Some of My Favorite Posets

Richard P. Stanley U. Miami & M.I.T.

September 4, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The partition lattice

Arose from a computation of R. McEliece around 1967 which included a formula whose proof used the Möbius function of Π_n , the lattice of partitions of $[n] = \{1, 2..., n\}$ ordered by refinement.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

• Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$
- Characteristic polynomial:

$$\chi_{\Pi_n}(q) = \sum_{t \in \Pi_n} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)}$$
$$= (q-1)(q-2)\cdots(q-n+1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$
- Characteristic polynomial:

$$\chi_{\Pi_n}(q) = \sum_{t \in \Pi_n} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)}$$
$$= (q-1)(q-2)\cdots(q-n+1)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

• Π_n is the intersection lattice of the braid arrangement \mathcal{B}_n .

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$
- Characteristic polynomial:

$$\chi_{\Pi_n}(q) = \sum_{t \in \Pi_n} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)}$$
$$= (q-1)(q-2)\cdots(q-n+1)$$

- Π_n is the intersection lattice of the braid arrangement \mathcal{B}_n .
- \mathcal{B}_n is the graphical arrangement of the complete graph \mathcal{K}_n , so $q \cdot \chi_{\Pi_n}(q)$ is the chromatic polynomial of \mathcal{K}_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$
- Characteristic polynomial:

$$\chi_{\Pi_n}(q) = \sum_{t \in \Pi_n} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)}$$
$$= (q-1)(q-2)\cdots(q-n+1)$$

- Π_n is the intersection lattice of the braid arrangement \mathcal{B}_n .
- \mathcal{B}_n is the graphical arrangement of the complete graph \mathcal{K}_n , so $q \cdot \chi_{\Pi_n}(q)$ is the chromatic polynomial of \mathcal{K}_n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Π_n is supersolvable (explains factorization of $\chi_{\Pi_n}(q)$ lattice-theoretically).

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$
- Characteristic polynomial:

$$\chi_{\Pi_n}(q) = \sum_{t \in \Pi_n} \mu(\hat{0}, t) q^{n-1-\operatorname{rank}(t)}$$
$$= (q-1)(q-2)\cdots(q-n+1)$$

- Π_n is the intersection lattice of the braid arrangement \mathcal{B}_n .
- \mathcal{B}_n is the graphical arrangement of the complete graph K_n , so $q \cdot \chi_{\Pi_n}(q)$ is the chromatic polynomial of K_n .
- Π_n is supersolvable (explains factorization of $\chi_{\Pi_n}(q)$ lattice-theoretically).

Supersolvability of Π_n

blue vertices: **modular maximal chain** (together with any chain, generates a distributive lattice)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Π_n is (upper) **semimodular**

$$\Rightarrow \chi_{\Pi_4}(q) = (q-1)(q-2)(q-3)$$

Boolean algebra B_n

Flag *f*-vectors and *h*-vectors

P: graded poset of rank *n* with $\hat{0}$ and $\hat{1}$ and with rank function ρ

S
$$\subseteq$$
 $[n-1] := \{1, 2, \dots, n-1\}$

flag *f*-vector:

$$\alpha_{P}(S) = \#\{\hat{0} < t_{1} < \dots < t_{k} < \hat{1} : S = \{\rho(t_{1}), \dots, \rho(t_{k})\}$$

flag *h*-vector: $\beta_{P}(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} \alpha_{P}(T)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Flag *f*-vectors and *h*-vectors

P: graded poset of rank *n* with $\hat{0}$ and $\hat{1}$ and with rank function ρ

S
$$\subseteq$$
 $[n-1] := \{1, 2, \dots, n-1\}$

flag *f*-vector:

$$\alpha_{P}(S) = \#\{\hat{0} < t_{1} < \dots < t_{k} < \hat{1} : S = \{\rho(t_{1}), \dots, \rho(t_{k})\}$$

Filag *h*-vector: $\beta_{P}(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} \alpha_{P}(T)$
$$\Rightarrow \alpha_{P}(S) = \sum_{T \subseteq S} \beta_{P}(T)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Flag vectors for B_4

S	$\alpha_{B_4}(S)$	$\beta_{B_4}(S)$
Ø	1	1
1	4	3
2	6	5
3	4	3
1,2	12	3
1,3	12	5
2,3	12	3
1,2,3	24	1

Edge labelling of B_n

Label the Hasse diagram edge $(S, S \cup i)$ with *i*.

