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Symmetric functions

K: a field of characteristic O

Nk = Nk(x): ring of symmetric functions over K in the variables
X = (X1,X2,...)

bases m) (monomial symmetric functions), py (power sums), hy
(complete), ey (elementary), sy (Schur): knowledge assumed
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K: a field of characteristic O

Nk = Nk(x): ring of symmetric functions over K in the variables
X = (X1,X2,...)

bases m) (monomial symmetric functions), py (power sums), hy
(complete), ey (elementary), sy (Schur): knowledge assumed

If K CR and B = {by} is a K-basis for Ak, then f € Ak is
b-positive if the expansion of f in the basis B has nonnegative
coefficients.



Sprout sequences and their seeds

Definition. A sequence R = (Ry = 1, Ry, Rz, ...) of symmetric
functions is a sprout sequence if there exists a power series

F(t) =) ajt/ e K[[t]], a0 =1
j20

such that

F(t) = H F(xit) = Z Rat".

n>0

Well-defined formally, and R, is homogeneous of degree n



Sprout sequences and their seeds

A sequence R = (Ry = 1, Ry, Ry, ...) of symmetric
functions is a sprout sequence if there exists a power series

F(t) =) ajt/ e K[[t]], a0 =1
j20

such that

F(t) = H F(xit) = Z Rat".

n>0

Well-defined formally, and R, is homogeneous of degree n
F(t) is the seed of the sprout sequence ‘.

We also call Ry, Ry, ... sprout symmetric functions (with
respect to the seed F(t)). Note Ry = 1,R; = a1 )_ x; = aip1.



Simple examples
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Simple examples

1. F(t) =e'. Then

F(t) = Flat)F(xet)--- = exp(x1t+x2t+...)
= exp(pit) Zpl
n>0
n n hn
whence R, = PL_ & _ M
n! n! n!

2. F(t) =1+t s0 F(t) = (L +xat)(1 + xot) -+ =3 o ent”,
whence R, = e, = s1»

3. F(t)=1/(1—1t), so

F(t)=1/(1—x1t)(1 — xpt)--- = ano h,t", whence

R, = h, =5,



Other occurrences (culture)

» symmetric function generalization of the Tutte polynomial of
a graph:

Fiy =Y 1+ v

nl’
n>0
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Other occurrences (culture)

» symmetric function generalization of the Tutte polynomial of
a graph:
B
F(t)=> (1+v)h o
n>0
» symmetric function generalization of the chromatic polynomial
of the complete hypergraph H, x:

t
Fi) =) =
=07
> A-genus of spin manifolds:
1
F(t) = 2Vt
sinh(3V/)



Other occurrences (continued)

» Hirzebruch's L-genus:

o= —YE_

tanh(y/t)



Other occurrences (continued)

» Hirzebruch's L-genus:

Wt
Flt) = tanh(v/t)

P expressing a certain theta function of Ramanujan in terms of
Eisenstein series (more soon):

F(t) = secVt.



Other occurrences (continued)

» Hirzebruch's L-genus:

Wt
Flt) = tanh(v/t)

P expressing a certain theta function of Ramanujan in terms of
Eisenstein series (more soon):

F(t) = secVt.

» zeta polynomials of intervals of binomial posets with factorial
function B(n):

F(t)zz%.

n>0



Five characterizations of sprout sequence

We state one here to give the flavor.

Theorem. LetR=(Ry=1,Ry,Ra,...) be a sequence of
symmetric functions. The following two conditions are equivalent.

(a) R is a sprout sequence.



Five characterizations of sprout sequence

We state one here to give the flavor.

Theorem. LetR=(Ry=1,Ry,Ra,...) be a sequence of
symmetric functions. The following two conditions are equivalent.

(a) R is a sprout sequence.

(b) There exist elements by = 1, by, by, ... in K such that for all
n>1,
Rn = Zz)le)qb)\z P
AFn

In fact, log F(t) = 3,5, bt



Five characterizations of sprout sequence

We state one here to give the flavor.

