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The partition lattice

Arose from a computation of R. McEliece around 1967 which
included a formula whose proof used the Möbius function of Πn,
the lattice of partitions of [n] = {1,2 . . . ,n} ordered by refinement.
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Properties

Möbius function: µ(0̂, 1̂) = (−1)n−1(n − 1)!
Characteristic polynomial:

χΠn
(q) = ∑

t∈Πn

µ(0̂, t)qn−1−rank(t)
= (q − 1)(q − 2)⋯(q − n + 1)

Πn is the intersection lattice of the braid arrangement Bn.
Bn is the graphical arrangement of the complete graph Kn, so
q ⋅ χΠn

(q) is the chromatic polynomial of Kn.

Πn is supersolvable (explains factorization of χΠn
(q)

lattice-theoretically).

Sn acts on the top homology of the order complex
∆(Πn − {0̂, 1̂}). Action is isomorphic to sign twist of the
action of Sn on the multilinear part of the free Lie algebra
Lie(n).



Supersolvability of Πn

1 2 2 3 3 3

blue vertices: modular maximal chain (together with any chain,
generates a distributive lattice)

Πn is (upper) semimodular

⇒ χΠ4
(q) = (q − 1)(q − 2)(q − 3)



Boolean algebra Bn
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Flag f -vectors and h-vectors

P: graded poset of rank n with 0̂ and 1̂ and with rank function ρ

S ⊆ [n − 1] ∶= {1,2, . . . ,n − 1}
flag f -vector:

αP(S) =#{0̂ < t1 < ⋯ < tk < 1̂ ∶ S = {ρ(t1), . . . , ρ(tk)}
flag h-vector: βP(S) = ∑

T⊆S
(−1)#(S−T)αP(T )



Flag f -vectors and h-vectors

P: graded poset of rank n with 0̂ and 1̂ and with rank function ρ

S ⊆ [n − 1] ∶= {1,2, . . . ,n − 1}
flag f -vector:

αP(S) =#{0̂ < t1 < ⋯ < tk < 1̂ ∶ S = {ρ(t1), . . . , ρ(tk)}
flag h-vector: βP(S) = ∑

T⊆S
(−1)#(S−T)αP(T )

⇒ αP(S) = ∑
T⊆S

βP(T )



Flag vectors for B4

S αB4
(S) βB4

(S)
∅ 1 1

1 4 3
2 6 5
3 4 3

1,2 12 3
1,3 12 5
2,3 12 3

1,2,3 24 1



Edge labelling of Bn

Label the Hasse diagram edge (S ,S ∪ i) with i .
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Edge labelling of Bn

Label the Hasse diagram edge (S ,S ∪ i) with i .

1

2

3

2
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Key property: every interval [s, t] has a unique weakly increasing
saturated chain from s to t.
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Theorem. Let S ⊆ [n − 1]. Then βBn
(S) is equal to the number of

maximal chains of Bn whose labels w = (a1,a2, . . . ,an) (from
bottom to top) have descent set S, i.e.,

S = Des(α) ∶= {i ∶ ai > ai+1}.

Since the labels of the n! maximal chains of Bn are just the
elements of Sn, we get:

Corollary. βBn
(S) =#{w ∈ Sn ∶ Des(w) = S}

The first glimpse of the theory of flag vectors, edge labellings,
lexicographic shellability, topological combinatorics, . . . .
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Many proofs, including a linear algebraic method.
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Linear algebraic method

P = P0
⋅∪P1
⋅∪⋯ ⋅∪Pn: finite graded poset of rank n

QPi : Q-vector space with basis Pi

order-raising operator Ui ∶QPi → QPi+1: if t ∈ Pi , then
U(t) ∈ spanQ{u ∈ Pi+1 ∶ u > t}
Theorem. Suppose that for some j, Ui is injective for i < j and
surjective for i > j . Then P has the Sperner property.
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Definition of U for Bn

For #S = j , define U(S) = ∑
S⊂T

#T=j+1

T .

This works!
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Let w = a1⋯an ∈Sn.
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length ℓ(w) ∶=#I(w)
si : the adjacent transposition (i , i + 1) for 1 ≤ i ≤ n − 1



The weak (Bruhat) order

Let w = a1⋯an ∈Sn.

inversion set I (w) ∶= {(aj ,ai) ∶ i < j , ai > aj}
length ℓ(w) ∶=#I(w)
si : the adjacent transposition (i , i + 1) for 1 ≤ i ≤ n − 1
weak order W (Sn) on Sn: v covers u if for some i , we have
v = siu and ℓ(v) = ℓ(u) + 1.
Equivalently, u < v if I(u) ⊂ I(v).