Edge labelling of B_n

Label the Hasse diagram edge $(S, S \cup i)$ with *i*.

Edge labelling of B_n

Label the Hasse diagram edge $(S, S \cup i)$ with *i*.

Key property: every interval [s, t] has a unique weakly increasing saturated chain from s to t.

Consequence

Theorem. Let $S \subseteq [n-1]$. Then $\beta_{B_n}(S)$ is equal to the number of maximal chains of B_n whose labels $w = (a_1, a_2, ..., a_n)$ (from bottom to top) have descent set S, *i.e.*,

 $S = \operatorname{Des}(\alpha) \coloneqq \{i : a_i > a_{i+1}\}.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Consequence

Theorem. Let $S \subseteq [n-1]$. Then $\beta_{B_n}(S)$ is equal to the number of maximal chains of B_n whose labels $w = (a_1, a_2, ..., a_n)$ (from bottom to top) have descent set S, *i.e.*,

$$S = \operatorname{Des}(\alpha) := \{i : a_i > a_{i+1}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Since the labels of the n! maximal chains of B_n are just the elements of \mathfrak{S}_n , we get:

Corollary. $\beta_{B_n}(S) = \#\{w \in \mathfrak{S}_n : \operatorname{Des}(w) = S\}$

Consequence

Theorem. Let $S \subseteq [n-1]$. Then $\beta_{B_n}(S)$ is equal to the number of maximal chains of B_n whose labels $w = (a_1, a_2, ..., a_n)$ (from bottom to top) have descent set S, *i.e.*,

$$S = \operatorname{Des}(\alpha) := \{i : a_i > a_{i+1}\}.$$

Since the labels of the n! maximal chains of B_n are just the elements of \mathfrak{S}_n , we get:

Corollary. $\beta_{B_n}(S) = \#\{w \in \mathfrak{S}_n : \mathrm{Des}(w) = S\}$

The first glimpse of the theory of flag vectors, edge labellings, lexicographic shellability, topological combinatorics,

The Sperner property

 $P = P_0 \cup P_1 \cup \cdots \cup P_n$: finite graded poset of rank n

antichain $A \subseteq P$: no two elements of A are comparable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Each P_i is an antichain.

The Sperner property

 $P = P_0 \cup P_1 \cup \cdots \cup P_n$: finite graded poset of rank n

antichain $A \subseteq P$: no two elements of A are comparable

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Each P_i is an antichain.

Sperner property: $\max_{\text{antichain } A} |A| = \max_i |P_i|$

The Sperner property

 $P = P_0 \cup P_1 \cup \cdots \cup P_n$: finite graded poset of rank n

antichain $A \subseteq P$: no two elements of A are comparable

Each P_i is an antichain.

Sperner property: $\max_{\text{antichain } A} |A| = \max_i |P_i|$

Sperner's theorem (1927): B_n has the Sperner property.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $P = P_0 \cup P_1 \cup \cdots \cup P_n$: finite graded poset of rank n

antichain $A \subseteq P$: no two elements of A are comparable

Each P_i is an antichain.

Sperner property: $\max_{\text{antichain } A} |A| = \max_i |P_i|$

Sperner's theorem (1927): B_n has the Sperner property.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Many proofs, including a linear algebraic method.