Theorem. LetR=(Ry=1,Ry,Ra,...) be a sequence of
symmetric functions. The following two conditions are equivalent.

(a) R is a sprout sequence.

(b) There exist elements by = 1, by, by, ... in K such that for all
n>1,
Rn = Zz)le)qb)\z P
AFn

In fact, log F(t) = 3,5, bt



Five characterizations of sprout sequence

We state one here to give the flavor.

Theorem. LetR=(Ry=1,Ry,Ra,...) be a sequence of
symmetric functions. The following two conditions are equivalent.

(a) R is a sprout sequence.

(b) There exist elements by = 1, by, by, ... in K such that for all
n>1,
Rn = Zz)le)qb)\z P
AFn

In fact, log F(t) = 3,5, bt

Proof is straightforward.



The involution w

Recall w: Ak — Ak is the linear transformation defined by
w(hy) = ex. Then w is a K-algebra automorphism, w? = 1,
w(sy) = sy, and w(pn) = (—1)"1p,.
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The involution w

Recall w: Ak — Ak is the linear transformation defined by
w(hy) = ex. Then w is a K-algebra automorphism, w? = 1,
w(sy) = sy, and w(p,) = (—1)""1p,.

Let R = (1,R1, Ry, ...) be a sprout sequence with seed
F(t). Then (1,wRy,wRy,...) is a sprout sequence with seed

1/F(—t).
Proof. Straightforward. (J

F(t)y=1+tand R, =e, Then 1/F(—t)=1/(1—1t)
and R, = h,.



Schur positivity

Let K C R. When is each R, Schur positive, i.e., a nonnegative
linear combination of Schur functions?
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Schur positivity

Let K C R. When is each R, Schur positive, i.e., a nonnegative
linear combination of Schur functions?

Let R = (1, Ry, Ra,...) be a sprout sequence over R
with seed F(t) =) ajt/. The following conditions are equivalent.

(a) Each R, is Schur positive.
(b) We can write

1+ agt
F(t)y=e"]]
k>1

where v > 0 and the ay's and By 's are nonnegative real
numbers such that (ax + Bk) is convergent. (This is an
analytic, not a formal or combinatorial, statement.)



Schur positivity

Let K C R. When is each R, Schur positive, i.e., a nonnegative
linear combination of Schur functions?

Let R = (1, Ry, Ra,...) be a sprout sequence over R
with seed F(t) =) ajt/. The following conditions are equivalent.

(a) Each R, is Schur positive.
(b) We can write

1+ agt
F(t)y=e"]]
k>1

where v > 0 and the ay's and By 's are nonnegative real
numbers such that (ax + Bk) is convergent. (This is an
analytic, not a formal or combinatorial, statement.)

(c) The matrix [aj_j]i j>0 (where a, =0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.



Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.



Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.

(a) & (c): how does the matrix [aj_;]; j>0 enter the picture?
Based on the matrix [h;_;].



A corollary

Let d > 1. If the seed F(t) = Y_ a;t’ generates a Schur
positive sprout sequence R, then F4(t) := > aqit' generates a
Schur positive sprout sequence Ry.



A corollary

Let d > 1. If the seed F(t) = Y_ a;t’ generates a Schur
positive sprout sequence R, then F4(t) := > aqit' generates a
Schur positive sprout sequence Ry.

Proof. Let My = [ag(j—j)lij>0. Every minor of M; is nonnegative
since R is Schur positive. But My is a submatrix of My, so every
minor of My is Schur positive. Hence Ry is Schur positive. [



e and h-positivity

e-positivity = Schur positivity and h-positivity = Schur
positivity.



e and h-positivity

e-positivity = Schur positivity and h-positivity = Schur
positivity.

(a) Ifall B; =0, then each R, is e-positive.
(b) If all j =0, then each R, is h-positive.



