Some of My Favorite Posets

Richard P. Stanley
U. Miami \& M.I.T.

September 4, 2023

The partition lattice

Arose from a computation of R. McEliece around 1967 which included a formula whose proof used the Möbius function of Π_{n}, the lattice of partitions of $[n]=\{1,2 \ldots, n\}$ ordered by refinement.

Properties

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!

Properties

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!
- Characteristic polynomial:

$$
\begin{aligned}
\chi_{\Pi_{n}}(q) & =\sum_{t \in \Pi_{n}} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)} \\
& =(q-1)(q-2) \cdots(q-n+1)
\end{aligned}
$$

Properties

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!
- Characteristic polynomial:

$$
\begin{aligned}
\chi_{\Pi_{n}}(q) & =\sum_{t \in \Pi_{n}} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)} \\
& =(q-1)(q-2) \cdots(q-n+1)
\end{aligned}
$$

- Π_{n} is the intersection lattice of the braid arrangement \mathcal{B}_{n}.

Properties

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!
- Characteristic polynomial:

$$
\begin{aligned}
\chi_{\Pi_{n}}(q) & =\sum_{t \in \Pi_{n}} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)} \\
& =(q-1)(q-2) \cdots(q-n+1)
\end{aligned}
$$

- Π_{n} is the intersection lattice of the braid arrangement \mathcal{B}_{n}.
- \mathcal{B}_{n} is the graphical arrangement of the complete graph K_{n}, so $q \cdot \chi_{\Pi_{n}}(q)$ is the chromatic polynomial of K_{n}.

Properties

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!
- Characteristic polynomial:

$$
\begin{aligned}
\chi_{\Pi_{n}}(q) & =\sum_{t \in \Pi_{n}} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)} \\
& =(q-1)(q-2) \cdots(q-n+1)
\end{aligned}
$$

- Π_{n} is the intersection lattice of the braid arrangement \mathcal{B}_{n}.
- \mathcal{B}_{n} is the graphical arrangement of the complete graph K_{n}, so $q \cdot \chi_{\Pi_{n}}(q)$ is the chromatic polynomial of K_{n}.
- Π_{n} is supersolvable (explains factorization of $\chi \Pi_{n}(q)$ lattice-theoretically).

Properties

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!
- Characteristic polynomial:

$$
\begin{aligned}
\chi_{\Pi_{n}}(q) & =\sum_{t \in \Pi_{n}} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)} \\
& =(q-1)(q-2) \cdots(q-n+1)
\end{aligned}
$$

- Π_{n} is the intersection lattice of the braid arrangement \mathcal{B}_{n}.
- \mathcal{B}_{n} is the graphical arrangement of the complete graph K_{n}, so $q \cdot \chi_{\Pi_{n}}(q)$ is the chromatic polynomial of K_{n}.
- Π_{n} is supersolvable (explains factorization of $\chi \Pi_{n}(q)$ lattice-theoretically).
- \mathfrak{S}_{n} acts on the top homology of the order complex $\Delta\left(\Pi_{n}-\{\hat{0}, \hat{1}\}\right)$. Action is isomorphic to sign twist of the action of \mathfrak{S}_{n} on the multilinear part of the free Lie algebra Lie(n).

Supersolvability of Π_{n}

blue vertices: modular maximal chain (together with any chain, generates a distributive lattice)
Π_{n} is (upper) semimodular
$\Rightarrow \chi_{\Pi_{4}}(q)=(q-1)(q-2)(q-3)$

Boolean algebra B_{n}

$F l a g h$-vectors and h-vectors

P : graded poset of rank n with $\hat{0}$ and $\hat{1}$ and with rank function ρ
$S \subseteq[n-1]:=\{1,2, \ldots, n-1\}$
flag f-vector:

$$
\alpha_{P}(S)=\#\left\{\hat{0}<t_{1}<\cdots<t_{k}<\hat{1}: S=\left\{\rho\left(t_{1}\right), \ldots, \rho\left(t_{k}\right)\right\}\right.
$$

flag \boldsymbol{h}-vector: $\boldsymbol{\beta}_{P}(S)=\sum_{T \subseteq S}(-1)^{\#(S-T)} \alpha_{P}(T)$

