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Symmetric functions

K : a field of characteristic 0

ΛK = ΛK (x): ring of symmetric functions over K in the variables
x = (x1, x2, . . . )

bases mλ (monomial symmetric functions), pλ (power sums), hλ
(complete), eλ (elementary), sλ (Schur): knowledge assumed
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K : a field of characteristic 0

ΛK = ΛK (x): ring of symmetric functions over K in the variables
x = (x1, x2, . . . )

bases mλ (monomial symmetric functions), pλ (power sums), hλ
(complete), eλ (elementary), sλ (Schur): knowledge assumed

If K ⊆ R and B = {bλ} is a K -basis for ΛK , then f ∈ ΛK is
b-positive if the expansion of f in the basis B has nonnegative
coefficients.



Sprout sequences and their seeds

Definition. A sequence R = (R0 = 1,R1,R2, . . . ) of symmetric
functions is a sprout sequence if there exists a power series

F (t) =
∑

j≥0

aj t
j ∈ K [[t]], a0 = 1

such that
F(t) :=

∏

i

F (xi t) =
∑

n≥0

Rnt
n.

Well-defined formally, and Rn is homogeneous of degree n
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∑
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j ∈ K [[t]], a0 = 1

such that
F(t) :=

∏

i

F (xi t) =
∑

n≥0

Rnt
n.

Well-defined formally, and Rn is homogeneous of degree n

F (t) is the seed of the sprout sequence R.

We also call R0,R1, . . . sprout symmetric functions (with
respect to the seed F (t)). Note R0 = 1,R1 = a1

∑
xi = a1p1.



Simple examples

1. F (t) = et . Then

F(t) = F (x1t)F (x2t) · · · = exp(x1t + x2t + · · · )

= exp(p1t) =
∑

n≥0

pn1
tn

n!
,

whence Rn =
pn1
n!

=
en1
n!

=
hn1
n!
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1. F (t) = et . Then

F(t) = F (x1t)F (x2t) · · · = exp(x1t + x2t + · · · )

= exp(p1t) =
∑

n≥0

pn1
tn

n!
,

whence Rn =
pn1
n!

=
en1
n!

=
hn1
n!

.

2. F (t) = 1 + t, so F(t) = (1 + x1t)(1 + x2t) · · · =
∑

n≥0 ent
n,

whence Rn = en = s1n

3. F (t) = 1/(1− t), so
F(t) = 1/(1 − x1t)(1− x2t) · · · =

∑

n≥0 hnt
n, whence

Rn = hn = sn



Other occurrences (culture)
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Other occurrences (culture)

◮ symmetric function generalization of the Tutte polynomial of
a graph:

F (t) =
∑

n≥0

(1 + v)(
n

2)
tn

n!
.

◮ symmetric function generalization of the chromatic polynomial
of the complete hypergraph Hn,k :

F (t) =
k−1∑

j=0

t j

j!

◮ A-genus of spin manifolds:

F (t) =
1
2

√
t

sinh(12
√
t)
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Other occurrences (continued)

◮ Hirzebruch’s L-genus:

F (t) =

√
t

tanh(
√
t)
.

◮ expressing a certain theta function of Ramanujan in terms of
Eisenstein series (more soon):

F (t) = sec
√
t.

◮ zeta polynomials of intervals of binomial posets with factorial
function B(n):

F (t) =
∑

n≥0

tn

B(n)
.



Five characterizations of sprout sequence

We state one here to give the flavor.

Theorem. Let R = (R0 = 1,R1,R2, . . . ) be a sequence of
symmetric functions. The following two conditions are equivalent.

(a) R is a sprout sequence.
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Five characterizations of sprout sequence

We state one here to give the flavor.

Theorem. Let R = (R0 = 1,R1,R2, . . . ) be a sequence of
symmetric functions. The following two conditions are equivalent.

(a) R is a sprout sequence.

(b) There exist elements b0 = 1, b1, b2, . . . in K such that for all
n ≥ 1,

Rn =
∑

λ⊢n

z−1
λ bλ1

bλ2
· · · pλ.

In fact, log F (t) =
∑

n≥1 bn
tn

n
.

Proof is straightforward.



