Euler Numbers

Richard P. Stanley U. Miami & M.I.T.

April 3, 2023

Define

$$\sec x + \tan x = \sum_{n \ge 0} \frac{\mathbf{E_n}}{n!} \frac{x^n}{n!}.$$

Define

$$\underbrace{\sec x}_{\mathrm{even}} + \underbrace{\tan x}_{\mathrm{odd}} = \sum_{n \geq 0} \underbrace{\frac{\mathbf{E}_n}{\mathbf{Euler number}}}_{\mathbf{Fuller number}} \frac{x^n}{n!}.$$

Define

$$\underbrace{\sec x}_{\text{even}} + \underbrace{\tan x}_{\text{odd}} = \sum_{n \ge 0} \underbrace{\frac{E_n}{\text{Euler number}}}_{\text{number}} \frac{x''}{n!}.$$

Euler considered E_{2n} in connection with sums like

$$\sum_{k>0} \frac{(-1)^k}{(2k+1)^{2n+1}} = \frac{\pi^{2n+1}}{2^{2n+2}(2n)!} E_n.$$

Define

$$\underbrace{\sec x}_{\text{even}} + \underbrace{\tan x}_{\text{odd}} = \sum_{n \ge 0} \underbrace{\frac{E_n}{n!}}_{\text{Euler number}} \frac{x^n}{n!}.$$

Euler considered E_{2n} in connection with sums like

$$\sum_{k>0} \frac{(-1)^k}{(2k+1)^{2n+1}} = \frac{\pi^{2n+1}}{2^{2n+2}(2n)!} E_n.$$

Raabe (1851): introduced the term "Euler numbers"

Basic definitions

A sequence a_1, a_2, \ldots, a_k of distinct integers is alternating if

$$a_1 > a_2 < a_3 > a_4 < \cdots$$

and reverse alternating if

$$a_1 < a_2 > a_3 < a_4 > \cdots$$
.

Euler numbers

 \mathfrak{S}_n : symmetric group of all permutations of $1, 2, \dots, n$

$$egin{aligned} oldsymbol{A_n} &= & \#\{w \in \mathfrak{S}_n : w ext{ is alternating}\} \ &= & \#\{w \in \mathfrak{S}_n : w ext{ is reverse alternating}\} \end{aligned}$$
 (via $a_1 \cdots a_n \mapsto n+1-a_1, \ldots, n+1-a_n$)

Euler numbers

 \mathfrak{S}_n : symmetric group of all permutations of $1, 2, \dots, n$

$$\begin{array}{rcl} \textbf{\textit{A}}_{\textbf{\textit{n}}} &=& \#\{w \in \mathfrak{S}_{n} : w \text{ is alternating}\}\\\\ &=& \#\{w \in \mathfrak{S}_{n} : w \text{ is reverse alternating}\}\\\\ (\text{via } a_{1} \cdots a_{n} \mapsto n+1-a_{1}, \ldots, n+1-a_{n})\\\\ \text{E.g., } E_{4} &=& 5 : 2143, 3142, 3241, 4132, 4231 \end{array}$$

André's theorem

Theorem (Désiré André, 1879)

$$A_n = E_n$$

Show combinatorially that

$$\Rightarrow 2A_{n+1} = \sum_{k=0}^{n} \binom{n}{k} A_k A_{n-k}, \ n \ge 1$$

Show combinatorially that

$$\Rightarrow 2A_{n+1} = \sum_{k=0}^{n} \binom{n}{k} A_k A_{n-k}, \ n \ge 1$$

 $\Rightarrow 2v' = 1 + v^2, \quad v(0) = 1.$

Show combinatorially that

$$\Rightarrow 2A_{n+1} = \sum_{k=0}^{n} \binom{n}{k} A_k A_{n-k}, \quad n \ge 1$$

$$\Rightarrow 2y' = 1 + y^2, \quad y(0) = 1.$$

$$\Rightarrow y = \sec x + \tan x.$$

Show combinatorially that

$$\Rightarrow 2A_{n+1} = \sum_{k=0}^{n} \binom{n}{k} A_k A_{n-k}, \quad n \ge 1$$

$$\Rightarrow 2y' = 1 + y^2, \quad y(0) = 1.$$

$$\Rightarrow y = \sec x + \tan x.$$

(There exist more conceptual proofs.)

A new subject?

Let A_n be the number of alternating permutations in \mathfrak{S}_n .

