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The partition lattice

Arose from a computation of R. McEliece around 1967 which
included a formula whose proof used the Mobius function of I1,,
the lattice of partitions of [n] = {1,2...,n} ordered by refinement.
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Properties

o Mébius function: ;(0,1) = (-1)"*(n-1)!
@ Characteristic polynomial:

Xnn(q) _ Z ,U,(ﬁ, t)qn—l—rank(t)

tell,
(q-1)(g-2)(g-n+1)

@ [1, is the intersection lattice of the braid arrangement B,,.

@ 3, is the graphical arrangement of the complete graph K, so
q-xn,(q) is the chromatic polynomial of K.

e [1, is supersolvable (explains factorization of xn,(q)
lattice-theoretically).

@ &, acts on the top homology of the order complex
A(N,—{0,1}). Action is isomorphic to sign twist of the
action of &, on the multilinear part of the free Lie algebra
Lie(n).



Supersolvability of 1,

blue vertices: modular maximal chain (together with any chain,
generates a distributive lattice)

My is (upper) semimodular

= xn,(q) =(g-1)(g-2)(g-3)



Boolean algebra B,

12

123

23



Flag f-vectors and h-vectors

P: graded poset of rank n with 0 and 1 and with rank function p

Scn-1]:={1,2,...,n-1}

flag f-vector:
ap(S)=#{0<ty<<te<i:S={p(tr),...,p(te)}

flag h-vector: Bp(S) = Y (-1)#"Dap(T)
TcS



Flag f-vectors and h-vectors

P: graded poset of rank n with 0 and 1 and with rank function p

Scn-1]:={1,2,...,n-1}

flag f-vector:
ap(S)=#{0<ty<<te<i:S={p(tr),...,p(te)}

flag h-vector: Bp(S) = Y (-1)#"Dap(T)
TcS

=ap(S)= > Bp(T)

TcS



Flag vectors for B,

S | ag(S) | Be,(S)
7] 1 1

1 4 3

2 6 5

3 4 3
1,2 12 3
1,3 12 5
2,3 12 3
1,2,3 24 1




Edge labelling of B,

Label the Hasse diagram edge (5,5 ui) with /.
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Edge labelling of B,

Label the Hasse diagram edge (5,5 ui) with /.

Key property: every interval [s,t] has a unique weakly increasing
saturated chain from s to t.



Consequence

Let Sc[n-1]. Then Bg,(S) is equal to the number of
maximal chains of B,, whose labels w = (a1, ay,...,a,) (from
bottom to top) have descent set S, i.e.,

S=Des(a):={i : a;>aj;1}-
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Consequence

Let Sc[n-1]. Then Bg,(S) is equal to the number of
maximal chains of B,, whose labels w = (a1, ay,...,a,) (from
bottom to top) have descent set S, i.e.,

S=Des(a):={i : a;>aj;1}-

Since the labels of the n! maximal chains of B, are just the
elements of &, we get:

BB, (S) =#{w e &, : Des(w) =S}

The first glimpse of the theory of flag vectors, edge labellings,
lexicographic shellability, topological combinatorics, ....
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P = PouPyu---UP,: finite graded poset of rank n
antichain A € P: no two elements of A are comparable
Each P; is an antichain.

Sperner property: maxanichain A|A| = max; |P;j|
Sperner’s theorem (1927): B, has the Sperner property.

Many proofs, including a linear algebraic method.



Linear algebraic method

P = PouPyu---UP,: finite graded poset of rank n
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Linear algebraic method

P = PouPyu---UP,: finite graded poset of rank n
QP;: Q-vector space with basis P;

order-raising operator U;:QP; — QP;,1: if t € P;, then
U(t) espang{u € Pjy1 : u>t}

Theorem. Suppose that for some j, U; is injective for i < j and
surjective for i > j. Then P has the Sperner property.
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Definition of U for B,

For #S =, define U(S) = Z T.

ScT
#T=j+1

This works!



The weak (Bruhat) order

Let w=ay---a,€6,.
inversion set /(w) :={(aj,a;) : i <j, aj > a;}

length ¢(w) := #1(w)

s;: the adjacent transposition (i,i+1) for 1<i<n-1



The weak (Bruhat) order

Let w=ay---a,€6,.
inversion set /(w) = {(aj,a;) : i <j, a; > aj}

length ¢(w) := #1(w)

s;: the adjacent transposition (i,i+1) for 1<i<n-1

weak order W (&,) on &,: v covers u if for some i, we have
v=sjuand ¢(v) =L(u) + 1.