Linear algebraic method

 $P = P_0 \cup P_1 \cup \cdots \cup P_n$: finite graded poset of rank n

 $\mathbb{Q}P_i$: \mathbb{Q} -vector space with basis P_i

order-raising operator $U_i: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$: if $t \in P_i$, then $U(t) \in \operatorname{span}_{\mathbb{Q}} \{ u \in P_{i+1} : u > t \}$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Linear algebraic method

 $P = P_0 \cup P_1 \cup \cdots \cup P_n$: finite graded poset of rank n

 $\mathbb{Q}P_i$: \mathbb{Q} -vector space with basis P_i

order-raising operator $U_i: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$: if $t \in P_i$, then $U(t) \in \operatorname{span}_{\mathbb{Q}} \{ u \in P_{i+1} : u > t \}$

Theorem. Suppose that for some j, U_i is injective for i < j and surjective for i > j. Then P has the Sperner property.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Definition of U for B_n

For
$$\#S = j$$
, define $U(S) = \sum_{\substack{S \subset T \\ \#T = j+1}} T$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Definition of U for B_n

For
$$\#S = j$$
, define $U(S) = \sum_{\substack{S \subset T \\ \#T = j+1}} T$.

This works!

The weak (Bruhat) order

Let $w = a_1 \cdots a_n \in \mathfrak{S}_n$.

inversion set $I(w) \coloneqq \{(a_j, a_i) : i < j, a_i > a_j\}$

length $\ell(w) \coloneqq \#I(w)$

s_i: the adjacent transposition (i, i + 1) for $1 \le i \le n - 1$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The weak (Bruhat) order

Let
$$w = a_1 \cdots a_n \in \mathfrak{S}_n$$
.

inversion set $I(w) \coloneqq \{(a_j, a_i) : i < j, a_i > a_j\}$

length $\ell(w) \coloneqq \#I(w)$

s_i: the adjacent transposition (i, i + 1) for $1 \le i \le n - 1$

weak order $W(\mathfrak{S}_n)$ on \mathfrak{S}_n : *v* covers *u* if for some *i*, we have $v = s_i u$ and $\ell(v) = \ell(u) + 1$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Equivalently, u < v if $I(u) \subset I(v)$.

 $W(\mathfrak{S}_4)$

Let $w \in \mathfrak{S}_n$, $\ell(w) = p$.

reduced decomposition of w: (c_1, \ldots, c_p) such that $w = s_{c_1} \cdots s_{c_p}$

r(w): number of reduced decompositions of w

Let $w \in \mathfrak{S}_n$, $\ell(w) = p$.

reduced decomposition of *w*: (c_1, \ldots, c_p) such that $w = s_{c_1} \cdots s_{c_p}$

r(w): number of reduced decompositions of w

For $w \in \mathfrak{S}_n$, let e(w) denote the number of saturated chains from $\hat{0} = \operatorname{id} to w$ in $W(\mathfrak{S}_n)$.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Let $w \in \mathfrak{S}_n$, $\ell(w) = p$.

reduced decomposition of *w*: (c_1, \ldots, c_p) such that $w = s_{c_1} \cdots s_{c_p}$

r(w): number of reduced decompositions of w

For $w \in \mathfrak{S}_n$, let e(w) denote the number of saturated chains from $\hat{0} = \operatorname{id} to w$ in $W(\mathfrak{S}_n)$.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Observation. e(w) = r(w)

Let $w \in \mathfrak{S}_n$, $\ell(w) = p$.

reduced decomposition of *w*: (c_1, \ldots, c_p) such that $w = s_{c_1} \cdots s_{c_p}$

r(w): number of reduced decompositions of w

For $w \in \mathfrak{S}_n$, let e(w) denote the number of saturated chains from $\hat{0} = id$ to w in $W(\mathfrak{S}_n)$.

Observation. e(w) = r(w)

Connects $W(\mathfrak{S}_n)$ with the theory of reduced decompositions, stable Schubert polynomials (aka "Stanley symmetric functions"), quiver varieties, etc.