A new subject?

Let A_n be the number of alternating permutations in \mathfrak{S}_n .

Define

$$\tan x = \sum_{n \ge 0} A_{2n+1} \frac{x^{2n+1}}{(2n+1)!}$$

$$\sec x = \sum_{n \ge 0} A_{2n} \frac{x^{2n}}{(2n)!}.$$

A new subject?

Let A_n be the number of alternating permutations in \mathfrak{S}_n .

Define

$$\tan x = \sum_{n \ge 0} A_{2n+1} \frac{x^{2n+1}}{(2n+1)!}$$

$$\sec x = \sum_{n \ge 0} A_{2n} \frac{x^{2n}}{(2n)!}.$$

⇒ combinatorial trigonometry

$$\sec^2 x = 1 + \tan^2 x$$

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} \binom{2n}{2k} A_{2k} A_{2(n-k)} = \sum_{k=0}^{n-1} \binom{2n}{2k+1} A_{2k+1} A_{2n-2k-1},$$

etc.

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} {2n \choose 2k} A_{2k} A_{2(n-k)} = \sum_{k=0}^{n-1} {2n \choose 2k+1} A_{2k+1} A_{2n-2k-1},$$

etc.

Note. $\sec^2 x = 1 + \tan^2 x$ is equivalent to $\sin^2 x + \cos^2 x = 1$ (**Pythagorean theorem**). So we have a combinatorial proof of the Pythagorean theorem!

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} {2n \choose 2k} A_{2k} A_{2(n-k)} = \sum_{k=0}^{n-1} {2n \choose 2k+1} A_{2k+1} A_{2n-2k-1},$$

etc.

Note. $\sec^2 x = 1 + \tan^2 x$ is equivalent to $\sin^2 x + \cos^2 x = 1$ (**Pythagorean theorem**). So we have a combinatorial proof of the Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in **E.S. Loomis**, *The Pythagorean Proposition*, second ed., 1940).

$$\sec^2 x = 1 + \tan^2 x$$

Take coefficient of $x^{2n}/(2n)!$:

$$\sum_{k=0}^{n} {2n \choose 2k} A_{2k} A_{2(n-k)} = \sum_{k=0}^{n-1} {2n \choose 2k+1} A_{2k+1} A_{2n-2k-1},$$

etc.

Note. $\sec^2 x = 1 + \tan^2 x$ is equivalent to $\sin^2 x + \cos^2 x = 1$ (**Pythagorean theorem**). So we have a combinatorial proof of the Pythagorean theorem!

Hundreds of known proofs of this result (367 proofs in **E.S. Loomis**, *The Pythagorean Proposition*, second ed., 1940). Ours is perhaps the worst.

Another identity (exercise)

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - (\tan x)(\tan y)}$$

Another identity (exercise)

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - (\tan x)(\tan y)}$$

Enumerative Combinatorics, vol. 2, Exercise 5.7

Boustrophedon

boustrophed on:

Boustrophedon

boustrophedon: an ancient method of writing in which the lines are inscribed alternately from right to left and from left to right.

Boustrophedon

boustrophedon: an ancient method of writing in which the lines are inscribed alternately from right to left and from left to right.

From Greek boustrophēdon ($\beta o v \sigma \tau \rho o \varphi \eta \delta o \nu$), turning like an ox while plowing: bous, ox + strophē, a turning (from strephein, to turn)

The boustrophedon array

The boustrophedon array

Boustrophedon entries

- last term in row n: E_{n-1}
- sum of terms in row n: E_n
- kth term in row n: number of alternating permutations in \mathfrak{S}_n with first term k, the **Entringer number** $E_{n-1,k-1}$.

Boustrophedon entries

- last term in row n: E_{n-1}
- sum of terms in row n: E_n
- kth term in row n: number of alternating permutations in \mathfrak{S}_n with first term k, the **Entringer number** $E_{n-1,k-1}$.

$$\sum_{m\geq 0} \sum_{n\geq 0} E_{m+n,[m,n]} \frac{x^m}{m!} \frac{y^n}{n!} = \frac{\cos x + \sin x}{\cos(x+y)},$$
$$[m,n] = \begin{cases} m, & m+n \text{ odd} \\ n, & m+n \text{ even.} \end{cases}$$

Some occurrences of E_n

(1) E_{2n+1} is the number of complete increasing binary trees on the vertex set $[2n+1] = \{1, 2, \dots, 2n+1\}$.

