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Definition of Euler numbers

Define
Xn
secx+tanx Z E, —.
~ ~— n!
even odd 120 Eyler number

Euler considered E,, in connection with sums like

)k 7.‘_2n-i-1

> e - :
= (2k_|_1)2n+1 22n+2(2n)! n

Raabe (1851): introduced the term “Euler numbers”



Basic definitions

A sequence a1, ao, ..., ax of distinct integers is alternating if
ar>a<az>ag<---,
and reverse alternating if

aa<ap>az<ag>---.



Euler numbers

S, : symmetric group of all permutations of
1,2,...,n

A, = #{w e &, : wis alternating}

#{w € &, : w is reverse alternating}

(viaay--rap—=>n+1l—ay,....,n+1—a,)



Euler numbers

S, : symmetric group of all permutations of
1,2,...,n

A, = #{w e &, : wis alternating}

#{w € &, : w is reverse alternating}
(viaay--rap—=>n+1l—ay,....,n+1—a,)

E.g., Es=5: 2143,3142,3241, 4132, 4231



André’s theorem

Theorem (Désiré André, 1879)

A, =E,
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Naive proof of André’s theorem

Show combinatorially that

= 2Ap1 = Z (Z) AkAn—k, n>1
k=0

=2y =1+y2 y(0)=1.
= y = secx + tanx.

(There exist more conceptual proofs.)
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A new subject?

Let A,, be the number of alternating permutations in &,,.

Z 2n+1
tanx = o2n+l7~ 3\ r
|
n>0 2 - 1)
secx = Z Az,,
n>0

= combinatorial trigonometry
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An example

sec®x = 1+ tan’x

Take coefficient of x27/(2n)!:

" (2n 2/ 2n
> <2k> Aok Ao (n—k) = ( K+ 1) A2k+1A2n-2k—1,
k=0 k=0

etc.

sec?x = 1 + tan?x is equivalent to sin® x + cos? x = 1

(Pythagorean theorem). So we have a combinatorial proof of the
Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in E.S.
Loomis, The Pythagorean Proposition, second ed., 1940).
Ours is perhaps the worst.
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Another identity (exercise)

tanx +tany

tan(x +y) = 1 — (tanx)(tany)

Enumerative Combinatorics, vol. 2, Exercise 5.7



Boustrophedon

boustrophedon:



Boustrophedon

boustrophedon: an ancient method of writing in which the lines
are inscribed alternately from right to left and from left to right.



Boustrophedon

boustrophedon: an ancient method of writing in which the lines
are inscribed alternately from right to left and from left to right.

From Greek boustrophédon ( ), turning like an
ox while plowing: bous, ox + strophé, a turning (from strephein,
to turn)



The boustrophedon array

5 «+ 5 + 4 <+ 2 <+ 0

0O —-— 5 —- 10 — 14 — 16 — 16

61 «+ 61 <« 56 «— 46 <+ 32 <« 16 <« O.



The boustrophedon array

5 «+ 5 + 4 <+ 2 <+ 0

0O —-— 5 —- 10 — 14 — 16 — 16

61 «+ 61 <« 56 <« 46 <+ 32 « 16 <« O.



Boustrophedon entries

@ last term in row n: E,_1
@ sum of terms in row n: E,

@ kth term in row n: number of alternating permutations in &,
with first term k, the Entringer number E,,_; ;.



Boustrophedon entries

@ last term in row n: E,_1
@ sum of terms in row n: E,

@ kth term in row n: number of alternating permutations in &,
with first term k, the Entringer number E,,_; ;.

y" Ccos X + sin x

Z ZEm+n [mn] m! nl o m7

m>0 n>0

m, m+ nodd
[m, n] =
n, m-+ n even.



Some occurrences of E,

(1) Ezpt1 is the number of complete increasing binary trees on the
vertex set [2n+ 1] = {1,2,...,2n+ 1}.