W (S4)

S4
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Reduced decompositions

Let w ∈ Sn, ℓ(w) = p.
reduced decomposition of w : (c1, . . . , cp) such that w = sc1⋯scp

r(w): number of reduced decompositions of w

For w ∈ Sn, let e(w) denote the number of saturated chains from
0̂ = id to w in W (Sn).
Observation. e(w) = r(w)
Connects W (Sn) with the theory of reduced decompositions,
stable Schubert polynomials (aka “Stanley symmetric functions”),
quiver varieties, etc.

Theorem. r(n,n − 1, . . . ,1)) = (n
2
)!

1n−13n−25n−3⋯(2n−3)1
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The Sperner property for W (Sn)

Theorem. W (Sn) has the Sperner property.

Two proofs using the linear algebraic method:

C. Gaetz and Y. Gao in 2018, by constructing an sl2

representation on QW (Sn)
Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt in
2018, by looking at a differential operator on Schubert
polynomials
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Pascal poset

N ×N, where N = {0 < 1 < 2 < ⋯}
An infinite graded poset, with rank function ρ(i , j) = i + j .
Let e(i , j) be the number of saturated chains from 0̂ = (0,0) to(i , j). Clearly

e(i , j) = (i + j
i
).

The poset N ×N, with the element (i , j) labelled e(i , j), is
Pascal’s triangle.



Pascal’s triangle

1

1 1

1 2

1 3 3 1

1 4 6 4 1

1
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Properties of (n
k
)

fr(n) ∶= ∑n
k=0 (nk)r

f0(n) = n + 1 (not “spread out”)

f1(n) = 2n, ∑
n≥0

f1(n)xn = 1

1 − 2x
(rational)

f2(n) = (2nn ), ∑
n≥0

f2(n)xn = 1√
1 − 4x

(algebraic, not rational)

f3(n) =??, ∑
n≥0

f3(n)xn is D-finite, not algebraic



Young’s lattice

φ

Young diagrams (integer partitions), ordered by diagram contain-
ment.



Young’s lattice

φ

2

5 5

1

1

1 1

1 2 1

1 3 3 1

14641

Label λ by the number f λ of saturated chains from 0̂ to λ.
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Properties of Young’s lattice Y

Y is a distributive lattice, the lattice of finite order ideals of
N ×N.

∑λ⊢n(f λ)2 = n!
∑λ⊢n f

λ = tn ∶=#{w ∈Sn ∶ w
2 = 1}

∑
n≥0

tn
xn

n!
= exp(x + x2

2
)

Number of paths with 2n steps from 0̂ to 0̂ (oscillating

tableaux) is (2n − 1)!! = 1 ⋅ 3 ⋅ 5 ⋅ (2n − 1) = (2n)!
2nn!

.

Y is a differential poset. Implies previous three properties
(and much more).



Another property

Bratteli diagram of a sequence A0 ⊂ A1 ⊂ ⋯ of finite-dimensional
semisimple algebras (over a field): elements t of rank n are indexed
by irreps Vt of An. There is an edge weighted m from t of rank
n − 1 to u of rank n if in the restriction of Vu to An−1, Vt has
multiplicity m.



Another property

Bratteli diagram of a sequence A0 ⊂ A1 ⊂ ⋯ of finite-dimensional
semisimple algebras (over a field): elements t of rank n are indexed
by irreps Vt of An. There is an edge weighted m from t of rank
n − 1 to u of rank n if in the restriction of Vu to An−1, Vt has
multiplicity m.

Y is the Bratteli diagram of the sequence
QS0 ⊂ QS1 ⊂ QS2 ⊂ ⋯ (obvious embeddings). Implies that
for λ ⊢ n, f λ is the dimension of an irreducible representation
of Sn.



Fibonacci fun

Fibonacci distributive lattice FDL: lattice of finite order ideals
of the comb:



The Fibonacci distributive lattice FDL
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The Fibonacci differential poset Z

Reflection-extension construction:

Z is the Bratteli diagram of the Okada algebras O0 ⊂ O1 ⊂ ⋯. Is
FDL the Bratteli diagram of a nice sequence of algebras?



The numbers e(t) for FDL and Z

1

1

1 1

1 1 2

1 1 2 3 3

1 1 2 3 3 4 4 8

1

1

1

1

1

2 1

3 3 1

1 4 3

2

8 2 3 4 1
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Further properties

There is a “nice” rank-preserving bijection ϕ∶FDL → Z such
that e(t) = e(ϕ(t)).
∑
t∈Z

rank(t)=n

e(t)2 = n!