Flag f-vectors and h-vectors

P: graded poset of rank n with $\hat{0}$ and $\hat{1}$ and with rank function ρ
$S \subseteq[n-1]:=\{1,2, \ldots, n-1\}$
flag f-vector:

$$
\alpha_{P}(S)=\#\left\{\hat{0}<t_{1}<\cdots<t_{k}<\hat{1}: S=\left\{\rho\left(t_{1}\right), \ldots, \rho\left(t_{k}\right)\right\}\right.
$$

flag h-vector: $\beta_{P}(S)=\sum_{T \subseteq S}(-1)^{\#(S-T)} \alpha_{P}(T)$

$$
\Rightarrow \alpha_{P}(S)=\sum_{T \subseteq S} \beta_{P}(T)
$$

Flag vectors for B_{4}

S	$\alpha_{B_{4}}(S)$	$\beta_{B_{4}}(S)$
\varnothing	1	1
1	4	3
2	6	5
3	4	3
1,2	12	3
1,3	12	5
2,3	12	3
$1,2,3$	24	1

Edge labelling of B_{n}

Label the Hasse diagram edge $(S, S \cup i)$ with i.

Edge labelling of B_{n}

Label the Hasse diagram edge $(S, S \cup i)$ with i.

Edge labelling of B_{n}

Label the Hasse diagram edge $(S, S \cup i)$ with i.

Key property: every interval $[s, t$] has a unique weakly increasing saturated chain from s to t.

Consequence

Theorem. Let $S \subseteq[n-1]$. Then $\beta_{B_{n}}(S)$ is equal to the number of maximal chains of B_{n} whose labels $w=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (from bottom to top) have descent set S, i.e.,

$$
S=\operatorname{Des}(\alpha):=\left\{i: a_{i}>a_{i+1}\right\} .
$$

Consequence

Theorem. Let $S \subseteq[n-1]$. Then $\beta_{B_{n}}(S)$ is equal to the number of maximal chains of B_{n} whose labels $w=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (from bottom to top) have descent set S, i.e.,

$$
S=\operatorname{Des}(\alpha):=\left\{i: a_{i}>a_{i+1}\right\} .
$$

Since the labels of the n ! maximal chains of B_{n} are just the elements of \mathfrak{S}_{n}, we get:

Corollary. $\beta_{B_{n}}(S)=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{Des}(w)=S\right\}$

Consequence

Theorem. Let $S \subseteq[n-1]$. Then $\beta_{B_{n}}(S)$ is equal to the number of maximal chains of B_{n} whose labels $w=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (from bottom to top) have descent set S, i.e.,

$$
S=\operatorname{Des}(\alpha):=\left\{i: a_{i}>a_{i+1}\right\} .
$$

Since the labels of the n ! maximal chains of B_{n} are just the elements of \mathfrak{S}_{n}, we get:

Corollary. $\beta_{B_{n}}(S)=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{Des}(w)=S\right\}$
The first glimpse of the theory of flag vectors, edge labellings, lexicographic shellability, topological combinatorics,

The Sperner property

$P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$: finite graded poset of rank n
antichain $A \subseteq P$: no two elements of A are comparable

Each P_{i} is an antichain.

The Sperner property

$P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$: finite graded poset of rank n
antichain $A \subseteq P$: no two elements of A are comparable

Each P_{i} is an antichain.
Sperner property: $\max _{\text {antichain } A}|A|=\max _{i}\left|P_{i}\right|$

The Sperner property

$P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$: finite graded poset of rank n
antichain $A \subseteq P$: no two elements of A are comparable

Each P_{i} is an antichain.
Sperner property: $\max _{\text {antichain } A}|A|=\max _{i}\left|P_{i}\right|$
Sperner's theorem (1927): B_{n} has the Sperner property.

The Sperner property

$P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$: finite graded poset of rank n
antichain $A \subseteq P$: no two elements of A are comparable
Each P_{i} is an antichain.
Sperner property: $\max _{\text {antichain } A}|A|=\max _{i}\left|P_{i}\right|$
Sperner's theorem (1927): B_{n} has the Sperner property.
Many proofs, including a linear algebraic method.