Easy proof

Proposition (repeated).
(a) Ifall B; =0, then each R, is e-positive.
(b) If all j =0, then each R, is h-positive.



Easy proof

(repeated).
(a) Ifall B; =0, then each R, is e-positive.
(b) If all j =0, then each R, is h-positive.
Proof. (a) Assume all 5; = 0. Then
Z R,t" = H exit H(l + OéjX,'t)
i j>1

= eweltHH(l + an;t)
i
= eve1tH Zaj’-’e,,t" , etc.

i \nm>0

(b) is completely analogous. [
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The converse holds.
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Let F(t) = et i>1 i—gji
Suppose that there exists o > 0 such that the multiplicity of
1+ at in the numerator of F(t) exceeds the multiplicity of 1 — at
in the denominator. Then some R, is not h-positive. [dually for
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The converse

(repeated).
(a) Ifall B; =0, then each R, is e-positive.
(b) If all aj =0, then each R, is h-positive.

The converse holds.

Known to be true in several cases, e.g.:

_ t 1+ajt
Let F(t) =€ [];5q A

Suppose that there exists o > 0 such that the multiplicity of

1+ at in the numerator of F(t) exceeds the multiplicity of 1 — at
in the denominator. Then some R, is not h-positive. [dually for
e-positivity]

Proof uses complex analysis (Vivanti-Pringsheim theorem).



INTERMISSION




The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

1 4k(4k _ 1\B my
o) =TT (Semaen)

k=1

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.



The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

— o TTL (M- DB
P(A) = (2n)! kH:lmk!< (2k)(2k)! > ’

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.

Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).



Euler numbers E,,

Not hard to see that

o(N) €Z, Y |6\ = Ezn,

AFn

an Euler number or secant number, defined by

secx = Z E2,, 2n)|

n>0

. Epp is equal to the number of alternating
permutations ajay - - ax, € Gy, i€,

ar > axy<az >ag<--->agy.



Euler numbers E,,

Not hard to see that

o(N) €Z, Y |6\ = Ezn,

AFn

an Euler number or secant number, defined by

secx = Z E2,, 2n)|

n>0

. Epp is equal to the number of alternating
permutations ajay - - ax, € Gy, i€,

ar > axy<az >ag<--->agy.

what does |¢())| count?



Record partitions

s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.



Record partitions

s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in w. (Always 1 € rec(w).)

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)



Record partitions

s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in w. (Always 1 € rec(w).)

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)

w = 772757 178737 10767974 € Qll()v W= 7757871079;

I’1:1, I’2:3, I’3:4, I’2—I’1:2, I’3—I’2:1,6—I’3:2,
rp(W) = (2,2,1)



Combinatorial interpretation of ¢(\)

Theorem. |p(N)| = #{w € Az, : rp(W) = A}



Combinatorial interpretation of ¢(\)

Theorem. |p(N)| = #{w € Az, : rp(W) = A}

Recall
n k k my
1 (454" —1)By
N=0@n) || — | —m 5
9(3) = (2n) Hmk! < (2k)(2k)! ’
where A = (1™ ... n™) > im;. To get combinatorics into the

picture, use

[B2x|
2k

Remainder of proof is a bijective argument.

Epi_1 = 4K(4k — 1)



A symmetric function

The general form ¢(A\) = (2n)! ] mik!fkmk suggests defining a
symmetric function in the variables x = (x1,xp,...):

An = An(x) = 2n)|2|¢ Py

AFn

where p) is a power sum symmetric function.



Examples.