Five vertices

1
2
5 5 4 4 3 3
3 47 4 3°3 5 5 374 55 4
1 1 1 1
7 7 />2\./>2\/><./><.
2 2 4 4 5 5
4 5°5 4 3 5 5 373 47 4 3
1 1 1 1
2 2 3 3
4 5°5 474 55 4



Five vertices

1
2

5 5 4 4 3 3

3 4 4 3 3 5 5 3 4 5 5 4
1 1 1 1 1

2 2 4 4 5 5

4 5 5 4 3 5 5 3 3 4 4 3
1 1 1 1
2 2 3 3
4 5 5 4 4 5 5 4

Slightly more complicated for E;,



Proof for 2n +1

bibs - - - b, : sequence of distinct integers

b; = min{b1,..., bnm}



Proof for 2n +1

bibs - - - b, : sequence of distinct integers
b; = min{b1,..., bnm}
Define recursively a binary tree T(by,...,by) by

b.

1

O

Ty b)) T, b,)



Completion of proof

Example. 439172856




Completion of proof

Example. 439172856

8 6
Let w € Gppp1. Then T(w) is complete if and only if w is
alternating, and the map w — T(w) gives the desired bijection.
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Orbits of mergings

(2) Start with n one-element sets {1}, ..., {n}.

Merge together two at a time until reaching {1,2,...,n}.
1-2-3-4-5-6, 12—3—-4-5-6, 12—34—5-6
125—-34—-6, 125—346, 123456

&), acts on these sequences.
The number of &S,-orbits is E,, 1.

Proof omitted.



Orbit representatives for n = 5

12-3-4-5

12-3-4-5

12—-3-4-5

12—-3-4-5

12—-3-4-5

123—-4-5

123—4-5

12—-34-5

12—-34-5

12—-34-5

1234—-5

12345

12534

12—-345

1234—-5



Volume of a polytope

(3) Let £, be the convex polytope in R” defined by

, 1<i<n
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Xj =
X+ Xiy1 <



Volume of a polytope

(3) Let £, be the convex polytope in R” defined by

1<i<n

0,
1, 1<i<n-1.

>
<

Theorem. The volume of €, is E,/n!.



Naive proof

1—xq 1—xp 1—Xp—1
vol(& / / / / dxqy dxo - - - dxp,
x1=0 J x»



Naive proof

- dxp,

1
Xm dX2 c

1—xp_
0

V_A =]
H
V_A =]
I

L.
/

1

vol(€,) = /X |

- dxp,

1
dX1 dX2 c

1—x,_
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Naive proof

—Xn—1

1 1-x; pl-—
vol(&,) = / / / dxq dxo - - - dxp
X =0

1—xp—1

t 1-x1 1—x
e [T
x1=0 Jx=0
1-t pl—x 1—xp—1
/ / / dxo dx3 - - - dxp
xp=0 J x3= xn=0

= fo1(l—1t).

-

2

—~
~

N
I






etc.

Z f(t)y"

n>0

—y*F(y),



Conclusion of proof

F(y) = (secy)(cos(t—1)y +sinty)

= F(y)|t=1 secy +tany.



Tridiagonal matrices

An n x n matrix M = (mj) is tridiagonal if m; = 0 whenever
i—jl 2.

doubly-stochastic: m;j; > 0, row and column sums equal 1

Ta: set of n x n tridiagonal doubly stochastic matrices



Polytope structure of 7,

Easy fact: the map

T, — R1
M —  (mi,m3,...,mp_1,)

is a (linear) bijection from T to &,-1.



Polytope structure of 7,

Easy fact: the map

T, — R1
M —  (mi,m3,...,mp_1,)

is a (linear) bijection from T to &,-1.