Let $w \in \mathfrak{S}_n$, $\ell(w) = p$.

reduced decomposition of w: (c_1, \ldots, c_p) such that $w = s_{c_1} \cdots s_{c_p}$

r(w): number of reduced decompositions of w

For $w \in \mathfrak{S}_n$, let e(w) denote the number of saturated chains from $\hat{0} = id$ to w in $W(\mathfrak{S}_n)$.

Observation. e(w) = r(w)

Connects $W(\mathfrak{S}_n)$ with the theory of reduced decompositions, stable Schubert polynomials (aka "Stanley symmetric functions"), quiver varieties, etc.

Theorem.
$$r(n, n-1, ..., 1) = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)!}$$

The Sperner property for $W(\mathfrak{S}_n)$

Theorem. $W(\mathfrak{S}_n)$ has the Sperner property.
The Sperner property for $W(\mathfrak{S}_n)$

Theorem. $W(\mathfrak{S}_n)$ has the Sperner property.

Two proofs using the linear algebraic method:

 C. Gaetz and Y. Gao in 2018, by constructing an sl₂ representation on QW(𝔅_n)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The Sperner property for $W(\mathfrak{S}_n)$

Theorem. $W(\mathfrak{S}_n)$ has the Sperner property.

Two proofs using the linear algebraic method:

- C. Gaetz and Y. Gao in 2018, by constructing an sl₂ representation on QW(G_n)
- Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt in 2018, by looking at a differential operator on Schubert polynomials

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pascal poset

 $\mathbb{N} \times \mathbb{N}$, where $\mathbb{N} = \{0 < 1 < 2 < \cdots\}$

Pascal poset

 $\mathbb{N} \times \mathbb{N}$, where $\mathbb{N} = \{0 < 1 < 2 < \cdots\}$

An infinite graded poset, with rank function $\rho(i,j) = i + j$.

Let e(i,j) be the number of saturated chains from $\hat{0} = (0,0)$ to (i,j). Clearly

 $e(i,j) = \binom{i+j}{i}.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Pascal poset

 $\mathbb{N} \times \mathbb{N}$, where $\mathbb{N} = \{0 < 1 < 2 < \cdots\}$

An infinite graded poset, with rank function $\rho(i,j) = i + j$.

Let $\mathbf{e}(i,j)$ be the number of saturated chains from $\hat{0} = (0,0)$ to (i,j). Clearly

$$e(i,j) = \binom{i+j}{i}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The poset $\mathbb{N} \times \mathbb{N}$, with the element (i,j) labelled e(i,j), is **Pascal's triangle**.

Pascal's triangle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$f_r(n) := \sum_{k=0}^n \binom{n}{k}^r$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$f_r(n) \coloneqq \sum_{k=0}^n \binom{n}{k}^r$$

•
$$f_0(n) = n + 1$$
 (not "spread out")

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$f_{r}(n) := \sum_{k=0}^{n} {n \choose k}^{r}$$

• $f_{0}(n) = n + 1 \text{ (not "spread out")}$
• $f_{1}(n) = 2^{n}, \sum_{n \ge 0} f_{1}(n)x^{n} = \frac{1}{1 - 2x} \text{ (rational)}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

(n) r

$$f_{r}(n) := \sum_{k=0}^{n} {\binom{n}{k}}^{r}$$

• $f_{0}(n) = n + 1$ (not "spread out")
• $f_{1}(n) = 2^{n}, \sum_{n \ge 0} f_{1}(n)x^{n} = \frac{1}{1 - 2x}$ (rational)
• $f_{2}(n) = {\binom{2n}{n}}, \sum_{n \ge 0} f_{2}(n)x^{n} = \frac{1}{\sqrt{1 - 4x}}$ (algebraic, not rational)

