
Some Combinatorial Aspects of Cyclotomic Polynomials

Richard P. Stanley

August 26, 2024



A theorem of MacMahon

Theorem (MacMahon, 1916). The number f (n) of partitions of
n for which no part appears exactly once equals the number of
partitions of n into parts 6≡ ±1 (mod 6).

Proof.
∑

n≥0

f (n)xn =
∏

i≥1

(1 + x2i + x3i + x4i + · · · )

=
∏

i≥1

(

1

1− x i
− x i

)

=
∏

i≥1

1− x i + x2i

1− x i

=
∏

i≥1

1− x6i

(1− x2i )(1− x3i )

=
∏

j 6≡±1mod 6)

(1− x j)−1. �



Why does this work?

Φn(x): the nth cyclotomic polynomial

Φn(x) =
∏

1≤j≤n
gcd(j ,n)=1

(

e2πij/n − x
)

=
∏

d|n

(1− xd )µ(n/d)
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Why does this work?

Φn(x): the nth cyclotomic polynomial

Φn(x) =
∏

1≤j≤n
gcd(j ,n)=1

(

e2πij/n − x
)

=
∏

d|n

(1− xd )µ(n/d)

=

k
∏

i=1

(1− x i )ai , ai ∈ Z

Note. We use the normalization Φn(0) = 1. Only matters for
n = 1: traditionally Φ1(x) = x − 1, but here Φ1(x) = 1− x .
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1. (the main point)

F (x) :=
1

1− x
− x =

Φ6(x)

1− x
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Two points

1. (the main point)

F (x) :=
1

1− x
− x =

Φ6(x)

1− x
=

1− x6

(1− x2)(1 − x3)

2.
∑

n≥0

f (n)xn = F (x)F (x2)F (x3) · · ·

=
(1− x6)(1− x12)(1− x18) · · ·

(1− x2)(1 − x4)(1 − x6) · · · (1− x3)(1− x6)(1− x9) · · ·

=
1

(1− x2)(1 − x3)(1 − x4)(1 − x6)(1 − x8)(1 − x9) · · ·



Cyclotomic sets

Definition. A cyclotomic set is a subset S of P = {1, 2, . . . }
such that

FS(x) :=
1

1− x
−

∑

j∈S

x j =
NS(x)

DS(x)
,

where NS (x) and DS(x) are finite products of cyclotomic
polynomials.



Cyclotomic sets

Definition. A cyclotomic set is a subset S of P = {1, 2, . . . }
such that

FS(x) :=
1

1− x
−

∑

j∈S

x j =
NS(x)

DS(x)
,

where NS (x) and DS(x) are finite products of cyclotomic
polynomials.

Think of S as the set of “forbidden part multiplicities.”



An example: S = {1, 2, 3, 5, 7, 11}

FS(x) :=
1

1− x
− (x + x2 + x3 + x5 + x7 + x11)

=
Φ6(x)Φ12(x)Φ18(x)

1− x

=
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An example: S = {1, 2, 3, 5, 7, 11}

FS(x) :=
1

1− x
− (x + x2 + x3 + x5 + x7 + x11)

=
Φ6(x)Φ12(x)Φ18(x)

1− x

=
(1− x12)(1− x18)

(1− x4)(1 − x6)(1 − x9)

F (x)F (x2)F (x3) · · · =
∏

i

(1− x i )−1,

i ≡ 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 (mod 36). (∗)

Theorem. For all n ≥ 0, the number of partitions of n such that
no part occurs exactly 1, 2, 3, 5, 7 or 11 times equals the number of
partitions of n into parts i satisfying (*).



A further example

S = {2, 3, 4, . . . } is cyclotomic:
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S = {2, 3, 4, . . . } is cyclotomic:

1

1− x
− (x2 + x3 + · · · ) =

1− x2

1− x
= 1 + x

∏

i≥1

1− x2i

1− x i
=

∏

i≥1

(1− x2i−1)−1.