Equivalently, u < v if I(u) c I(v).



W(S,)
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Reduced decompositions
Let we &, 4(w) =p.
reduced decomposition of w: (c1,...,¢cp) such that w = s -5,
r(w): number of reduced decompositions of w

For w e S, let e(w) denote the number of saturated chains from
0=id to w in W(&,).

e(w) =r(w)

Connects W(&,,) with the theory of reduced decompositions,
stable Schubert polynomials (aka “Stanley symmetric functions”),
quiver varieties, etc.

1
r(nyn=1,...,1)) = 1,,,13#25(”2,)3.”(2”_3)1
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The Sperner property for W(S,,)

Theorem. W(&,) has the Sperner property.

Two proofs using the linear algebraic method:
o C. Gaetz and Y. Gao in 2018, by constructing an sl
representation on QW (&)
@ Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt in
2018, by looking at a differential operator on Schubert
polynomials
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Pascal poset

NxN, where N={0<1<2<-}
An infinite graded poset, with rank function p(i,j) =i+.
Let e(i,j) be the number of saturated chains from 0 = (0,0) to

(i,j). Clearly o
w-(7)

The poset N x N, with the element (/,/) labelled e(i,/), is
Pascal’s triangle.
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Properties of ()

fo(n) = 20 (3)'
e fy(n) =n+1 (not “spread out”)

o fi(n)=2", Y fi(n)x"=

1

n>0 1-
1
e H(n)=(?" , H(n)x" = algebraic, not rational

e f3(n) =77, Z f3(n)x" is D-finite, not algebraic

n>0



Young’s lattice

Young diagrams (integer partitions), ordered by diagram contain-
ment.



Young’s lattice

Label A by the number f* of saturated chains from 0 to .
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Properties of Young’s lattice Y

@ Y is a distributive lattice, the lattice of finite order ideals of
N x N.

b Z)\»—n(f)\)2 =n!
o Y, reth=#{wes,  w?=1)

Xn X2

,%%tnﬁ = exp(x+ ?)

o Number of paths with 2n steps from 0 to 0 (oscillating
tableaux) is (2n—1)11 =1-3-5.(2n—1) = 20!,

2nnl




Properties of Young’s lattice Y

@ Y is a distributive lattice, the lattice of finite order ideals of
N x N.

° ZA»—n(f)\)2 = n!

o Y, reth=#{wes,  w?=1)

x" x°

th,— = + —

o Number of paths with 2n steps from 0 to 0 (oscillating
tableaux) is (20— 1)1l =1-3-5-(2n - 1) = &2,

e Y is a differential poset. Implies previous three properties
(and much more).




Another property

Bratteli diagram of a sequence 2y c 2; c --- of finite-dimensional
semisimple algebras (over a field): elements t of rank n are indexed
by irreps V; of 2,. There is an edge weighted m from t of rank
n—1 to u of rank n if in the restriction of V, to ,_1, V; has
multiplicity m.



Another property

Bratteli diagram of a sequence 2y c 2; c --- of finite-dimensional
semisimple algebras (over a field): elements t of rank n are indexed
by irreps V; of 2,. There is an edge weighted m from t of rank
n—1 to u of rank n if in the restriction of V, to ,_1, V; has
multiplicity m.

@ Y is the Bratteli diagram of the sequence
Q6 c Q61 cQ6; c -+ (obvious embeddings). Implies that
for A~ n, f* is the dimension of an irreducible representation
of G&,.



Fibonacci fun

Fibonacci distributive lattice FDL: lattice of finite order ideals
of the comb:



The Fibonacci distributive lattice FDL
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The Fibonacci differential poset Z

Reflection-extension construction:



The Fibonacci differential poset Z

Reflection-extension construction:



The Fibonacci differential poset Z

Reflection-extension construction:



The Fibonacci differential poset Z

Reflection-extension construction:

Z is the Bratteli diagram of the Okada algebras Ogc O; c ---. Is
FDL the Bratteli diagram of a nice sequence of algebras?



The numbers e(t) for FDL and Z




Further properties
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that e(t) = e(p(t)).
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Further properties

@ There is a “nice” rank-preserving bijection ¢:FDL — Z such
that e(t) = e(p(t)).
o > e(t)? = n!

teZ
rank(t)=n

o Y e(t)=#{weG,:w’=1}
teZ
rank(t)=n

@ Vt e ZVYi number of chains (or multichains) of length i in the
interval [0, t] of Z equals number of chains (or multichains)
of length i in the interval [0, t] of FDL. (Proof is inelegant
and nonconceptual.)