21 A
41 Ay
6! Az
8! Ay

4!A22

P1
3p; +2p2

15p; + 30p2p1 + 16p3
105p1* 4 420p,p? 4 140p3 + 448p3p1 + 272ps

w  w  rp(w)
2143 24 11
3142 34 11
3241 34 11
4132 43 2
4231 43 2



A sprout sequence

Theorem. Y Apt" = [];sec(v/xit), i.e., A:= (Ao, A1,...) isa
sprout sequence with seed sec\/t.
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> Ant" =[] sec(yv/xit), i.e, A:= (Ao, A1,...) isa

sprout sequence with seed sec\/t.
Proof idea. Use earlier characterization of sprout sequences:

There exist elements by = 1, by, by, ... in K such that for all
n>1,
Ro =Yz 'by by, pa.
AFn

In fact, log F(t) = > 51 bnt.



A sprout sequence

> Ant" =[] sec(yv/xit), i.e, A:= (Ao, A1,...) isa

sprout sequence with seed sec\/t.
Proof idea. Use earlier characterization of sprout sequences:

There exist elements by = 1, by, by, ... in K such that for all
n>1,
Ro =Yz 'by by, pa.
AFn

In fact, log F(t) = > 51 bnt.

Here we have & logsec(v/t) = tan(v/t)/2V/t, so
b, = Epn—1/(2n)!, etc. .



h-positivity

Theorem. A,(x) is h-positive.



h-positivity
. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 — 7r2(24k7tz—1)2) implies:

k>1

F(t) = sec(\v/t)



h-positivity

. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 - 7r2(24k7t2—1)2) implies:

k>1

F(t) = sec(Vt) B
- (=)

jz1

This has the desired form e?* [](1 — 8;t)~! (with v =0,
Bj = 4/7%(2j — 1)?) for h-positivity. [



h-positivity

. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 - 7r2(24k7t2—1)2> implies:

k>1

F(t) = sec(V7) B
- (=)

jz1

This has the desired form e?* [](1 — 8;t)~! (with v =0,
Bj = 4/7%(2j — 1)?) for h-positivity. [

Very noncombinatorial formula for the coefficients!



Some data

20A; = hy
41A; = h? + 4hy
6!A3 = h3 + 12hyhy + 48h3
81A; = hj + 24hyh? + 256h3hy + 16h3 + 1088h,
101As = h3 4 40hyh3 4 800h3h? + 80h3 hy + 9280hs hy
+ 640h3 hy + 39680hs.
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Sum of coefficients is E>,. What are the
coefficients themselves?



Some data

20A; = hy
41A; = h? + 4hy
6!A3 = h3 + 12hyhy + 48h3
81A; = hj + 24hyh? + 256h3hy + 16h3 + 1088h,
101As = h3 4 40hyh3 4 800h3h? + 80h3 hy + 9280hs hy
+ 640h3hy + 39680hs.

Sum of coefficients is E>,. What are the
coefficients themselves?

Coefficient of h, is nEx,—1, the number of “cyclically
alternating” permutations in Goj,.



Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {vi,v2,...,vp}

X6 = Xg(x) = Z Xie(vi) X(v2) " X(vp)
k: V(G)—-P
uveE(G)=r(u)#k(v)



Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {vi,v2,...,vp}

X6 = Xg(x) := Z Xie(vi) X(v2) " X (vp)
k: V(G)—-P
uveE(G)=r(u)#k(v)
XVP(X) = (X1 + X2 —l-‘”)p = ef

Xk,(x) = plep



Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {v1, v, ...

Xg = XG(X) = Z Xi(vi) Xr(vo) ~ " "
k: V(G)—-P
uveE(G)=r(u)#k(v)
XVP(X) = (X1 + X2 —l-‘”)p = ef

Xk,(x) = plep

XG(].,].,...,].,0,0,...) = X(.;(m),
N——
m1's

the chromatic polynomial of G.



Interval orders

T ={[a1, b1],---,[an, bn]}, a collection of closed intervals in R, so
a; < b;.

Gz: graph with vertex set Z, with [a;, b;] adjacent to [a;, bj] if

[ai, bi] N [aj, bj] # 0 (incomparability graph of the corresponding
interval order: [aj, bj] < [aj, bj] if bi < aj]).