◆□ ◆ ▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

$$\begin{aligned} & f_r(n) \coloneqq \sum_{k=0}^n {n \choose k}^r \\ & \bullet \ f_0(n) = n+1 \ (\text{not "spread out"}) \\ & \bullet \ f_1(n) = 2^n, \ \sum_{n \ge 0} f_1(n) x^n = \frac{1}{1-2x} \ (\text{rational}) \\ & \bullet \ f_2(n) = {2n \choose n}, \ \sum_{n \ge 0} f_2(n) x^n = \frac{1}{\sqrt{1-4x}} \ (\text{algebraic, not rational}) \\ & \bullet \ f_3(n) = ??, \ \sum_{n \ge 0} f_3(n) x^n \text{ is D-finite, not algebraic} \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Young's lattice

Young diagrams (integer partitions), ordered by diagram containment.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Young's lattice

Label λ by the number f^{λ} of saturated chains from $\hat{0}$ to λ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Y is a **distributive lattice**, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.

• Y is a **distributive lattice**, the lattice of finite order ideals of $\mathbb{N} \times \mathbb{N}$.

• $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$

- Y is a distributive lattice, the lattice of finite order ideals of N × ℕ.
- $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$
- $\sum_{\lambda \vdash n} f^{\lambda} = t_n := \# \{ w \in \mathfrak{S}_n : w^2 = 1 \}$

$$\sum_{n\geq 0} t_n \frac{x^n}{n!} = \exp\left(x + \frac{x^2}{2}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Y is a distributive lattice, the lattice of finite order ideals of N × ℕ.
- $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$
- $\sum_{\lambda \vdash n} f^{\lambda} = \mathbf{t}_n := \#\{w \in \mathfrak{S}_n : w^2 = 1\}$

$$\sum_{n\geq 0} t_n \frac{x^n}{n!} = \exp\left(x + \frac{x^2}{2}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Number of paths with 2n steps from $\hat{0}$ to $\hat{0}$ (oscillating tableaux) is $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot (2n-1) = \frac{(2n)!}{2^n n!}$.

- Y is a distributive lattice, the lattice of finite order ideals of N × ℕ.
- $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$
- $\sum_{\lambda \vdash n} f^{\lambda} = \mathbf{t}_n := \#\{w \in \mathfrak{S}_n : w^2 = 1\}$

$$\sum_{n\geq 0} t_n \frac{x^n}{n!} = \exp\left(x + \frac{x^2}{2}\right)$$

- Number of paths with 2n steps from $\hat{0}$ to $\hat{0}$ (oscillating tableaux) is $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot (2n-1) = \frac{(2n)!}{2^n n!}$.
- Y is a **differential poset**. Implies previous three properties (and much more).

Another property

Bratteli diagram of a sequence $\mathfrak{A}_0 \subset \mathfrak{A}_1 \subset \cdots$ of finite-dimensional semisimple algebras (over a field): elements t of rank n are indexed by irreps V_t of \mathfrak{A}_n . There is an edge weighted m from t of rank n-1 to u of rank n if in the restriction of V_u to \mathfrak{A}_{n-1} , V_t has multiplicity m.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Another property

Bratteli diagram of a sequence $\mathfrak{A}_0 \subset \mathfrak{A}_1 \subset \cdots$ of finite-dimensional semisimple algebras (over a field): elements t of rank n are indexed by irreps V_t of \mathfrak{A}_n . There is an edge weighted m from t of rank n-1 to u of rank n if in the restriction of V_u to \mathfrak{A}_{n-1} , V_t has multiplicity m.

Y is the Bratteli diagram of the sequence
 QG₀ ⊂ QG₁ ⊂ QG₂ ⊂ … (obvious embeddings). Implies that for λ ⊢ n, f^λ is the dimension of an irreducible representation of G_n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fibonacci distributive lattice FDL: lattice of finite order ideals of the **comb**:

The Fibonacci distributive lattice FDL

Reflection-extension construction:

Reflection-extension construction:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Reflection-extension construction:

Reflection-extension construction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reflection-extension construction:

Z is the Bratteli diagram of the **Okada algebras** $\mathcal{O}_0 \subset \mathcal{O}_1 \subset \cdots$. Is FDL the Bratteli diagram of a **nice** sequence of algebras?