Application (Diaconis et al.): random doubly stochastic
tridiagonal matrices and random walks on 7,



here??
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Prelude: distribution of is(w)

is(w) = length of longest increasing
subsequence of w € &,

is(48361572) = 3

Vershik-Kerov, Logan-Shepp:



Limiting distribution of is(w)

Baik-Deift-Johansson:
For fixed t € R,

fim Prob (S =2V ) gy,
(B2 < o)~ F)

n—oo

the Tracy-Widom distribution.



Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

w = 56218347 = as(w) =5



Longest alternating subsequences

as(w)= length of longest alt. subseq. of w

w = 56218347 = as(w) =5

D(n)= o Z as(w) ~ 7

’ WGGn



Definition of ax(n)

ak(n) = #{w € &, : as(w) = k}
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Definition of ax(n)

ak(n) = #{w € &, : as(w) = k}

w  as
123
132
213
231
312
321

l\)wl\)wl\)l—"g
~

31(3) = 1, 32(3) = 3, 33(3) =2



The main lemma

Lemma. Vw € &, 3 alternating subsequence of maximal length
that contains n.



The main lemma

Lemma. Vw € &, 3 alternating subsequence of maximal length
that contains n.

= ak(n) = ':”1 C:ll)

J

Y (@2l —1) + a1l — 1)) as(n )

2r+s=k—1

Corollary.



The main generating function

kX"

A(x, t)= Z ag(n)t o

k,n>0

Theorem.

A, t) = (1— 1) (12/7’)

_ 1=ppx
te

where p= /1 — t2,



Formulas for bi(n)

Corollary.

= al(n 1

)

a(n) = n—1
) = 2(3"—6n+3)
)

= 1(4"—2-3"—(2n—4)2"+8n—6)



Formulas for bi(n)

Corollary.

= al(n 1

)

a(n) = n—1
) = 2(3"—6n+3)
)

= 1(4"—2-3"—(2n—4)2"+8n—6)

No such formulas for longest increasing subsequences.



Mean (expectation) of as(w)

D(n) :% 3 as(w) = Z ax(n),

" weG, " k=

the expectation of as(w) for w € &,



Mean (expectation) of as(w)

the expectation of as(w) for w € &,

Recall

n

A(x,t) = Zak(n)tk%

k,n>0

2 1
- oo (st
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Formula for D(n)

., 0
> D(n)x" = aA(x,1)

n>0
6x — 3x2 4+ x3
6(1 — x)?

_ dn+1
= X—FZ 6 X",




Formula for D(n)

., 0
> D(n)x" = aA(x,1)

n>0
6x — 3x2 4+ x3
6(1 — x)?

4 1
= X—FZ n; x".
n>2

4n +1
6 b

— D(n) = n>2

Compare E(n) ~ 2+/n.
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Simple proof (cont.)

w = ajaz---ap
Prob(a; > a2) = 1/2
Prob(a; peak or valley) = 2/3, 2<i<n-—1
)

Prob(a, > ap—1 or ap <ap—1) = 1



Simple proof (cont.)

w = ajaz---ap
Prob(a; > a2) = 1/2
Prob(a; peak or valley) = 2/3, 2<i<n-—1
)

Prob(a, > ap,—1 or a, < ap—1

=D(n) = -+((n-2)z+1




Variance of as(w)

Vin= 2 3 (as(w)

WGGn

the variance of as(w) for w € &,




Variance of as(w)

V= (as(w)—4”§1)2, n>2

WGGn

the variance of as(w) for w € &,

Corollary.

8§ 13
= h— " n>4
V() = 25"~ 10" "2



Variance of as(w)

V= (as<w>-4";1)2, n>2

WGGn
the variance of as(w) for w € &,

Corollary.
8 13
>4

“5" o "
similar results for higher moments

V(n)



A new distribution?

P(t) = lim Prob,cg, <

n—oo

as(w)\/—ﬁ 2n/3 _ t)



A new distribution?

P(t) = lim Probyecc, (as(w)%m < r)

Stanley distribution?