M: a complete matching a1 by, axby, ..., a,b, on

[2n] :={1,2,...,2n}, with a; < b; (so {a1, b1,...,an, by} = [2n])

(M) :={[a1,b1],---,[an, bn]}



Interval orders

T ={[a1, b1],---,[an, bn]}, a collection of closed intervals in R, so
a; < b;.

Gz: graph with vertex set Z, with [a;, b;] adjacent to [a;, bj] if

[ai, bi] N [aj, bj] # 0 (incomparability graph of the corresponding
interval order: [aj, bj] < [aj, bj] if bi < aj]).

M: a complete matching a1 by, axby, ..., a,b, on

[2n] :={1,2,...,2n}, with a; < b; (so {a1, b1,...,an, by} = [2n])

I(M) :={[a1, b1],- .., [an, bn]}
(2t w(An) = 2o mem, Xezu where M, is the set of

all (2n — 1) complete matchings on [2n], and X¢,,, is the
chromatic symmetric function of the graph Gz(y).



The case n =2

matching M graph Gz(y) X6z
2

12, 34 . . e
13, 24 o———o 2e)
14, 23 ———e 26

4 w(Ar) = €@ + 4e



The case n =2

matching M graph Gz(y) X6z
2

12, 34 . . e
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14, 23 ———e 26

4lw(Az) = ef + 4ey
Equivalently, 414y = h? + 4hj,.



The case n =2

matching M graph Gz XGI(M)
2

12, 34 . . e
13, 24 o———o 2e)
14, 23 ———e 26

4lw(Az) = ef + 4ey
Equivalently, 414y = h? + 4hj,.

Are there other “nice” examples of sums (or linear
combinations) of X¢'s being e-positive?



Schur function expansion

To get the coefficient of ss317 in 20! - Aqg, take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape p(5311):

Row lengths are the parts of u.
Each row begins one square to the left of the row above.




Schur function expansion

To get the coefficient of ss317 in 20! - Aqg, take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape p(5311):

Row lengths are the parts of u.
Each row begins one square to the left of the row above.

For general \ = n, the coefficient of sy in (2n)!A, is the
number fPA) of standard Young tableaux of (skew) shape p(\).
(Well-known determinantal formula.)



First generalization

Let ¢ > 1 and

o= (548)

n>0



First generalization

Let ¢ > 1 and .

F(o = (X C0

= (cn)!

m, p, s-expansions straightforward generalizations of ¢ = 2 case.
In particular, there are "natural” skew shapes p(, c¢) for which

(cn)!R, = Z FPO)sy
AFn



h-expansion of R, for the seed F.(t)

We don't know poles of F.(t) (a Mittag-Leffler function)
explicitly for ¢ > 3, but can show F.(t) = [](1 — 3;t)~! either by
a direct analytic argument or the earlier corollary:

Let d > 1. If the seed F(t) = _ a;t' generates a Schur
positive sprout R, then F4(t) := ) aq4it' generates a Schur
positive sprout Ry.



h-expansion of R, for the seed F.(t)

We don't know poles of F.(t) (a Mittag-Leffler function)
explicitly for ¢ > 3, but can show F.(t) = [](1 — 3;t)~! either by
a direct analytic argument or the earlier corollary:

Let d > 1. If the seed F(t) = _ a;t' generates a Schur
positive sprout R, then F4(t) := ) aq4it' generates a Schur
positive sprout Ry.

Recall coefficients of h-expansion of (2n)! R, for F»(t) sum to Ejp,
and a combinatorial interpretation is open. For arbitrary c, the
coefficients sum to

#{w € &, : Des(w) = {c,2¢,3c,...,(n—1)c}},

where Des(w) denotes the descent set of w.



A g-analogue of F.(t)

-1
et = (Z ((c}—.))nzin) |

n>0

where (m)!lg =1-(1+¢q)(1+q+q?)---(1+q+---+g™ "), the
standard g-analogue of m!.