The numbers e(t) for FDL and Z

There is a "nice" rank-preserving bijection φ: FDL → Z such that e(t) = e(φ(t)).

• There is a "nice" rank-preserving bijection φ : FDL $\rightarrow Z$ such that $e(t) = e(\varphi(t))$.

•
$$\sum_{\substack{t \in Z \\ \operatorname{rank}(t)=n}} e(t)^2 = n!$$

 $\operatorname{rank}(t) = n$

There is a "nice" rank-preserving bijection φ: FDL → Z such that e(t) = e(φ(t)).

•
$$\sum_{\substack{t \in \mathbb{Z} \\ \operatorname{rank}(t) = n}} e(t)^2 = n!$$

•
$$\sum_{t \in \mathbb{Z}} e(t) = \#\{w \in \mathfrak{S}_n : w^2 = 1\}$$

There is a "nice" rank-preserving bijection φ: FDL → Z such that e(t) = e(φ(t)).

•
$$\sum_{\substack{t \in Z \\ \operatorname{rank}(t)=n}} e(t)^2 = n!$$

•
$$\sum_{\substack{t \in \mathbb{Z} \\ \operatorname{rank}(t) = n}} e(t) = \#\{w \in \mathfrak{S}_n : w^2 = 1\}$$

∀t ∈ Z ∀i number of chains (or multichains) of length i in the interval [0, t] of Z equals number of chains (or multichains) of length i in the interval [0, t] of FDL. (Proof is inelegant and nonconceptual.)

The final slide

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The final slide

ENCORE

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQの

ENCORE

Further Fibonacci Fun

・ロト ・聞 ト ・ ヨト ・ ヨト …

2
Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

• There is a unique minimal element $\hat{\mathbf{0}}$

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $\bullet\,$ There is a unique minimal element $\hat{0}$
- Each element is covered by exactly *i* elements.

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

- There is a unique minimal element 0
- Each element is covered by exactly *i* elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with 0 at the top).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

- There is a unique minimal element Ô
- Each element is covered by exactly *i* elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with 0 at the top).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Every \land extends to a 2*b*-gon (*b* edges on each side)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Fibonacci poset

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

The numbers $\binom{n}{k}$

 $\binom{n}{k}$: number of saturated chains from $\hat{0}$ to the *k*th element of row *n*, starting with n = 0, k = 0.

・ロト ・四ト ・ヨト ・ヨト

э

Two theorems

Theorem.
$$\sum_{k\geq 0} {n \choose k} q^k = \prod_{i=1}^n (1+q^{F_{i+1}})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Two theorems

Theorem.
$$\sum_{k\geq 0} {\binom{n}{k}} q^{k} = \prod_{i=1}^{n} (1+q^{F_{i+1}})$$

Theorem. Let $V_{r}(x) = \sum_{n\geq 0} (\sum_{k\geq 0} {\binom{n}{k}}^{r}) x^{n}$. Then
 $V_{1}(x) = \frac{1}{1-2x} (\text{clear})$
 $V_{2}(x) = \frac{1-2x^{2}}{1-2x-2x^{2}+2x^{3}}$
 $V_{3}(x) = \frac{1-4x^{2}}{1-2x-4x^{2}+2x^{3}}$
 $V_{4}(x) = \frac{1-7x^{2}-2x^{4}}{1-2x-7x^{2}-2x^{4}+2x^{5}}$
 $V_{5}(x) = \frac{1-11x^{2}-20x^{4}}{1-2x-11x^{2}-8x^{3}-20x^{4}+10x^{5}}$

Open: numerator is "even part" of denominator, $e_{\mathcal{O}}$, $e_{$

Let g(n) be the number of walks of length 2n from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

Let g(n) be the number of walks of length 2n from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

$$(g(0),\ldots,g(5)) = (1,2,8,42,258,1696,\ldots)$$

Let g(n) be the number of walks of length 2n from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

$$(g(0),\ldots,g(5)) = (1,2,8,42,258,1696,\ldots)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Is $\sum_{n\geq 0} g(n)x^n$ a rational function?