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).
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(Gaussian distribution)



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

-2
lim Probwegn <M\/7n/3 S t)
n

n—o0
B i tv45/4 e—52 e
VT

(Gaussian distribution)

(2¥e)
-7
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umbra). Replace E* with the Euler number Ej. (Technique from
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Umbral enumeration

Umbral formula: involves EX, where E is an indeterminate (the
umbra). Replace E* with the Euler number Ej. (Technique from
19th century, modernized by Rota et al.)

(1+E?3 = 143E2+3E*+E°
1+3E,+3E4+ Es
1+3-1+3-5+61
= 80



Another example

(1+1t)E

E E
Et t2 34
1+ +(2> +<3> +

1
1+Er+§ﬂE—1ﬁ2+~-
1
1+E1t-|—§(E2 — El))t2+"'

1
1+t+§(1—1)t2+--~
1+t+0(t%).



Alt. fixed-point free involutions

fixed point free involution w € G,,,: all cycles of length two
(number =1-3-5---(2n—1))



Alt. fixed-point free involutions

fixed point free involution w € G,,,: all cycles of length two
(number =1-3-5---(2n—1))

Let f(n) be the number of alternating fixed-point free involutions
in 62,,.



Alt. fixed-point free involutions

fixed point free involution w € G,,,: all cycles of length two
(number =1-3-5---(2n — 1))

Let f(n) be the number of alternating fixed-point free involutions
in 62,,.
n=3: 214365 = (1,2)(3,4)(5,6)
645231 = (1,6)(2,4)(3,5)
f(3)=2



An umbral theorem

Theorem.



An umbral theorem

Theorem.

A
X
I

Z f(n)x"

1 —|—X (E2+1)/4
- (%)
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Proof idea

Proof. Uses representation theory of the symmetric group &,,.

There is a character x of G, (due to H. O. Foulkes) such that for
all w e G,
x(w)=0or +E.

Now use known results on combinatorial properties of characters of
G,.
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LHS is a mock theta function. This is an (nonformal
identity).



Entry 16 of Ramanujan’s second notebook

As x tends to 0+,

00 n(n+1)
1_
23 (-1)" X ~ T x4 x4+ 23 45X 175 4 -
puard 14+ x

LHS is a mock theta function. This is an (nonformal
identity).

B. Berndt, Ramanujan’s Notebooks, Part V/ (1998):

[e'¢) 1— x n(n+1) 1+ x 1/4 oo E2 1+ x
_1\n ~ n log" .
2;( 1 <1+x) <l—x) 2 ony 18 (1— )

X
n=0




Entry 16 of Ramanujan’s second notebook

As x tends to 0+,

00 n(n+1)

1_

23 (-1)" X Pl x4 x4+ 23 45X 1T 4
puard 14 x

LHS is a mock theta function. This is an (nonformal
identity).
B. Berndt, Ramanujan’s Notebooks, Part V/ (1998):

> 1—x\""*D) 1+x\Y* X E 14+x
2 —1)" ~ " Jog”" )
nz:;)( ) <l—l—x) <l—x) 2 anp 0 <l—x)

n=0

Computed first 50 coefficients and noticed they were all positive
integers. Brent showed positivity (easy) and Galway (1997)
integrality by a difficult argument.



Connection with alternating permutations

Recall: f(n): number of alternating fixed fixed-point free
involutions in &2,

F(x) = Z f(n)x"

n>0

14 x (E2+1)/
- ()
<1+x>l/4 <2 l—i-x)
= exp | — log
1—x
_ X 1/400 E2,, 1+x
- 22”n' log” 1—x)’

the series of Berndt.

—
_|_
><

><



A formal identity

Corollary (via Ramanujan, Andrews).

J 1(]‘_ %= 1)
PO =22 T g

1 2/3 ] _
where q = (ﬁ) , a formal identity.
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Generalizations?

What can replace == in

0 1 x n(n+1)
S (172"
n=0

1+ ax
1— bx

What about ?
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