A further example

S = {2, 3, 4, . . . } is cyclotomic:

1

1− x
− (x2 + x3 + · · · ) =

1− x2

1− x
= 1 + x

∏

i≥1

1− x2i

1− x i
=

∏

i≥1

(1− x2i−1)−1.

Theorem (Euler). The number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.
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Classification: wide open.



Properties of finite cyclotomic sets

Classification: wide open.

1. If S is a finite cyclotomic set, then max(S) is odd.

Proof. Recall
1

1− x
−

∑

j∈S

x j =
NS(x)

DS(x)
, where NS(x) and

DS(x) are finite products of cyclotomic polynomials. When S
is finite, DS(x) = 1− x and

NS(x) = 1− (1− x)
∑

j∈S

x j .

Hence degNS (x) = 1 + max(S).

Now degΦn(x) is even for n > 2.Thus it suffices to show that
NS (x) isn’t divisible by Φ1(x) = 1− x or Φ2(x) = x + 1. But
NS (±1) is odd. �



A second property

2. If NS (x) is divisible by Φn(x) then n 6= 1 (by above) and
n 6= pr , p prime.

Proof. Suppose

1− (1− x)
∑

j∈S

x j = Φpr (x)A(x), A(x) ∈ Z[x ].

Set x = 1 to get 1 = pA(1), a contradiction. �



A third property

3. For 0 ≤ j ≤ d = max(S), exactly one of j and d − j belongs
to S . Hence #S = (d +1)/2 (yielding another proof that d is
odd).

Proof. Let

PS(x) :=
∑

i∈S

x i =
1− NS (x)

1− x
.

Symmetry of Φn(x) (n 6= 1) (and hence of NS (x)) implies

PS(x)+xdPS(1/x) = 1+x+· · ·+xd , where PS(x) =
∑

i∈S

x i . �



Some data

Let d be odd. There are 2(d−1)/2 sets S ⊂ P with max(S) = d
such that NS (x) is symmetric. Let f (d) be the number of these
that are cyclotomic. Then

d 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

f (d) 1 2 3 5 5 9 10 12 18 22 22 37 39 41 54



Small cyclotomic sets

Write e.g. 125 = {1, 2, 5}.

The cyclotomic sets S with max(S) ≤ 9:

1

13, 23

125, 135, 345

1237, 1247, 1357, 2367, 4567

12359, 12569, 13579, 14679, 56789



Small cyclotomic sets

Write e.g. 125 = {1, 2, 5}.

The cyclotomic sets S with max(S) ≤ 9:

1

13, 23

125, 135, 345

1237, 1247, 1357, 2367, 4567

12359, 12569, 13579, 14679, 56789

Some infinite families, e.g., 1, 23, 345, 4567, 56789, . . .



An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

NS(x) = 1− (1− x)
∑

j∈S

x j ,

where S is a finite subset of P, seem to have lots of zeros α on the
unit circle (|α| = 1).
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An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

NS(x) = 1− (1− x)
∑

j∈S

x j ,

where S is a finite subset of P, seem to have lots of zeros α on the
unit circle (|α| = 1).

There are 2m such polynomials when max(S) = 2m + 1. For
instance, when n = 33, the proportion of zeros on the unit circle of
the 216 = 65536 polynomials is

751153

1081344
= 0.69464 · · · .

No reason known.



Cleanness

Note. Any f (x) ∈ Z[[x ]] with f (0) = 1 can be uniquely written
(formally) as

f (x) =
∏

n≥1

(1− xn)−an , an ∈ Z.



Cleanness

Note. Any f (x) ∈ Z[[x ]] with f (0) = 1 can be uniquely written
(formally) as

f (x) =
∏

n≥1

(1− xn)−an , an ∈ Z.

Let S be a subset of P and

F (x) =
1

1− x
−

∑

j∈S

x j .

S is clean if

F (x)F (x2)F (x3) · · · =
∏

n≥1

(1− xn)−an ,

where each an = 0, 1. (Get a “clean” partition identity—no
weighted or colored parts.)