The involution ω

Recall ω : ΛK → ΛK is the linear transformation defined by
ω(hλ) = eλ. Then ω is a K -algebra automorphism, ω2 = 1,
ω(sλ) = sλ′ , and ω(pn) = (−1)n−1pn.
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The involution ω

Recall ω : ΛK → ΛK is the linear transformation defined by
ω(hλ) = eλ. Then ω is a K -algebra automorphism, ω2 = 1,
ω(sλ) = sλ′ , and ω(pn) = (−1)n−1pn.

Theorem. Let R = (1,R1,R2, . . . ) be a sprout sequence with seed
F (t). Then (1, ωR1, ωR2, . . . ) is a sprout sequence with seed
1/F (−t).

Proof. Straightforward. �

Example. F (t) = 1 + t and Rn = en. Then 1/F (−t) = 1/(1 − t)
and Rn = hn.
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Let K ⊆ R. When is each Rn Schur positive, i.e., a nonnegative
linear combination of Schur functions?
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numbers such that
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j(αk + βk) is convergent. (This is an
analytic, not a formal or combinatorial, statement.)



Schur positivity

Let K ⊆ R. When is each Rn Schur positive, i.e., a nonnegative
linear combination of Schur functions?

Theorem. Let R = (1,R1,R2, . . . ) be a sprout sequence over R
with seed F (t) =

∑
aj t

j . The following conditions are equivalent.

(a) Each Rn is Schur positive.

(b) We can write

F (t) = eγt
∏

k≥1

1 + αkt

1− βk t
,

where γ ≥ 0 and the αk ’s and βk ’s are nonnegative real
numbers such that

∑

j(αk + βk) is convergent. (This is an
analytic, not a formal or combinatorial, statement.)

(c) The matrix [aj−i ]i ,j≥0 (where an = 0 if n < 0) is totally
nonnegative, i.e., every minor is nonnegative.



Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.



Proof

The equivalence of (b) and (c) is the Edrei-Thoma theorem from
the theory of total positivity.

(a) ⇔ (c): how does the matrix [aj−i ]i ,j≥0 enter the picture?
Based on the matrix [hj−i ].
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Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur
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∑

adi t
i generates a

Schur positive sprout sequence Rd .



A corollary

Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur

positive sprout sequence R, then Fd(t) :=
∑

adi t
i generates a

Schur positive sprout sequence Rd .

Proof. Let Md = [ad(j−i)]i ,j≥0. Every minor of M1 is nonnegative
since R is Schur positive. But Md is a submatrix of M1, so every
minor of Md is Schur positive. Hence Rd is Schur positive. �.



e and h-positivity

Recall: e-positivity ⇒ Schur positivity and h-positivity ⇒ Schur
positivity.
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e and h-positivity

Recall: e-positivity ⇒ Schur positivity and h-positivity ⇒ Schur
positivity.

F (t) = eγt
∏

j≥1

1 + αj t

1− βj t

Proposition.

(a) If all βj = 0, then each Rn is e-positive.

(b) If all αj = 0, then each Rn is h-positive.
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Easy proof

Proposition (repeated).

(a) If all βj = 0, then each Rn is e-positive.

(b) If all αj = 0, then each Rn is h-positive.

Proof. (a) Assume all βj = 0. Then

∑

Rnt
n =

∏

i

eγxi t
∏

j≥1

(1 + αjxi t)

= eγe1t
∏

j

∏

i

(1 + αjxi t)

= eγe1t
∏

j




∑

n≥0

αn
j ent

n



 , etc.

(b) is completely analogous. �
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(a) If all βj = 0, then each Rn is e-positive.

(b) If all αj = 0, then each Rn is h-positive.

Conjecture. The converse holds.

Known to be true in several cases, e.g.:

Theorem. Let F (t) = eγt
∏

j≥1
1+αj t

1−βj t
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Suppose that there exists α > 0 such that the multiplicity of
1 + αt in the numerator of F (t) exceeds the multiplicity of 1− αt
in the denominator. Then some Rn is not h-positive. [dually for
e-positivity]



The converse

Proposition (repeated).

(a) If all βj = 0, then each Rn is e-positive.

(b) If all αj = 0, then each Rn is h-positive.

Conjecture. The converse holds.

Known to be true in several cases, e.g.:

Theorem. Let F (t) = eγt
∏

j≥1
1+αj t

1−βj t
.