The final slide
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Further Fibonacci Fun
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The posets Py,

Let i,b > 2. Define the poset (partially ordered set)P;, by
@ There is a unique minimal element 0
e Each element is covered by exactly i elements.

@ The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0 at the top).

@ Every .\ extends to a 2b-gon (b edges on each side)



Construction of F := Py;

N
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Construction of F := Py



Construction of F := Py

Fibonacci poset



The numbers (Z)

(Z) number of saturated chains from 0 to the kth element of row
n, starting with n=0, k=0.

1112122132231 22121131

-61--1 (-



Two theorems

Theorem. Z <:>qk = lﬂl (1 + qF"“)

k>0 i=1



Two theorems

> (1) T s a™)

k>0 i=1
. Let Vi(x) = ¥ 10 (Zs0 (Z)r)x”. Then

Vi(x) = ﬁ(clear)

2
Va(x) = 1—2x1—_22:2+2x3

2
Vs = 1—2x1—_zf:2+2x3

2 4
Va(x) = 1-2::77;-_22;+2x5
Ve(x) = 1-11x% - 20x*

1-2x—11x2 — 8x3 — 20x* + 10x°

numerator is “even part” of denominator.
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Another open problem

Let g(n) be the number of walks of length 2n from 0 to 0 in §
(Fibonacci analogue of oscillating tableaux).

(g(0),...,g(5)) = (1,2,8,42,258,1696, ... )

Is ¥ ,s08(n)x" a rational function?

What is o := lim g(n)/"? If « exists then 5.669 < a < 16 (very
n—oo

crude bounds).
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Two consecutive levels
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Sequence of components with 2 or 3 minimal elements:
2,3,2,3,3,2,3,2.



Two consecutive levels

2 3 2 3 3 2 3 2

Sequence of components with 2 or 3 minimal elements:
2,3,2,3,3,2,3,2.

Approaches a “limiting sequence”

(c1,00,...)=(2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3,... ).



Formula for c,

Let ¢ = (1+/5)/2, the



Formula for c,

Let ¢ = (1+/5)/2, the
Theorem. The limiting sequence (c1,Cp,...) is given by

o =1+[ng|-1(n-1)¢|.
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Further properties

e v=(cp,c3,...) characterized by invariance under 2 — 3,
3 — 32 (Fibonacci word in the letters 2,3).

e v =2z17y... (concatenation), where z; = 3, z, = 23,
Z) = Zk-2Zk-1

3-23-323-23323-32323323---

e Sequence of number of 3's between consecutive 2's is the
original sequence with 1 subtracted from each term.

2 3 2332 3 2323323 2332....

N~ Y~ Y~ Y~ Y~ Y~— ~—~—
1 2 1 2 2 1 2



An edge labeling of §

The edges between ranks 2k and 2k + 1 are labelled alternately
0, Foks2,0, Foryo,... from left to right.



An edge labeling of §

The edges between ranks 2k and 2k + 1 are labelled alternately
0, Foks2,0, Foryo,... from left to right.

The edges between ranks 2k — 1 and 2k are labelled alternately
For+1,0, Foks1,0, ... from left to right.



Diagram of the edge labeling




Connection with sums of Fibonacci numbers

Let t € §. All paths (saturated chains) from the top to t have the
same sum of their elements o (t).



Connection with sums of Fibonacci numbers

Let t € §. All paths (saturated chains) from the top to t have the
same sum of their elements o (t).

If rank(t) = n, this gives all ways to write o(t) as a sum of distinct
Fibonacci numbers from {Fy, F3,..., Fpi1}.



An example

2+3=F3+F4



An example




An ordering of N

[ [ ]
/72 105 0 83 1161 94

In the limit as rank — oo, get an interesting dense linear ordering <
of N.



Special case of <

Every nonnegative integer has a unique representation as a sum of
nonconsecutive Fibonacci numbers, where a summand equal to 1 is
always taken to be F, (Zeckendorf's theorem).

n=F_I'1+'“+FJ'57 j1<"'<_js



Special case of <

Every nonnegative integer has a unique representation as a sum of
nonconsecutive Fibonacci numbers, where a summand equal to 1 is
always taken to be F, (Zeckendorf's theorem).

n=F_I'1+'“+FJ'57 j1<"'<_js

Then n <0 if and only if j; is odd.



Final curtain call