An example

Not every cyclotomic set S is clean, e.g., S = {1, 5, 7, 8, 9, 11}, for
which

F (x)F (x2)F (x3) · · · =

(1− x5)(1− x25)(1− x35)(1− x55) · · ·

(1− x2)(1 − x3)(1 − x4)(1 − x6)(1 − x8)(1 − x9)(1 − x10)(1 − x12) · · ·
.



An example

Not every cyclotomic set S is clean, e.g., S = {1, 5, 7, 8, 9, 11}, for
which

F (x)F (x2)F (x3) · · · =

(1− x5)(1− x25)(1− x35)(1− x55) · · ·

(1− x2)(1 − x3)(1 − x4)(1 − x6)(1 − x8)(1 − x9)(1 − x10)(1 − x12) · · ·
.

No nice theory of clean sets.
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Numerical semigroups

Definition. A numerical semigroup is a submonoid M of
N = {0, 1, 2, . . . } (under addition) such that N−M is finite.

Note. (a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n ≥ 1.

(b) Every submonoid of N is finitely-generated.

Define AM(x) =
∑

i∈M

x i .

Note AM(x) =
1

1− x
−

∑

i∈N−M

x i ,



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1− x)AM(x) is a product of cyclotomic
polynomials. Equivalently, N−M is a cyclotomic set.



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1− x)AM(x) is a product of cyclotomic
polynomials. Equivalently, N−M is a cyclotomic set.

Example. M = 〈a, b〉, where a, b ≥ 2, gcd(a, b) = 1. Then

AM(x) =
1− xab

(1− xa)(1− xb)
,

so M is a cyclotomic semigroup (and clean).

Example. (a) M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9} is cyclotomic.

(b) M = 〈5, 6, 7〉 = N− {1, 2, 3, 4, 8, 9} is not cyclotomic.



Consequence of 〈a, b〉 being cyclotomic

Theorem. Let a, b ≥ 2, gcd(a, b) = 1. Let M = 〈a, b〉. Then for
all n ≥ 0, the following numbers are equal:

◮ the number of partitions of n all of whose part multiplicities
belong to M

◮ the number of partitions of n into parts divisible by a or b (or
both)



Semigroup algebra

The semigroup algebra K [M ] (over K ) of a numerical semigroup
M is

K [M] = K [z i : i ∈ M].

Definition. Let M = 〈a1, . . . , ar 〉. M is a complete intersection
if all the relations among the generators za1 , . . . , zar are
consequences of r − 1 of them (the minimum possible).
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Semigroup algebra

The semigroup algebra K [M ] (over K ) of a numerical semigroup
M is

K [M] = K [z i : i ∈ M].

Definition. Let M = 〈a1, . . . , ar 〉. M is a complete intersection
if all the relations among the generators za1 , . . . , zar are
consequences of r − 1 of them (the minimum possible).

By elementary commutative algebra, if K [M] is a complete
intersection, then M is cyclotomic.

Converse is open (main open problem on cyclotomic numerical
semigroups).
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Example. M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9}. Generators of K [M]
are a = z4, b = z6, c = z7. Some relations:

a3 = b2, a2b = c2, a7 = c4, b7 = c6, . . . .
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An example

Example. M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9}. Generators of K [M]
are a = z4, b = z6, c = z7. Some relations:

a3 = b2, a2b = c2, a7 = c4, b7 = c6, . . . .

All are consequences of the first two, so K [M] is a complete
intersection. E.g.,

c4 = (a2b)2 = a4b2 = a4a3 = a7.

The relation a3 = b2 has degree 3 · 4 = 6 · 2 = 12.
The relation a2b = c2 has degree 2 · 4 + 6 = 2 · 7 = 14

⇒ AM(x) =
(1− x12)(1− x14)

(1− x4)(1 − x6)(1 − x7)
.