Suppose that there exists α > 0 such that the multiplicity of
1 + αt in the numerator of F (t) exceeds the multiplicity of 1− αt
in the denominator. Then some Rn is not h-positive. [dually for
e-positivity]

Proof uses complex analysis (Vivanti-Pringsheim theorem).





The function φ(λ)

Amdeberhan-Ono-Singh (2024):

φ(λ) := (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢ n =
∑

imi (λ is a partition of n with
mi i ’s) and B2k is a Bernoulli number.



The function φ(λ)

Amdeberhan-Ono-Singh (2024):

φ(λ) := (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢ n =
∑

imi (λ is a partition of n with
mi i ’s) and B2k is a Bernoulli number.

Original motivation. Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).



Euler numbers E2n

Our motivation. Not hard to see that

φ(λ) ∈ Z,
∑

λ⊢n

|φ(λ)| = E2n,

an Euler number or secant number, defined by

sec x =
∑

n≥0

E2n
x2n

(2n)!
.

Well-known: E2n is equal to the number of alternating
permutations a1a2 · · · a2n ∈ S2n, i.e.,

a1 > a2 < a3 > a4 < · · · > a2n.



Euler numbers E2n

Our motivation. Not hard to see that

φ(λ) ∈ Z,
∑

λ⊢n

|φ(λ)| = E2n,

an Euler number or secant number, defined by

sec x =
∑

n≥0

E2n
x2n

(2n)!
.

Well-known: E2n is equal to the number of alternating
permutations a1a2 · · · a2n ∈ S2n, i.e.,

a1 > a2 < a3 > a4 < · · · > a2n.

Question: what does |φ(λ)| count?
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A2n := {w ∈ S2n : w alternating}
Recall

∑

λ⊢n |φ(λ)| = E2n = #A2n.

If w = a1 > a2 < · · · > a2n ∈ A2n define ŵ = a1, a3, . . . , a2n−1.
Write ŵ = b1, b2, , . . . , bn.

record set recrecrec(ŵ): set of indices 1 ≤ i ≤ n for which bi is a
left-to-right maximum (or record) in ŵ . (Always 1 ∈ rec(ŵ).)

record partition rp(ŵ): if rec(ŵ) = {r1, r2, . . . , rj}<, then rp(ŵ)
is the partition of n with parts r2 − r1, r3 − r2, r4 − r3, . . . , n+1− rj
(in decreasing order)



Record partitions

A2n := {w ∈ S2n : w alternating}
Recall

∑

λ⊢n |φ(λ)| = E2n = #A2n.

If w = a1 > a2 < · · · > a2n ∈ A2n define ŵ = a1, a3, . . . , a2n−1.
Write ŵ = b1, b2, , . . . , bn.

record set recrecrec(ŵ): set of indices 1 ≤ i ≤ n for which bi is a
left-to-right maximum (or record) in ŵ . (Always 1 ∈ rec(ŵ).)

record partition rp(ŵ): if rec(ŵ) = {r1, r2, . . . , rj}<, then rp(ŵ)
is the partition of n with parts r2 − r1, r3 − r2, r4 − r3, . . . , n+1− rj
(in decreasing order)

Example. w = 7, 2, 5, 1, 8, 3, 10, 6, 9, 4 ∈ A10, ŵ = 777, 5,888,101010, 9;
r1 = 1, r2 = 3, r3 = 4, r2 − r1 = 2, r3 − r2 = 1, 6− r3 = 2,
rp(ŵ ) = (2, 2, 1)



Combinatorial interpretation of φ(λ)

Theorem. |φ(λ)| = #{w ∈ A2n : rp(ŵ) = λ}



Combinatorial interpretation of φ(λ)

Theorem. |φ(λ)| = #{w ∈ A2n : rp(ŵ) = λ}

Note on proof. Recall

φ(λ) = (2n)! ·
n∏

k=1

1

mk !

(
4k(4k − 1)B2k

(2k)(2k)!

)mk

,

where λ = 〈1m1 , . . . , nmn〉 ⊢ ∑
imi . To get combinatorics into the

picture, use

E2k−1 = 4k(4k − 1)
|B2k |
2k

.

Remainder of proof is a bijective argument.