∑
t∈Z

rank(t)=n

e(t) =#{w ∈Sn ∶ w
2 = 1}

∀t ∈ Z ∀i number of chains (or multichains) of length i in the
interval [0̂, t] of Z equals number of chains (or multichains)
of length i in the interval [0̂, t] of FDL. (Proof is inelegant
and nonconceptual.)
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The posets Pib

Let i ,b ≥ 2. Define the poset (partially ordered set)Pib by

There is a unique minimal element 0̂

● Each element is covered by exactly i elements.

The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0̂ at the top).

Every extends to a 2b-gon (b edges on each side)
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Construction of F ∶= P23

Fibonacci poset



The numbers ⟨n
k
⟩

⟨n
k
⟩: number of saturated chains from 0̂ to the kth element of row

n, starting with n = 0, k = 0.
1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

⟨5
0
⟩ = ⟨5

1
⟩ = ⟨5

2
⟩ = 1, ⟨5

2
⟩ = 2,⋯



Two theorems

Theorem. ∑
k≥0
⟨n
k
⟩qk = n

∏
i=1
(1 + qFi+1)



Two theorems

Theorem. ∑
k≥0
⟨n
k
⟩qk = n

∏
i=1
(1 + qFi+1)

Theorem. Let Vr(x) = ∑n≥0 (∑k≥0 ⟨nk⟩r) xn. Then
V1(x) = 1

1 − 2x
(clear)

V2(x) = 1 − 2x2

1 − 2x − 2x2 + 2x3

V3(x) = 1 − 4x2

1 − 2x − 4x2 + 2x3

V4(x) = 1 − 7x2 − 2x4

1 − 2x − 7x2 − 2x4 + 2x5

V5(x) = 1 − 11x2 − 20x4

1 − 2x − 11x2 − 8x3 − 20x4 + 10x5

Open: numerator is “even part” of denominator.
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Another open problem

Let g(n) be the number of walks of length 2n from 0̂ to 0̂ in F

(Fibonacci analogue of oscillating tableaux).

(g(0), . . . ,g(5)) = (1,2,8,42,258, 1696, . . . )
Is ∑n≥0 g(n)xn a rational function?

What is α ∶= lim
n→∞

g(n)1/n? If α exists then 5.669 < α < 16 (very

crude bounds).
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Two consecutive levels

2 3 2 3 3 2 3 2

Sequence of components with 2 or 3 minimal elements:
2,3,2,3,3,2,3,2.

Approaches a “limiting sequence”

(c1, c2, . . . ) = (2,3,2,3,3,2, 3, 2, 3, 3,2, 3, 3, 2, 3, 2,3, 3, 2, 3, . . . ).



Formula for cn

Let φ = (1 +√5)/2, the golden mean.



Formula for cn

Let φ = (1 +√5)/2, the golden mean.

Theorem. The limiting sequence (c1, c2, . . . ) is given by

cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋.
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3→ 32 (Fibonacci word in the letters 2,3).
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Further properties

γ = (c2, c3, . . . ) characterized by invariance under 2→ 3,
3→ 32 (Fibonacci word in the letters 2,3).

● γ = z1z2 . . . (concatenation), where z1 = 3, z2 = 23,
zk = zk−2zk−1

3 ⋅ 23 ⋅ 323 ⋅ 23323 ⋅ 32323323⋯

● Sequence of number of 3’s between consecutive 2’s is the
original sequence with 1 subtracted from each term.

2 3´¸¶
1

2 33´¸¶
2

2 3´¸¶
1

2 33´¸¶
2

2 33´¸¶
2

2 3´¸¶
1

2 33´¸¶
2

2 . . . .



An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2,0,F2k+2, . . . from left to right.



An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2,0,F2k+2, . . . from left to right.

The edges between ranks 2k − 1 and 2k are labelled alternately
F2k+1,0,F2k+1,0, . . . from left to right.



Diagram of the edge labeling

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).

If rank(t) = n, this gives all ways to write σ(t) as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

2 + 3 = F3 + F4



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

5 = F5



An ordering of N

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3

7 2   10 5   0    8 3   11 6  1    9 4

In the limit as rank →∞, get an interesting dense linear ordering ≺
of N.



Special case of ≺

Every nonnegative integer has a unique representation as a sum of
nonconsecutive Fibonacci numbers, where a summand equal to 1 is
always taken to be F2 (Zeckendorf’s theorem).

n = Fj1 +⋯+ Fjs , j1 < ⋯ < js



Special case of ≺

Every nonnegative integer has a unique representation as a sum of
nonconsecutive Fibonacci numbers, where a summand equal to 1 is
always taken to be F2 (Zeckendorf’s theorem).

n = Fj1 +⋯+ Fjs , j1 < ⋯ < js

Then n ≺ 0 if and only if j1 is odd.



Final curtain call