Five vertices

Five vertices

Slightly more complicated for E_{2n}

Proof for 2n + 1

$$m{b_1b_2\cdots b_m}$$
: sequence of distinct integers $m{b_i} = \min\{b_1,\ldots,b_m\}$

Proof for 2n + 1

$$m{b_1b_2\cdots b_m}$$
: sequence of distinct integers $m{b_i} = \min\{b_1,\ldots,b_m\}$

Define recursively a binary tree $T(b_1, \ldots, b_m)$ by

Completion of proof

Example. 439172856

Completion of proof

Example. 439172856

Let $\mathbf{w} \in \mathfrak{S}_{2n+1}$. Then $T(\mathbf{w})$ is complete if and only if \mathbf{w} is alternating, and the map $\mathbf{w} \mapsto T(\mathbf{w})$ gives the desired bijection.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, ..., n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

Theorem. The number of \mathfrak{S}_n -orbits is E_{n-1} .

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

Theorem. The number of \mathfrak{S}_n -orbits is E_{n-1} .

Proof omitted.

Orbit representatives for n = 5

Volume of a polytope

(3) Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} \le 1, 1 \le i \le n - 1.$

Volume of a polytope

(3) Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} \le 1, 1 \le i \le n - 1.$

Theorem. The volume of \mathcal{E}_n is $E_n/n!$.

Naive proof

$$vol(\mathcal{E}_n) = \int_{x_1=0}^1 \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 dx_2 \cdots dx_n$$

Naive proof

$$\operatorname{vol}(\mathcal{E}_n) = \int_{x_1=0}^1 \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 \, dx_2 \cdots dx_n$$
$$\mathbf{f}_n(\mathbf{t}) := \int_{x_1=0}^{\mathbf{t}} \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 \, dx_2 \cdots dx_n$$

Naive proof

$$\operatorname{vol}(\mathcal{E}_{n}) = \int_{x_{1}=0}^{1} \int_{x_{2}=0}^{1-x_{1}} \int_{x_{3}=0}^{1-x_{2}} \cdots \int_{x_{n}=0}^{1-x_{n-1}} dx_{1} dx_{2} \cdots dx_{n}$$

$$\mathbf{f}_{n}(\mathbf{t}) := \int_{x_{1}=0}^{\mathbf{t}} \int_{x_{2}=0}^{1-x_{1}} \int_{x_{3}=0}^{1-x_{2}} \cdots \int_{x_{n}=0}^{1-x_{n-1}} dx_{1} dx_{2} \cdots dx_{n}$$

$$\mathbf{f}'_{n}(\mathbf{t}) = \int_{x_{2}=0}^{1-t} \int_{x_{3}=0}^{1-x_{2}} \cdots \int_{x_{n}=0}^{1-x_{n-1}} dx_{2} dx_{3} \cdots dx_{n}$$

$$= f_{n-1}(1-t).$$

F(y)

$$f'_n(t) = f_{n-1}(1-t), \quad f_0(t) = 1, \quad f_n(0) = 0 \ (n > 0)$$

F(y)

$$f'_n(t) = f_{n-1}(1-t), \quad f_0(t) = 1, \quad f_n(0) = 0 \ (n > 0)$$

$$F(y) = \sum_{n \ge 0} f_n(t) y^n$$

$$\Rightarrow \frac{\partial^2}{\partial t^2} F(y) = -y^2 F(y),$$

etc.

Conclusion of proof

$$F(y) = (\sec y)(\cos(t-1)y + \sin ty)$$

 $\Rightarrow F(y)|_{t=1} = \sec y + \tan y.$

Tridiagonal matrices

An $n \times n$ matrix $M = (m_{ij})$ is **tridiagonal** if $m_{ij} = 0$ whenever $|i - j| \ge 2$.

doubly-stochastic: $m_{ii} \ge 0$, row and column sums equal 1

 T_n : set of $n \times n$ tridiagonal doubly stochastic matrices

Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$
 $M \mapsto (m_{12}, m_{23}, \dots, m_{n-1,n})$

is a (linear) bijection from \mathcal{T} to \mathcal{E}_{n-1} .

Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$
 $M \mapsto (m_{12}, m_{23}, \dots, m_{n-1,n})$

is a (linear) bijection from \mathcal{T} to \mathcal{E}_{n-1} .