A nonexample

M = 〈4, 13, 23〉. Generators of K [M] are a = z4, b = z13, and
c = z23.
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M = 〈4, 13, 23〉. Generators of K [M] are a = z4, b = z13, and
c = z23.

Minimal relations: a9 = bc , b3 = a4c , c2 = a5b2, so not a
complete intersection.

Note. Multiply c2 = a5b2 by b: c2b = a5b3. Substitute a4c for
b3: c2b = a9c . Divide by c : bc = a9 (first relation). So why not
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A nonexample

M = 〈4, 13, 23〉. Generators of K [M] are a = z4, b = z13, and
c = z23.

Minimal relations: a9 = bc , b3 = a4c , c2 = a5b2, so not a
complete intersection.

Note. Multiply c2 = a5b2 by b: c2b = a5b3. Substitute a4c for
b3: c2b = a9c . Divide by c : bc = a9 (first relation). So why not
just two relations?

Answer: not allowed to divide (not a ring operation).
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◮ K [M] is a complete intersection.
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A theorem of Herzog

Theorem (H. Herzog, 1969) Let M = 〈a, b, c〉. The following
conditions are equivalent.

◮ K [M] is a complete intersection.

◮ M is a cyclotomic semigroup.

◮ If M = N− S , then 1− (1− x)
∑

j∈S x
j is symmetric

(palindromic).

Thus the main open problem on cyclotomic numerical semigroups
is true for semigroups with at most three generators.

Open problem (may be tractable). Describe all numerical
semigroups M for which K [M] is a complete intersection.
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Recall: Definition. A cyclotomic set is a subset S of
P = {1, 2, . . . } such that

FS(x) :=
1
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−
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x j =
NS(x)
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where NS (x) and DS(x) are finite products of cyclotomic
polynomials.



Generalizations

Recall: Definition. A cyclotomic set is a subset S of
P = {1, 2, . . . } such that

FS(x) :=
1

1− x
−

∑

j∈S

x j =
NS(x)

DS(x)
,

where NS (x) and DS(x) are finite products of cyclotomic
polynomials.

The application of this concept to partition identities can be
considerably extended. For simplicity, we omit a general statement
and mention only two special cases:

◮ polynomials over finite fields

◮ Dirichlet series
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Polynomials over finite fields

Fix a prime power q.

β(n): number of monic irreducible polynomials of degree n over
Fq.

β(n) =
1

n

∑

d|n

µ(d)qn/d (irrelevant)

There are qn monic polynomials of degree n over Fq. Every such
polynomial is uniquely (up to order of factors) a product of monic
irreducible polynomials. Hence

∑

n≥0

qnxn =
1

1− qx
=

∏

m≥1

(1− xm)−β(m).



Powerful polynomials

Example. Let f (n) be the number of monic polynomials of degree
n over Fq such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus



Powerful polynomials

Example. Let f (n) be the number of monic polynomials of degree
n over Fq such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus

∑

n≥0

f (n)xn =
∏

m≥1

(1 + x2m + x3m + · · · )β(m)

=
∏

m≥1

(

1− x6m

(1− x2m)(1− x3m)

)β(m)

=
1− qx6

(1− qx2)(1 − qx3)

=
1 + x + x2 + x3

1− qx2
−

x(1 + x + x2)

1− qx3

⇒ f (n) = q⌊n/2⌋ + q⌊n/2⌋−1 − q⌊(n−1)/3⌋.



Generalization.

Theorem. Let S be a cyclotomic subset of P, so

1

1− x
−

∑

i∈S

x i =

∏
(

1− x i
)ai

∏

(1− x j )bj
,

where the products are finite. Let f (n) be the number of monic
polynomials of degree n over Fq such that no irreducible factor has
multiplicity m ∈ S. Then

∑

f (n)xn =

∏

i(1− qx i )ai
∏

j(1− qx j )bj
.



Generalization.