A symmetric function

The general form φ(λ) = (2n)!
∏ 1

mk !
f mk

k suggests defining a
symmetric function in the variables x = (x1, x2, . . . ):

An = An(x) =
1

(2n)!

∑

λ⊢n

|φ(λ)| · pλ,

where pλ is a power sum symmetric function.



Examples.

2!A1 = p1

4!A2 = 3p21 + 2p2

6!A3 = 15p31 + 30p2p1 + 16p3

8! A4 = 105p14 + 420p2p
2
1 + 140p22 + 448p3p1 + 272p4

4!A2:
w ŵ rp(ŵ)

2143 24 11
3142 34 11
3241 34 11
4132 43 2
4231 43 2



A sprout sequence

Theorem.
∑

Ant
n =

∏

i sec(
√
xi t), i.e., A := (A0,A1, . . . ) is a

sprout sequence with seed sec
√
t.
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A sprout sequence

Theorem.
∑

Ant
n =

∏

i sec(
√
xi t), i.e., A := (A0,A1, . . . ) is a

sprout sequence with seed sec
√
t.

Proof idea. Use earlier characterization of sprout sequences:

There exist elements b0 = 1, b1, b2, . . . in K such that for all
n ≥ 1,

Rn =
∑

λ⊢n

z−1
λ bλ1

bλ2
· · · pλ.

In fact, log F (t) =
∑

n≥1 bn
tn

n
.

Here we have d
dt

log sec(
√
t) = tan(

√
t)/2

√
t, so

bn = E2n−1/(2n)!, etc. .
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h-positivity

Theorem. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =
∏

k≥1

(

1− 4t2

π2(2k − 1)2

)

implies:

F (t) = sec(
√
t)

=
∏

j≥1

(

1− 4t

π2(2j − 1)2

)−1

.

This has the desired form eγt
∏
(1− βj t)

−1 (with γ = 0,
βj = 4/π2(2j − 1)2) for h-positivity. �

Very noncombinatorial formula for the coefficients!



Some data

2!A1 = h1

4!A2 = h21 + 4h2

6!A3 = h31 + 12h2h1 + 48h3

8!A4 = h41 + 24h2h
2
1 + 256h3h1 + 16h22 + 1088h4

10!A5 = h51 + 40h2h
3
1 + 800h3h

2
1 + 80h22h1 + 9280h4h1

+ 640h3h2 + 39680h5.
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Some data

2!A1 = h1

4!A2 = h21 + 4h2

6!A3 = h31 + 12h2h1 + 48h3

8!A4 = h41 + 24h2h
2
1 + 256h3h1 + 16h22 + 1088h4

10!A5 = h51 + 40h2h
3
1 + 800h3h

2
1 + 80h22h1 + 9280h4h1

+ 640h3h2 + 39680h5.

Open problem. Sum of coefficients is E2n. What are the
coefficients themselves?

Note. Coefficient of hn is nE2n−1, the number of “cyclically
alternating” permutations in S2n.



Chromatic symmetric functions

G : finite simple graph on vertex set V (G) = {v1, v2, . . . , vp}

XG = XG (x) :=
∑

κ : V (G)→P

uv∈E(G)⇒κ(u)6=κ(v)

xκ(v1)xκ(v2) · · · xκ(vp)
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∑

κ : V (G)→P
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Chromatic symmetric functions

G : finite simple graph on vertex set V (G) = {v1, v2, . . . , vp}

XG = XG (x) :=
∑

κ : V (G)→P

uv∈E(G)⇒κ(u)6=κ(v)

xκ(v1)xκ(v2) · · · xκ(vp)

XKp
(x) = (x1 + x2 + · · · )p = ep1

XKp
(x) = p! ep

XG (1, 1, . . . , 1
︸ ︷︷ ︸

m 1’s

, 0, 0, . . . ) = χG (m),

the chromatic polynomial of G .



Interval orders

I = {[a1, b1], . . . , [an, bn]}, a collection of closed intervals in R, so
ai < bi .

GI : graph with vertex set I, with [ai , bi ] adjacent to [aj , bj ] if
[ai , bi ] ∩ [aj , bj ] 6= ∅ (incomparability graph of the corresponding
interval order: [ai , bi ] < [aj , bj ] if bi < aj ]).