Application (**Diaconis** et al.): random doubly stochastic tridiagonal matrices and random walks on \mathcal{T}_n

here??

Prelude: distribution of is(w)

$$\mathbf{is}(\mathbf{w}) = \text{length of longest increasing}$$
 subsequence of $\mathbf{w} \in \mathfrak{S}_n$

$$is(48361572) = 3$$

Prelude: distribution of is(w)

$$is(w)$$
 = length of longest increasing subsequence of $w \in \mathfrak{S}_n$

$$is(48361572) = 3$$

Prelude: distribution of is(w)

is(w) = length of longest increasing subsequence of $w \in \mathfrak{S}_n$

$$is(48361572) = 3$$

Vershik-Kerov, Logan-Shepp:

$$E(n) := \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} is(w)$$

$$\sim 2\sqrt{n}$$

Limiting distribution of is(w)

Baik-Deift-Johansson:

For fixed $t \in \mathbb{R}$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\frac{\operatorname{is}_n(w)-2\sqrt{n}}{n^{1/6}}\leq t\right)=F(t),$$

the Tracy-Widom distribution.

Longest alternating subsequences

$$as(w)$$
= length of longest alt. subseq. of w
 $w = 56218347 \Rightarrow as(w) = 5$

Longest alternating subsequences

$$as(w)$$
 = length of longest alt. subseq. of w $w = 56218347 \Rightarrow as(w) = 5$
$$D(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} as(w) \sim ?$$

Definition of $a_k(n)$

$$\mathbf{a}_{k}(\mathbf{n}) = \#\{w \in \mathfrak{S}_{n} : \operatorname{as}(w) = k\}$$

Definition of $a_k(n)$

$$\mathbf{a}_{k}(\mathbf{n}) = \#\{\mathbf{w} \in \mathfrak{S}_{\mathbf{n}} : \operatorname{as}(\mathbf{w}) = k\}$$

W	as(w)
123	1
132	2
213	3
231	2
312	3
321	2

Definition of $a_k(n)$

$$\mathbf{a_k(n)} = \#\{w \in \mathfrak{S}_n : \operatorname{as}(w) = k\}$$

$$\frac{w \quad \operatorname{as}(w)}{123 \quad 1}$$

$$132 \quad 2$$

$$213 \quad 3$$

$$231 \quad 2$$

$$312 \quad 3$$

$$321 \quad 2$$

$$a_1(3) = 1$$
, $a_2(3) = 3$, $a_3(3) = 2$

The main lemma

Lemma. $\forall w \in \mathfrak{S}_n \exists$ alternating subsequence of maximal length that contains n.

The main lemma

Lemma. $\forall w \in \mathfrak{S}_n \exists$ alternating subsequence of maximal length that contains n.

Corollary.

$$\Rightarrow a_{k}(n) = \sum_{j=1}^{n} {n-1 \choose j-1}$$

$$\sum_{+s=k-1} (a_{2r}(j-1) + a_{2r+1}(j-1)) a_{s}(n-j)$$

The main generating function

$$\mathbf{A}(\mathbf{x},\mathbf{t}) = \sum_{k,n \geq 0} a_k(n) t^k \frac{\mathbf{x}^n}{n!}$$

Theorem.

$$A(x,t)=(1-t)\left(\frac{2/\rho}{1-\frac{1-\rho}{t}e^{\rho x}}-\frac{1}{\rho}\right),\,$$

where $\rho = \sqrt{1-t^2}$.

Formulas for $b_k(n)$

Corollary.

$$\Rightarrow a_{1}(n) = 1$$

$$a_{2}(n) = n-1$$

$$a_{3}(n) = \frac{1}{4}(3^{n}-6n+3)$$

$$a_{4}(n) = \frac{1}{8}(4^{n}-2\cdot3^{n}-(2n-4)2^{n}+8n-6)$$

$$\vdots$$

Formulas for $b_k(n)$

Corollary.

$$\Rightarrow a_{1}(n) = 1$$

$$a_{2}(n) = n-1$$

$$a_{3}(n) = \frac{1}{4}(3^{n}-6n+3)$$

$$a_{4}(n) = \frac{1}{8}(4^{n}-2\cdot3^{n}-(2n-4)2^{n}+8n-6)$$

$$\vdots$$

No such formulas for longest increasing subsequences.