Linear algebraic method

$P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$: finite graded poset of rank n
$\mathbb{Q} \boldsymbol{P}_{i}: \mathbb{Q}$-vector space with basis P_{i}
order-raising operator $U_{i}: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$: if $t \in P_{i}$, then $U(t) \in \operatorname{span}_{\mathbb{Q}}\left\{u \in P_{i+1}: u>t\right\}$

Linear algebraic method

$P=P_{0} \dot{\cup} P_{1} \cup \cdots \cup P_{n}$: finite graded poset of rank n
$\mathbb{Q} \boldsymbol{P}_{i}: \mathbb{Q}$-vector space with basis P_{i}
order-raising operator $U_{i}: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$: if $t \in P_{i}$, then $U(t) \in \operatorname{span}_{\mathbb{Q}}\left\{u \in P_{i+1}: u>t\right\}$

Theorem. Suppose that for some j, U_{i} is injective for $i<j$ and surjective for $i>j$. Then P has the Sperner property.

Definition of U for B_{n}

For $\# S=j$, define $U(S)=\sum_{\substack{S \subset T \\ \# T=j+1}} T$.

Definition of U for B_{n}

For $\# S=j$, define $U(S)=\sum_{\substack{S \subset T \\ \# T=j+1}} T$.
This works!

The weak (Bruhat) order

Let $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$.
inversion set $I(w):=\left\{\left(a_{j}, a_{i}\right): i<j, a_{i}>a_{j}\right\}$
length $\ell(w):=\# I(w)$
s_{i} : the adjacent transposition $(i, i+1)$ for $1 \leq i \leq n-1$

The weak (Bruhat) order

Let $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$.
inversion set $I(w):=\left\{\left(a_{j}, a_{i}\right): i<j, a_{i}>a_{j}\right\}$
length $\ell(w):=\# I(w)$
s_{i} : the adjacent transposition $(i, i+1)$ for $1 \leq i \leq n-1$
weak order $W\left(\mathfrak{S}_{n}\right)$ on $\mathfrak{S}_{n}: v$ covers u if for some i, we have $v=s_{i} u$ and $\ell(v)=\ell(u)+1$.

Equivalently, $u<v$ if $I(u) \subset I(v)$.
$W\left(\mathfrak{S}_{4}\right)$

Reduced decompositions

Let $w \in \mathfrak{S}_{n}, \ell(w)=p$. reduced decomposition of $w:\left(c_{1}, \ldots, c_{p}\right)$ such that $w=s_{c_{1}} \cdots s_{c_{p}}$ $r(w)$: number of reduced decompositions of w

Reduced decompositions

Let $w \in \mathfrak{S}_{n}, \ell(w)=p$. reduced decomposition of $w:\left(c_{1}, \ldots, c_{p}\right)$ such that $w=s_{c_{1}} \cdots s_{c_{p}}$ $r(w)$: number of reduced decompositions of w

For $w \in \mathfrak{S}_{n}$, let $\boldsymbol{e}(w)$ denote the number of saturated chains from $\hat{0}=$ id to w in $W\left(\mathfrak{S}_{n}\right)$.

Reduced decompositions

Let $w \in \mathfrak{S}_{n}, \ell(w)=p$. reduced decomposition of $w:\left(c_{1}, \ldots, c_{p}\right)$ such that $w=s_{c_{1}} \cdots s_{c_{p}}$ $r(w)$: number of reduced decompositions of w

For $w \in \mathfrak{S}_{n}$, let $\boldsymbol{e}(w)$ denote the number of saturated chains from $\hat{0}=$ id to w in $W\left(\mathfrak{S}_{n}\right)$.

Observation. $e(w)=r(w)$

Reduced decompositions

Let $w \in \mathfrak{S}_{n}, \ell(w)=p$. reduced decomposition of $w:\left(c_{1}, \ldots, c_{p}\right)$ such that $w=s_{c_{1}} \cdots s_{c_{p}}$
$r(w)$: number of reduced decompositions of w
For $w \in \mathfrak{S}_{n}$, let $\boldsymbol{e}(w)$ denote the number of saturated chains from $\hat{0}=$ id to w in $W\left(\mathfrak{S}_{n}\right)$.

