$
g\left(\mathcal{C}_{n}, 1\right)=\frac{1}{n+1}\binom{2 n}{n}
$$

(Catalan number)

For any \mathcal{P}, define the toric \boldsymbol{h}-vector

$$
\boldsymbol{h}(\mathcal{P})=\left(h_{0}, \cdots, h_{d}\right),
$$

where $f(\mathcal{P}, x)=h_{0}+\cdots+h_{d} x^{d}$
(easy: $\operatorname{deg} f=d$).
Trivial: $h_{0}=1\left(\mathbf{G}_{1}\right)$
Not difficult: $h_{i}=h_{d-i}\left(\mathbf{G}_{2}\right)$
If \mathcal{P} is rational, then
$\operatorname{dim} \mathrm{IH}^{2 i}\left(X_{\mathcal{P}} ; \mathbb{R}\right)=h_{i} \Rightarrow h_{i} \geq 0$.
Moreover, $\operatorname{IH}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$ is a module over $H^{*}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$, and hard Lefschetz holds. Thus

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor} .\left(\mathbf{G}_{3}\right)
$$

$\mathrm{IH}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$ is not a ring, so $\left(\mathrm{G}_{4}\right)$ remains open even for \mathcal{P} rational.

Extend to nonrational \mathcal{P} :
"Nice" generalization of $X_{\mathcal{P}}$ not known.
Nice generalization of $\operatorname{IH}\left(X_{\mathcal{P}} ; \mathbb{R}\right)$ defined by Barthel-Brasslet-Fiesler-Kaup and Bressler-Lunts. Connection with h_{i} and hard Lefschetz proved by Karu, with improvements by Bressler-Lunts and Barthel et al.
$\boldsymbol{\Sigma}$: complete fan in \mathbb{R}^{d}
\mathcal{A}_{Σ} : structure sheaf of Σ. For each cone $\sigma \in \Sigma$ define the stalk

$$
\mathcal{A}_{\boldsymbol{\Sigma}, \boldsymbol{\sigma}}=\operatorname{Sym}(\operatorname{span} \sigma)^{*}
$$

the space of polynomial functions on σ.
Restriction map

$$
\mathcal{A}_{\Sigma, \sigma} \rightarrow A_{\Sigma}(\partial \sigma)
$$

defined by restriction of functions.
\mathcal{A}_{Σ} is a sheaf of algebras. Multiplication with elements of $A=\operatorname{Sym}\left(\mathbb{R}^{d}\right)^{*}$ (all polynomial functions on \mathbb{R}^{d}) gives
\mathcal{A}_{Σ} the structure of a sheaf of A-modules.
\mathcal{L}_{Σ} : equivariant intersection cohomology sheaf, a sheaf of \mathcal{A}_{Σ}-modules (technical definition)
$\mathbf{I H}(\boldsymbol{\Sigma})=\overline{\mathcal{L}}_{\Sigma}(\mathcal{A}$-module of global sections of \mathcal{L}_{Σ} modulo the ideal I of A generated by homogeneous linear functions): intersection homology of Σ

AXIOMS FOR \mathcal{L}_{Σ}

$\left(\mathrm{E}_{1}\right)$ (normalization) $\mathcal{L}_{\Sigma, 0}=\mathbb{R}$
(E_{2}) (local freeness) $\mathcal{L}_{\Sigma, \sigma}$ is a free $\mathcal{A}_{\Sigma, \sigma^{-}}$ module for any $\sigma \in \Sigma$.
$\left(\mathrm{E}_{3}\right)$ (minimal flabbiness) Let I be the ideal of A generated by homogeneous linear functions, and for any A-module M write $\bar{M}=M / I M$. Then modulo the ideal I the restriction map induces an isomorphism

$$
\overline{\mathcal{L}}_{\Sigma, \sigma} \rightarrow \overline{\mathcal{L}_{\Sigma}(\partial \sigma)} .
$$

Bressler-Lunts:

- $\mathrm{IH}(\Sigma)=\mathrm{IH}^{0} \oplus \mathrm{IH}^{2} \oplus \cdots \oplus \mathrm{IH}^{2 d}$
- Poincaré duality so

$$
\operatorname{IH}^{2 i}(\Sigma) \equiv \operatorname{IH}^{2(d-i)}(\Sigma)
$$

- Conjecture. If $\Sigma=\Sigma_{\mathcal{P}}$ (normal fan of the polytope $\mathcal{P})$, then $\operatorname{IH}(\mathcal{P})$ satisfies hard Lefschetz: for strictly convex $l \in \mathcal{A}_{\Sigma_{\mathcal{P}}}^{2}$ and $i<d / 2$,

$$
l^{d-i}: \mathrm{IH}^{2 i}(\mathcal{P}) \xrightarrow{\cong} \mathrm{IH}^{2(d-i)} .
$$

- Above conjecture $\Rightarrow \operatorname{dim} \mathrm{IH}^{2 i}(\mathcal{P})=$ $h_{i}(\mathcal{P})$, proving $\left(\mathrm{G}_{3}\right)$:

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}
$$

Karu: proved conjecture of BresslerLunts.

Stronger result: Hodge-RiemannMinkowski bilinear relations. Poincaré duality \Rightarrow

$$
\mathrm{IH}^{d-i}(\mathcal{P}) \times \mathrm{IH}^{d+i}(\mathcal{P}) \rightarrow \mathbb{R}
$$

denoted $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$. If $l \in A_{\sum}^{2}$ is strictly convex, define a quadratic form $\boldsymbol{Q}_{\boldsymbol{l}}$ on $\mathrm{IH}^{d-i}(\mathcal{P})$ by

$$
Q_{l}(x)=\left\langle l^{i} x, x\right\rangle
$$

Primitive intersection cohomology:

$$
\begin{gathered}
\mathbf{I P}^{d-\boldsymbol{i}}(\mathcal{P})=\operatorname{ker}\left(l^{i+1}, \mathrm{IH}^{d-i}(\mathcal{P})\right) \\
l^{i+1}: \mathrm{IH}^{d-i}(\mathcal{P}) \rightarrow \mathrm{IH}^{d+i+2}(\mathcal{P})
\end{gathered}
$$

H-R-M: $(-1)^{(d-i) / 2} Q_{l}$ is positive definite on $\operatorname{IP}^{d-i}(\mathcal{P})$ for all $i \geq 0$.
(proved by McMullen for simplicial \mathcal{P})

Extremely rough sketch of proof: find a suitable triangulation of the fan $\Sigma_{\mathcal{P}}$ and "lift" H-R-M from Δ to Σ.

Bressler-Lunts: canonical pairing $\langle\cdot, \cdot\rangle$, independent of choice of Δ.

Barthel-Brasselet-Fiesler-Kaup: "direct" approach to proof of Bressler-Lunts, replacing derived categories with elementary sheaf theory and commutative algebra.