Mean (expectation) of as(w)

$$\mathbf{D}(\mathbf{n}) = \frac{1}{n!} \sum_{\mathbf{w} \in \mathfrak{S}_n} \operatorname{as}(\mathbf{w}) = \frac{1}{n!} \sum_{k=1}^n k \cdot a_k(\mathbf{n}),$$

the **expectation** of as(w) for $w \in \mathfrak{S}_n$

Mean (expectation) of as(w)

$$\mathbf{D}(\mathbf{n}) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \operatorname{as}(w) = \frac{1}{n!} \sum_{k=1}^n k \cdot a_k(n),$$

the **expectation** of as(w) for $w \in \mathfrak{S}_n$

Recall

$$\mathbf{A}(\mathbf{x}, \mathbf{t}) = \sum_{k,n \ge 0} a_k(n) t^k \frac{x^n}{n!}$$
$$= (1 - t) \left(\frac{2/\rho}{1 - \frac{1 - \rho}{t} e^{\rho x}} - \frac{1}{\rho} \right).$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t}A(x,1)$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$
$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\Rightarrow D(n) = \frac{4n+1}{6}, \ n \geq 2$$

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\Rightarrow D(n) = \frac{4n+1}{6}, \ n \geq 2$$

Compare $E(n) \sim 2\sqrt{n}$.

Simple proof

Is there a simple proof that $D(n) = \frac{4n+1}{6}$, n > 1?

Simple proof

Is there a simple proof that $D(n) = \frac{4n+1}{6}$, n > 1?

Simple proof

Is there a simple proof that $D(n) = \frac{4n+1}{6}$, n > 1?

Simple proof (cont.)

$$w=a_1a_2\cdots a_n$$
 $\operatorname{Prob}(a_1>a_2)=1/2$
 $\operatorname{Prob}(a_i \text{ peak or valley})=2/3,\ 2\leq i\leq n-1$
 $\operatorname{Prob}(a_n>a_{n-1} \text{ or } a_n< a_{n-1})=1$

Simple proof (cont.)

$$w = a_1 a_2 \cdots a_n$$

$$\operatorname{Prob}(a_1 > a_2) = 1/2$$

$$\operatorname{Prob}(a_i \text{ peak or valley}) = 2/3, \ 2 \le i \le n-1$$

$$\operatorname{Prob}(a_n > a_{n-1} \text{ or } a_n < a_{n-1}) = 1$$

$$\Rightarrow D(n) = \frac{1}{2} + (n-2)\frac{2}{3} + 1$$

$$= \frac{4n+1}{6}$$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(as(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the **variance** of as(w) for $w \in \mathfrak{S}_n$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the **variance** of as(w) for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(as(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the **variance** of as(w) for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

similar results for higher moments

A new distribution?

$$P(t) = \lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

A new distribution?

$$P(t) = \lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

Stanley distribution?

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$
$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45}/4} e^{-s^2} ds$$

(Gaussian distribution)

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$
$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45}/4} e^{-s^2} ds$$

(Gaussian distribution)

Umbral enumeration

Umbral formula: involves E^k , where E is an indeterminate (the **umbra**). Replace E^k with the Euler number E_k . (Technique from 19th century, modernized by **Rota** et al.)

Umbral enumeration

Umbral formula: involves E^k , where E is an indeterminate (the **umbra**). Replace E^k with the Euler number E_k . (Technique from 19th century, modernized by **Rota** et al.)

Example.

$$(1+E^{2})^{3} = 1+3E^{2}+3E^{4}+E^{6}$$

$$= 1+3E_{2}+3E_{4}+E_{6}$$

$$= 1+3\cdot 1+3\cdot 5+61$$

$$= 80$$

Another example

$$(1+t)^{E} = 1 + Et + {E \choose 2}t^{2} + {E \choose 3}t^{3} + \cdots$$

$$= 1 + Et + \frac{1}{2}E(E-1)t^{2} + \cdots$$

$$= 1 + E_{1}t + \frac{1}{2}(E_{2} - E_{1})t^{2} + \cdots$$

$$= 1 + t + \frac{1}{2}(1-1)t^{2} + \cdots$$

$$= 1 + t + O(t^{3}).$$

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Let f(n) be the number of alternating fixed-point free involutions in \mathfrak{S}_{2n} .