Observation. $e(w)=r(w)$
Connects $W\left(\mathfrak{S}_{n}\right)$ with the theory of reduced decompositions, stable Schubert polynomials (aka "Stanley symmetric functions"), quiver varieties, etc.

Reduced decompositions

Let $w \in \mathfrak{S}_{n}, \ell(w)=p$. reduced decomposition of $w:\left(c_{1}, \ldots, c_{p}\right)$ such that $w=s_{c_{1}} \cdots s_{c_{p}}$
$r(w)$: number of reduced decompositions of w
For $w \in \mathfrak{S}_{n}$, let $\boldsymbol{e}(w)$ denote the number of saturated chains from $\hat{0}=$ id to w in $W\left(\mathfrak{S}_{n}\right)$.

Observation. $e(w)=r(w)$
Connects $W\left(\mathfrak{S}_{n}\right)$ with the theory of reduced decompositions, stable Schubert polynomials (aka "Stanley symmetric functions"), quiver varieties, etc.
Theorem. $r(n, n-1, \ldots, 1))=\frac{\binom{n}{2}!}{1^{n-1} 3^{n-2} 5^{n-3} \ldots(2 n-3)^{1}}$

The Sperner property for $W\left(\mathfrak{S}_{n}\right)$

Theorem. $W\left(\mathfrak{S}_{n}\right)$ has the Sperner property.

The Sperner property for $W\left(\mathfrak{S}_{n}\right)$

Theorem. $W\left(\mathfrak{S}_{n}\right)$ has the Sperner property.
Two proofs using the linear algebraic method:

- C. Gaetz and Y. Gao in 2018, by constructing an $\mathfrak{s l}_{2}$ representation on $\mathbb{Q} W\left(\mathfrak{S}_{n}\right)$

The Sperner property for $W\left(\mathfrak{S}_{n}\right)$

Theorem. $W\left(\mathfrak{S}_{n}\right)$ has the Sperner property.
Two proofs using the linear algebraic method:

- C. Gaetz and Y. Gao in 2018, by constructing an $\mathfrak{s l}_{2}$ representation on $\mathbb{Q} W\left(\mathfrak{S}_{n}\right)$
- Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt in 2018, by looking at a differential operator on Schubert polynomials

Pascal poset

$\mathbb{N} \times \mathbb{N}$, where $\mathbb{N}=\{0<1<2<\cdots\}$

Pascal poset

$\mathbb{N} \times \mathbb{N}$, where $\mathbb{N}=\{0<1<2<\cdots\}$
An infinite graded poset, with rank function $\rho(i, j)=i+j$.
Let $e(i, j)$ be the number of saturated chains from $\hat{0}=(0,0)$ to (i, j). Clearly

$$
e(i, j)=\binom{i+j}{i} .
$$

Pascal poset

$\mathbb{N} \times \mathbb{N}$, where $\mathbb{N}=\{0<1<2<\cdots\}$
An infinite graded poset, with rank function $\rho(i, j)=i+j$.
Let $\boldsymbol{e}(i, j)$ be the number of saturated chains from $\hat{0}=(0,0)$ to (i, j). Clearly

$$
e(i, j)=\binom{i+j}{i}
$$

The poset $\mathbb{N} \times \mathbb{N}$, with the element (i, j) labelled $e(i, j)$, is Pascal's triangle.

Pascal's triangle

Properties of $\binom{n}{k}$

$$
f_{r}(n):=\sum_{k=0}^{n}\binom{n}{k}^{r}
$$

Properties of $\binom{n}{k}$

$$
f_{r}(n):=\sum_{k=0}^{n}\binom{n}{k}^{r}
$$

- $f_{0}(n)=n+1$ (not "spread out")

Properties of $\binom{n}{k}$

$$
\boldsymbol{f}_{r}(\boldsymbol{n}):=\sum_{k=0}^{n}\binom{n}{k}^{r}
$$

- $f_{0}(n)=n+1$ (not "spread out")
- $f_{1}(n)=2^{n}, \sum_{n \geq 0} f_{1}(n) x^{n}=\frac{1}{1-2 x}$ (rational)