M : a complete matching a1b1, a2b2, . . . , anbn on
[2n] := {1, 2, . . . , 2n}, with ai < bi (so {a1, b1, . . . , an, bn} = [2n])

I(M) := {[a1, b1], . . . , [an, bn]}



Interval orders

I = {[a1, b1], . . . , [an, bn]}, a collection of closed intervals in R, so
ai < bi .

GI : graph with vertex set I, with [ai , bi ] adjacent to [aj , bj ] if
[ai , bi ] ∩ [aj , bj ] 6= ∅ (incomparability graph of the corresponding
interval order: [ai , bi ] < [aj , bj ] if bi < aj ]).

M : a complete matching a1b1, a2b2, . . . , anbn on
[2n] := {1, 2, . . . , 2n}, with ai < bi (so {a1, b1, . . . , an, bn} = [2n])

I(M) := {[a1, b1], . . . , [an, bn]}

Theorem. (2n)!ω(An) =
∑

M∈Mn
XGI(M)

, where Mn is the set of
all (2n − 1)!! complete matchings on [2n], and XGI(M)

is the
chromatic symmetric function of the graph GI(M).



The case n = 2

matching M graph GI(M) XGI(M)

12, 34 • • e21
13, 24 •−−−• 2e2
14, 23 •−−−• 2e2

4!ω(A2) = e21 + 4e2
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The case n = 2

matching M graph GI(M) XGI(M)

12, 34 • • e21
13, 24 •−−−• 2e2
14, 23 •−−−• 2e2

4!ω(A2) = e21 + 4e2

Equivalently, 4!A2 = h21 + 4h2.

Problem. Are there other “nice” examples of sums (or linear
combinations) of XG ’s being e-positive?



Schur function expansion

Example. To get the coefficient of s5311 in 20! · A10, take the
conjugate partition 42211 and double each part: µ = 84422. Form
the skew shape ρ(5311):

Row lengths are the parts of µ.
Each row begins one square to the left of the row above.



Schur function expansion

Example. To get the coefficient of s5311 in 20! · A10, take the
conjugate partition 42211 and double each part: µ = 84422. Form
the skew shape ρ(5311):

Row lengths are the parts of µ.
Each row begins one square to the left of the row above.

Theorem. For general λ ⊢ n, the coefficient of sλ in (2n)!An is the
number f ρ(λ) of standard Young tableaux of (skew) shape ρ(λ).
(Well-known determinantal formula.)



First generalization

Let c ≥ 1 and

Fc(t) =




∑

n≥0

(−1)ntn

(cn)!





−1

.



First generalization

Let c ≥ 1 and

Fc(t) =




∑

n≥0

(−1)ntn

(cn)!





−1

.

m, p, s-expansions straightforward generalizations of c = 2 case.
In particular, there are “natural” skew shapes ρ(λ, c) for which

(cn)!Rn =
∑

λ⊢n

f ρ(λ,c)sλ.



h-expansion of Rn for the seed Fc(t)

We don’t know poles of Fc(t) (a Mittag-Leffler function)
explicitly for c ≥ 3, but can show Fc(t) =

∏
(1− βj t)

−1 either by
a direct analytic argument or the earlier corollary:

Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur

positive sprout R, then Fd (t) :=
∑

adi t
i generates a Schur

positive sprout Rd .



h-expansion of Rn for the seed Fc(t)

We don’t know poles of Fc(t) (a Mittag-Leffler function)
explicitly for c ≥ 3, but can show Fc(t) =

∏
(1− βj t)

−1 either by
a direct analytic argument or the earlier corollary:

Corollary. Let d ≥ 1. If the seed F (t) =
∑

ai t
i generates a Schur

positive sprout R, then Fd (t) :=
∑

adi t
i generates a Schur

positive sprout Rd .

Recall coefficients of h-expansion of (2n)!Rn for F2(t) sum to E2n,
and a combinatorial interpretation is open. For arbitrary c , the
coefficients sum to

#{w ∈ Scn : Des(w) = {c , 2c , 3c , . . . , (n − 1)c}},

where Des(w) denotes the descent set of w .