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Let f(n) be the number of alternating fixed-point free involutions in \mathfrak{S}_{2n} .

$$n = 3$$
: 214365 = (1,2)(3,4)(5,6)
645231 = (1,6)(2,4)(3,5)
 $f(3) = 2$

An umbral theorem

Theorem.

$$F(x) = \sum_{n \ge 0} f(n) x^n$$

An umbral theorem

Theorem.

$$F(x) = \sum_{n\geq 0} f(n)x^n$$
$$= \left(\frac{1+x}{1-x}\right)^{(E^2+1)/4}$$

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

There is a character χ of \mathfrak{S}_n (due to **H. O. Foulkes**) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

There is a character χ of \mathfrak{S}_n (due to **H. O. Foulkes**) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Now use known results on combinatorial properties of characters of \mathfrak{S}_n .

Entry 16 of Ramanujan's second notebook

As x tends to 0+,

$$2\sum_{n=0}^{\infty}(-1)^n\left(\frac{1-x}{1+x}\right)^{n(n+1)}\sim 1+x+x^2+2x^3+5x^4+17x^5+\cdots.$$

LHS is a mock theta function. This is an **analytic** (nonformal identity).

Entry 16 of Ramanujan's second notebook

As x tends to 0+,

$$2\sum_{n=0}^{\infty}(-1)^n\left(\frac{1-x}{1+x}\right)^{n(n+1)}\sim 1+x+x^2+2x^3+5x^4+17x^5+\cdots$$

LHS is a mock theta function. This is an **analytic** (nonformal identity).

B. Berndt, Ramanujan's Notebooks, Part V (1998):

$$2\sum_{n=0}^{\infty} (-1)^n \left(\frac{1-x}{1+x}\right)^{n(n+1)} \sim \left(\frac{1+x}{1-x}\right)^{1/4} \sum_{n=0}^{\infty} \frac{E_{2n}}{2^{2n} n!} \log^n \left(\frac{1+x}{1-x}\right).$$

Entry 16 of Ramanujan's second notebook

As x tends to 0+,

$$2\sum_{n=0}^{\infty}(-1)^n\left(\frac{1-x}{1+x}\right)^{n(n+1)}\sim 1+x+x^2+2x^3+5x^4+17x^5+\cdots$$

LHS is a mock theta function. This is an **analytic** (nonformal identity).

B. Berndt, Ramanujan's Notebooks, Part V (1998):

$$2\sum_{n=0}^{\infty} (-1)^n \left(\frac{1-x}{1+x}\right)^{n(n+1)} \sim \left(\frac{1+x}{1-x}\right)^{1/4} \sum_{n=0}^{\infty} \frac{E_{2n}}{2^{2n} n!} \log^n \left(\frac{1+x}{1-x}\right).$$

Computed first 50 coefficients and noticed they were all positive integers. **Brent** showed positivity (easy) and **Galway** (1997) integrality by a difficult argument.

Connection with alternating permutations

Recall: f(n): number of alternating fixed fixed-point free involutions in \mathfrak{S}_{2n}

$$F(x) := \sum_{n \ge 0} f(n)x^n$$

$$= \left(\frac{1+x}{1-x}\right)^{(E^2+1)/4}$$

$$= \left(\frac{1+x}{1-x}\right)^{1/4} \exp\left(\frac{E^2}{4}\log\frac{1+x}{1-x}\right)$$

$$= \left(\frac{1+x}{1-x}\right)^{1/4} \sum_{n=0}^{\infty} \frac{E_{2n}}{2^{2n}n!} \log^n\left(\frac{1+x}{1-x}\right),$$

the series of Berndt.

A formal identity

Corollary (via Ramanujan, Andrews).

$$F(x) = 2\sum_{n>0} q^n \frac{\prod_{j=1}^n (1 - q^{2j-1})}{\prod_{j=1}^{2n+1} (1 + q^j)},$$

where
$$\mathbf{q} = \left(\frac{1-x}{1+x}\right)^{2/3}$$
, a formal identity.

Generalizations?

What can replace $\frac{1+x}{1-x}$ in

$$2\sum_{n=0}^{\infty} (-1)^n \left(\frac{1-x}{1+x}\right)^{n(n+1)}?$$

Generalizations?

What can replace $\frac{1+x}{1-x}$ in

$$2\sum_{n=0}^{\infty} (-1)^n \left(\frac{1-x}{1+x}\right)^{n(n+1)}?$$

What about $\frac{1+ax}{1-bx}$?

The final slide

The final slide