Properties of $\binom{n}{k}$

$$
\boldsymbol{f}_{r}(\boldsymbol{n}):=\sum_{k=0}^{n}\binom{n}{k}^{r}
$$

- $f_{0}(n)=n+1$ (not "spread out")
- $f_{1}(n)=2^{n}, \sum_{n \geq 0} f_{1}(n) x^{n}=\frac{1}{1-2 x}$ (rational)
- $f_{2}(n)=\binom{2 n}{n}, \sum_{n \geq 0} f_{2}(n) x^{n}=\frac{1}{\sqrt{1-4 x}}$ (algebraic, not rational)

Properties of $\binom{n}{k}$

$\boldsymbol{f}_{r}(n):=\sum_{k=0}^{n}\binom{n}{k}^{r}$

- $f_{0}(n)=n+1$ (not "spread out")
- $f_{1}(n)=2^{n}, \sum_{n \geq 0} f_{1}(n) x^{n}=\frac{1}{1-2 x}$ (rational)
- $f_{2}(n)=\binom{2 n}{n}, \sum_{n \geq 0} f_{2}(n) x^{n}=\frac{1}{\sqrt{1-4 x}}$ (algebraic, not rational)
- $f_{3}(n)=$??, $\sum_{n \geq 0} f_{3}(n) x^{n}$ is D-finite, not algebraic

Young's lattice

Young diagrams (integer partitions), ordered by diagram containment.

Young's lattice

Label λ by the number \boldsymbol{f}^{λ} of saturated chains from $\hat{0}$ to λ.

Properties of Young's lattice Y

- Y is a distributive lattice, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.

Properties of Young's lattice Y

- Y is a distributive lattice, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.
- $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!$

Properties of Young's lattice Y

- Y is a distributive lattice, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.
- $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!$
- $\sum_{\lambda \vdash n} f^{\lambda}=t_{n}:=\#\left\{w \in \mathfrak{S}_{n}: w^{2}=1\right\}$

$$
\sum_{n \geq 0} t_{n} \frac{x^{n}}{n!}=\exp \left(x+\frac{x^{2}}{2}\right)
$$

Properties of Young's lattice Y

- Y is a distributive lattice, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.
- $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!$
- $\sum_{\lambda \vdash n} f^{\lambda}=t_{n}:=\#\left\{w \in \mathfrak{S}_{n}: w^{2}=1\right\}$

$$
\sum_{n \geq 0} t_{n} \frac{x^{n}}{n!}=\exp \left(x+\frac{x^{2}}{2}\right)
$$

- Number of paths with $2 n$ steps from $\hat{0}$ to $\hat{0}$ (oscillating tableaux $)$ is $(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot(2 n-1)=\frac{(2 n)!}{2^{n} n!}$.

Properties of Young's lattice Y

- Y is a distributive lattice, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.
- $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!$
- $\sum_{\lambda \vdash n} f^{\lambda}=t_{n}:=\#\left\{w \in \mathfrak{S}_{n}: w^{2}=1\right\}$

$$
\sum_{n \geq 0} t_{n} \frac{x^{n}}{n!}=\exp \left(x+\frac{x^{2}}{2}\right)
$$

- Number of paths with $2 n$ steps from $\hat{0}$ to $\hat{0}$ (oscillating tableaux) is $(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot(2 n-1)=\frac{(2 n)!}{2^{n} n!}$.
- Y is a differential poset. Implies previous three properties (and much more).

Another property

Bratteli diagram of a sequence $\mathfrak{A}_{0} \subset \mathfrak{A}_{1} \subset \cdots$ of finite-dimensional semisimple algebras (over a field): elements t of rank n are indexed by irreps V_{t} of \mathfrak{A}_{n}. There is an edge weighted m from t of rank $n-1$ to u of rank n if in the restriction of V_{u} to $\mathfrak{A}_{n-1}, V_{t}$ has multiplicity m.

Another property

Bratteli diagram of a sequence $\mathfrak{A}_{0} \subset \mathfrak{A}_{1} \subset \cdots$ of finite-dimensional semisimple algebras (over a field): elements t of rank n are indexed by irreps V_{t} of \mathfrak{A}_{n}. There is an edge weighted m from t of rank $n-1$ to u of rank n if in the restriction of V_{u} to $\mathfrak{A}_{n-1}, V_{t}$ has multiplicity m.