Theorem. Let S be a cyclotomic subset of P, so

1

1− x
−

∑

i∈S

x i =

∏
(

1− x i
)ai

∏

(1− x j )bj
,

where the products are finite. Let f (n) be the number of monic
polynomials of degree n over Fq such that no irreducible factor has
multiplicity m ∈ S. Then

∑

f (n)xn =

∏

i(1− qx i )ai
∏

j(1− qx j )bj
.

Can convert to a partial fraction in q and find an explicit (though
in general very lengthy) formula for f (n).
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∑

n≥0

f (n)xn =
(1− qx12)(1− qx18)
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An example

S = {1, 2, 3, 5, 7, 11}

∑

n≥0

f (n)xn =
(1− qx12)(1− qx18)

(1− qx4)(1− qx6)(1− qx9)

=
Φ2Φ4Φ8Φ7Φ14

Φ5(1− qx4)
+

Φ3Φ9 x
8

Φ5(1− qx9)

−
Φ2Φ3Φ4Φ

2
6Φ12 x

2

1− qx6
,

where Φj = Φj(x).



Yet another example

Let S = {2, 3, 4, . . . }. Recall

1

1− x
−

∑

i∈S

x i = 1 + x =
1− x2

1− x
.

f (n): number of squarefree monic polynomials of degree n over
Fq. Then

∑

n≥0

f (n)xn =
1− qx2

1− qx

= 1 +
∑

n≥1

(q − 1)qn−1xn

⇒ f (n) = (q − 1)qn−1 (well-known),



Yet another example

Let S = {2, 3, 4, . . . }. Recall

1

1− x
−

∑

i∈S

x i = 1 + x =
1− x2

1− x
.

f (n): number of squarefree monic polynomials of degree n over
Fq. Then

∑

n≥0

f (n)xn =
1− qx2

1− qx

= 1 +
∑

n≥1

(q − 1)qn−1xn

⇒ f (n) = (q − 1)qn−1 (well-known),

a kind of finite field analogue (though not a q-analogue in the
usual sense) of Euler’s result on partitions of n into distinct parts
and into odd parts.
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◮ What about Z?

For functions f (n) involving factorization of integers into primes,
often convenient to use Dirichlet series

∑

n≥1 f (n)n
−s . In

particular,
ζ(s) =

∑

n≥1

n−s

=
∏

p

(1 + p−s + p−2s + p−3s + · · · )

=
∏

p

1

1− p−s
.



Factorization of integers

◮ Argument did not involve β(d).

◮ Hence works for other situations with unique factorization.

◮ What about Z?

For functions f (n) involving factorization of integers into primes,
often convenient to use Dirichlet series

∑

n≥1 f (n)n
−s . In

particular,
ζ(s) =

∑

n≥1

n−s

=
∏

p

(1 + p−s + p−2s + p−3s + · · · )

=
∏

p

1

1− p−s
.

Note. Formally, a Dirichlet series is simply a power series in the
infinitely many variables xi = p−s

i , where pi is the ith prime.



Powerful numbers

A positive integer is powerful if p|n ⇒ p2|n when p is prime.
(Thus 1 is powerful.)

F (s) :=
∑

n≥1
n powerful

n−s

=
∏

p

(1 + p−2s + p−3s + p−4s + · · · )

=
∏

p

(

1

1− p−s
− p−s

)

=
∏

p

1− p−6s

(1− p−2s)(1 − p−3s)

=
ζ(2s)ζ(3s)

ζ(6s)
.



Insignificant corollary

ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζ(12) =

691π12

638512875

⇒
∑

n≥1
n powerful

1

n2
=

ζ(4)ζ(6)

ζ(12)

=
15015

1382π2

≈ 1.100823 · · ·



A general result

Theorem. Let S be a finite cyclotomic subset of P, so

1

1− x
−

∑

i∈S

x i =

∏

(1− x)ai
∏

(1− x)bj
(finite products).

Then
∑

n

n−s =

∏

ζ(bis)
∏

ζ(ajs)
,

where n ranges over all positive integers such that if m ∈ S, then
no prime p divides n with multiplicity m.



The final slide