A q-analogue of Fc(t)

Fc(t, q) =




∑

n≥0

(−1)ntn

(cn)!q





−1

,

where (m)!q = 1 · (1 + q)(1 + q+ q2) · · · (1 + q+ · · ·+ qm−1), the
standard q-analogue of m!.
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Fc(t, q) =




∑

n≥0

(−1)ntn

(cn)!q




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,

where (m)!q = 1 · (1 + q)(1 + q+ q2) · · · (1 + q+ · · ·+ qm−1), the
standard q-analogue of m!.

If c = 2 then

(4)!q R2 = (q4 + q3 + 2q2 + q)h21 + (q4 + q3 + 2q2 + q − 1)h2,

so (h, q)-positivity fails even for c = 2.



Schur expansion of Rn for the seed Fd(q, t)

Recall that for Fc(t) = (
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(−1)ntn/(cn)!)−1 we have
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Schur expansion of Rn for the seed Fd(q, t)

Recall that for Fc(t) = (
∑

(−1)ntn/(cn)!)−1 we have

(cn)!Rn =
∑

λ⊢n

f ρ(λ,c)sλ. (∗)

for some “natural” skew shape ρ(λ, c).

Theorem. For the seed Fc(q, t) we have

(cn)!q Rn =
∑

λ⊢n







∑

SYTT
sh(T )=ρ(λ,c)

qmaj(T )







sλ,

the “nicest” possible q-analogue of (*).
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Second special case

F (t) =




∑

n≥0

(−1)ntn

n!d





−1

, d ≥ 1

Theorem (Carlitz-Scoville-Vaughan (1976) for d = 2) Let d ≥ 1
and

F (t) =
∑

n≥0

vd (n)
tn

n!d
.

Then

vd (n) = #{(w1, . . . ,wd ) ∈ S
d
n : Des(w1) ∩ · · · ∩Des(wd ) = ∅}.



Schur expansion

Let F (t) =




∑

n≥0

(−1)ntn

n!d





−1

.

E.g.,d = 2, 3!2R3 = s111 + 8s21 + 19s3.
What statistic on S3 ×S3 (or Sd

n in general) do the coefficients
count? (open)



h-expansion

Analytic methods (M. Kwaśnicki, MO 477780) show that

F (t) :=




∑

n≥0

(−1)ntn

n!d





−1

=
∏

(1− βi t)
−1,

where βi ≥ 0,
∑

βi < ∞. Hence Rn is h-positive. Some data for
d = 2:



h-expansion

Analytic methods (M. Kwaśnicki, MO 477780) show that

F (t) :=




∑

n≥0

(−1)ntn

n!d





−1

=
∏

(1− βi t)
−1,

where βi ≥ 0,
∑

βi < ∞. Hence Rn is h-positive. Some data for
d = 2:

R1 = h1

2!2R2 = h21 + 2h2

3!2R3 = h31 + 6h2h1 + 12h3

4!2R4 = h41 + 12h2h
2
1 + 60h3h1 + 6h22 + 132h4



Coefficients of h-expansion

Open Problem. What do the coefficients count?



Coefficients of h-expansion

Open Problem. What do the coefficients count?

Their sum is

vd (n) = #{(w1, . . . ,wd ) ∈ S
d
n : Des(w1) ∩ · · · ∩Des(wd ) = ∅}.



The seed F(t) =
(
∑∑∑

n≥0 tn/(n)!dq

)−1

Example. For d = 2,

(1)!2qR1 = s1

(2)!2qR2 = s11 + (q2 + 2q)s2

(3)!2qR3 = s111 + (q4 + 2q3 + 3q2 + 2q)s21

+(q6 + 4q5 + 6q4 + 6q3 + 2q2)s3
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The seed F(t) =
(
∑∑∑

n≥0 tn/(n)!dq

)−1

Example. For d = 2,

(1)!2qR1 = s1

(2)!2qR2 = s11 + (q2 + 2q)s2

(3)!2qR3 = s111 + (q4 + 2q3 + 3q2 + 2q)s21

+(q6 + 4q5 + 6q4 + 6q3 + 2q2)s3

Conjecture (can be greatly generalized). For any d ≥ 1, (n)!dqRn

is (q, s)-positive. (It’s not (q, h) or (q, e)-positive in general.)

Note. No nice q-analogue of total positivity or the Edrei-Thoma
theorem is known.
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