- Y is the Bratteli diagram of the sequence $\mathbb{Q} \mathfrak{S}_{0} \subset \mathbb{Q} \mathfrak{S}_{1} \subset \mathbb{Q} \mathfrak{S}_{2} \subset \cdots$ (obvious embeddings). Implies that for $\lambda \vdash n, f^{\lambda}$ is the dimension of an irreducible representation of \mathfrak{S}_{n}.

Fibonacci fun

Fibonacci distributive lattice FDL: lattice of finite order ideals of the comb:

The Fibonacci distributive lattice FDL

The Fibonacci differential poset Z

Reflection-extension construction:

The Fibonacci differential poset Z

Reflection-extension construction:

The Fibonacci differential poset Z

Reflection-extension construction:

The Fibonacci differential poset Z

Reflection-extension construction:

The Fibonacci differential poset Z

Reflection-extension construction:

Z is the Bratteli diagram of the Okada algebras $\mathcal{O}_{0} \subset \mathcal{O}_{1} \subset \cdots$. Is FDL the Bratteli diagram of a nice sequence of algebras?

The numbers $e(t)$ for FDL and Z

Further properties

- There is a "nice" rank-preserving bijection $\varphi:$ FDL $\rightarrow Z$ such that $e(t)=e(\varphi(t))$.

Further properties

- There is a "nice" rank-preserving bijection $\varphi:$ FDL $\rightarrow Z$ such that $e(t)=e(\varphi(t))$.
- $\sum_{\substack{t \in Z \\ \operatorname{rank}(t)=n}} e(t)^{2}=n!$

Further properties

- There is a "nice" rank-preserving bijection $\varphi: \mathrm{FDL} \rightarrow Z$ such that $e(t)=e(\varphi(t))$.
- $\sum_{t \in Z} e(t)^{2}=n!$
$\operatorname{rank}(t)=n$
- $\sum_{t \in Z} e(t)=\#\left\{w \in \mathfrak{S}_{n}: w^{2}=1\right\}$ $\operatorname{rank}(t)=n$

Further properties

- There is a "nice" rank-preserving bijection $\varphi:$ FDL $\rightarrow Z$ such that $e(t)=e(\varphi(t))$.
- $\sum_{t \in Z} e(t)^{2}=n$!
$\operatorname{rank}(t)=n$
- $\sum_{t \in Z} e(t)=\#\left\{w \in \mathfrak{S}_{n}: w^{2}=1\right\}$
$\operatorname{rank}(t)=n$
- $\forall t \in Z \forall i$ number of chains (or multichains) of length i in the interval [$0, t$] of Z equals number of chains (or multichains) of length i in the interval $[\hat{0}, t]$ of FDL. (Proof is inelegant and nonconceptual.)

The final slide

The final slide

Further Fibonacci Fun

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with $\hat{0}$ at the top).

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with $0 \hat{\text { at }}$ the top).
- Every \triangle extends to a $2 b$-gon (b edges on each side)

Construction of $\mathcal{F}:=P_{23}$

Construction of $\mathcal{F}:=P_{23}$

Construction of $\mathcal{F}:=P_{23}$

Construction of $\mathcal{F}:=P_{23}$

Fibonacci poset

The numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$

$\left\langle\begin{array}{l}n \\ k\end{array}\right):$ number of saturated chains from $\hat{0}$ to the k th element of row n, starting with $n=0, k=0$.

Two theorems

Theorem. $\sum_{k \geq 0}\binom{n}{k} q^{k}=\prod_{i=1}^{n}\left(1+q^{F_{i+1}}\right)$