A g-analogue of F.(t)

-1

Fc(t, q) _ Z (—1)’7tn 7

= (en)!y

where (m)!lg =1-(1+¢q)(1+q+q?)---(1+q+---+g™ "), the
standard g-analogue of m!.

If ¢ = 2 then
BgR=("+ +28 + )i+ (¢* +¢* +2¢° + g — 1)y,

so (h, q)-positivity fails even for ¢ = 2.



Schur expansion of R, for the seed F,(q,t)

Recall that for F(t) = (32(=1)"t"/(cn)!) ™" we have

(en)!R, = Z FPO)sy (%)

AbFn

for some “natural”’ skew shape p(\, ¢).



Schur expansion of R, for the seed F,(q,t)

Recall that for F(t) = (32(=1)"t"/(cn)!) ™" we have

(cn)!R, = Z FPO)sy (%)

AbFn

for some “natural”’ skew shape p(\, ¢).

Theorem. For the seed F.(q,t) we have

(en)'q Ry = Z Z g i sy,

AFn SYT T
sh(T)=p(\.c)

the “nicest” possible g-analogue of (*).



Second special case

F(t) = (Z(sl):tn) , d>1

n>0



Second special case

F(t) = (Z(;l):tn) , d>1

n>0

Theorem (Carlitz-Scoville-Vaughan (1976) for d = 2) Let d > 1

and
n

Fity=%" Vd(n)%.

n>0
Then

va(n) = #{(w1, ..., wy) € 69 : Des(wy)N--- N Des(wy) = 0}.



Schur expansion

B (_1)ntn
Let F(t)=| > mE
n>0
Eg.d =2, 3!2R3 = s111 + 8sp1 + 19s3.
What statistic on &3 x &3 (or &¢ in general) do the coefficients
count? (open)



h-expansion

Analytic methods (M. Kwasnicki, MO 477780) show that

-1

F(t) = Z(_j!)dntn = [Ia-807"

n>0

where 5; > 0, > ;i < co. Hence R, is h-positive. Some data for
d=2:



h-expansion

Analytic methods (M. Kwasnicki, MO 477780) show that

-1

Fo = (LX) e s

n>0

where 5; > 0, > ;i < co. Hence R, is h-positive. Some data for

d=2:

Ry
212R,
31%R;
412R,

h

h; + 2h,

h3 + 6hyhy + 12h3

h} + 12hoh? + 60hshy + 6h3 + 132h,



Coefficients of h-expansion

Open Problem. What do the coefficients count?



Coefficients of h-expansion

Open Problem. What do the coefficients count?

Their sum is

va(n) = #{(w1,...,wy) € 69 : Des(wy) N --- N Des(wy) = 0}.



The seed F(t) = (ano tn/(")!g)_l

Example. For d = 2,

(2R = s

(2)2R = su+ (¢ +29)s

(3)2Rs = su1+(q* +24° +3¢° +29)s
+(q° +4¢° +64¢* + 6% + 24°)s3



The seed F(t) = (ano tn/(")!g)_l

Example. For d = 2,

(2R = s

(2)12R: = s+ (q° +29)s

(3)2Rs = su1+(q* +24° +3¢° +29)s
+(q° + 4¢° + 69* +6¢° +2¢%)s3

Conjecture (can be greatly generalized). For any d > 1, (n)!an
is (g, s)-positive. (It's not (g, h) or (g, e)-positive in general.)



The seed F(t) = (ano tn/(")!g)_l

For d = 2,

(2R = s

(2)12R: = s+ (q° +29)s

(3)2Rs = su1+(q* +24° +3¢° +29)s
+(q° + 4¢° + 69* +6¢° +2¢%)s3

(can be greatly generalized). For any d > 1, (n)!an
is (g, s)-positive. (It's not (g, h) or (g, e)-positive in general.)

No nice g-analogue of total positivity or the Edrei-Thoma
theorem is known.



The final slide



The final slide