Let g(n) be the number of walks of length 2n from $\hat{0}$ to $\hat{0}$ in \mathfrak{F} (Fibonacci analogue of oscillating tableaux).

$$(g(0),\ldots,g(5)) = (1,2,8,42,258,1696,\ldots)$$

Is $\sum_{n\geq 0} g(n)x^n$ a rational function?

What is $\alpha := \lim_{n \to \infty} g(n)^{1/n}$? If α exists then $5.669 < \alpha < 16$ (very crude bounds).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two consecutive levels

Two consecutive levels

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sequence of components with 2 or 3 minimal elements: 2,3,2,3,3,2,3,2.

Two consecutive levels

Sequence of components with 2 or 3 minimal elements: 2,3,2,3,3,2,3,2.

Approaches a "limiting sequence"

Formula for *c*_n

Let $\phi = (1 + \sqrt{5})/2$, the golden mean.

Formula for c_n

Let $\phi = (1 + \sqrt{5})/2$, the golden mean.

Theorem. The limiting sequence $(c_1, c_2, ...)$ is given by

$$c_n = 1 + \lfloor n\phi \rfloor - \lfloor (n-1)\phi \rfloor.$$

Further properties

 γ = (c₂, c₃,...) characterized by invariance under 2 → 3, 3 → 32 (Fibonacci word in the letters 2,3).

Further properties

- $\gamma = (c_2, c_3, ...)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma = z_1 z_2 \dots$ (concatenation), where $z_1 = 3$, $z_2 = 23$, $z_k = z_{k-2} z_{k-1}$

3 · 23 · 323 · 23323 · 32323323…

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Further properties

- γ = (c₂, c₃,...) characterized by invariance under 2 → 3, 3 → 32 (Fibonacci word in the letters 2,3).
- $\gamma = z_1 z_2 \dots$ (concatenation), where $z_1 = 3$, $z_2 = 23$, $z_k = z_{k-2} z_{k-1}$

3 · 23 · 323 · 23323 · 32323323…

• Sequence of number of 3's between consecutive 2's is the original sequence with 1 subtracted from each term.

$$2\underbrace{3}_{1}\underbrace{2}_{2}\underbrace{33}_{2}\underbrace{2}_{1}\underbrace{3}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{3}_{2}\underbrace{3}_{2}\underbrace{3}_{2}\underbrace{3}_{2}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{3}_{2}\underbrace{33}_{2}\underbrace{3}_{2}\underbrace$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An edge labeling of \mathfrak{F}

The edges between ranks 2k and 2k + 1 are labelled alternately $0, F_{2k+2}, 0, F_{2k+2}, ...$ from left to right.

An edge labeling of \mathfrak{F}

The edges between ranks 2k and 2k + 1 are labelled alternately $0, F_{2k+2}, 0, F_{2k+2}, \ldots$ from left to right.

The edges between ranks 2k - 1 and 2k are labelled alternately $F_{2k+1}, 0, F_{2k+1}, 0, \dots$ from left to right.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Diagram of the edge labeling

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - のへで

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

If rank(t) = n, this gives all ways to write $\sigma(t)$ as a sum of distinct Fibonacci numbers from $\{F_2, F_3, \dots, F_{n+1}\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An example

 $2 + 3 = F_3 + F_4$

An example

 $5 = F_5$

An ordering of $\ensuremath{\mathbb{N}}$

In the limit as rank $\rightarrow \infty$, get an interesting dense linear ordering \prec of \mathbb{N} .

Special case of <

Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_2 (Zeckendorf's theorem).

$$n = F_{j_1} + \dots + F_{j_s}, \quad j_1 < \dots < j_s$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Special case of <

Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_2 (Zeckendorf's theorem).

$$n = F_{j_1} + \dots + F_{j_s}, \quad j_1 < \dots < j_s$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then n < 0 if and only if j_1 is odd.

Final curtain call

(目)▶ 目 のへの