Two theorems

Theorem. $\sum_{k \geq 0}\left(\begin{array}{l}n \\ k\end{array}\right\rangle q^{k}=\prod_{i=1}^{n}\left(1+q^{F_{i+1}}\right)$
Theorem. Let $V_{r}(x)=\sum_{n \geq 0}\left(\sum_{k \geq 0}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle^{r}\right) x^{n}$. Then

$$
\begin{aligned}
& V_{1}(x)=\frac{1}{1-2 x} \text { (clear) } \\
& V_{2}(x)=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}} \\
& V_{3}(x)=\frac{1-4 x^{2}}{1-2 x-4 x^{2}+2 x^{3}} \\
& V_{4}(x)=\frac{1-7 x^{2}-2 x^{4}}{1-2 x-7 x^{2}-2 x^{4}+2 x^{5}} \\
& V_{5}(x)=\frac{1-11 x^{2}-20 x^{4}}{1-2 x-11 x^{2}-8 x^{3}-20 x^{4}+10 x^{5}}
\end{aligned}
$$

Open: numerator is "even part" of denominator.

Another open problem

Let $g(n)$ be the number of walks of length $2 n$ from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

Another open problem

Let $g(n)$ be the number of walks of length $2 n$ from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

$$
(g(0), \ldots, g(5))=(1,2,8,42,258,1696, \ldots)
$$

Another open problem

Let $g(n)$ be the number of walks of length $2 n$ from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

$$
(g(0), \ldots, g(5))=(1,2,8,42,258,1696, \ldots)
$$

Is $\sum_{n \geq 0} g(n) x^{n}$ a rational function?

Another open problem

Let $g(n)$ be the number of walks of length $2 n$ from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

$$
(g(0), \ldots, g(5))=(1,2,8,42,258,1696, \ldots)
$$

Is $\sum_{n \geq 0} g(n) x^{n}$ a rational function?
What is $\alpha:=\lim _{n \rightarrow \infty} g(n)^{1 / n}$? If α exists then $5.669<\alpha<16$ (very crude bounds).

Two consecutive levels

Two consecutive levels

Sequence of components with 2 or 3 minimal elements:
2,3,2,3,3,2,3,2.

Two consecutive levels

Sequence of components with 2 or 3 minimal elements: 2,3,2,3,3,2,3,2.

Approaches a "limiting sequence"

$$
\left(c_{1}, c_{2}, \ldots\right)=(2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots)
$$

Formula for c_{n}

Let $\phi=(1+\sqrt{5}) / 2$, the golden mean.

Formula for c_{n}

Let $\phi=(1+\sqrt{5}) / 2$, the golden mean.
Theorem. The limiting sequence $\left(c_{1}, c_{2}, \ldots\right)$ is given by

$$
c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor .
$$

Further properties

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).

Further properties

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma=z_{1} z_{2} \ldots$ (concatenation), where $z_{1}=3, z_{2}=23$,
$z_{k}=z_{k-2} z_{k-1}$

$$
3 \cdot 23 \cdot 323 \cdot 23323 \cdot 32323323 \ldots
$$

Further properties

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma=z_{1} z_{2} \ldots$ (concatenation), where $z_{1}=3, z_{2}=23$,
$z_{k}=z_{k-2} z_{k-1}$

$$
3 \cdot 23 \cdot 323 \cdot 23323 \cdot 32323323 \ldots
$$

- Sequence of number of 3's between consecutive 2's is the original sequence with 1 subtracted from each term.

An edge labeling of \mathfrak{F}

The edges between ranks $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right.

An edge labeling of \mathfrak{F}

The edges between ranks $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right.

The edges between ranks $2 k-1$ and $2 k$ are labelled alternately $F_{2 k+1}, 0, F_{2 k+1}, 0, \ldots$ from left to right.

Diagram of the edge labeling

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

If $\operatorname{rank}(t)=n$, this gives all ways to write $\sigma(t)$ as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

An example

$2+3=F_{3}+F_{4}$

An example

$$
5=F_{5}
$$

An ordering of \mathbb{N}

In the limit as rank $\rightarrow \infty$, get an interesting dense linear ordering < of \mathbb{N}.

Special case of <

Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2} (Zeckendorf's theorem).

$$
n=F_{j_{1}}+\cdots+F_{j_{s}}, \quad j_{1}<\cdots<j_{s}
$$

Special case of <

Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2} (Zeckendorf's theorem).

$$
n=F_{j_{1}}+\cdots+F_{j_{s}}, \quad j_{1}<\cdots<j_{s}
$$

Then $n<0$ if and only if j_{1} is odd.

Final curtain call

