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A theorem of MacMahon

(MacMahon, 1916). The number f(n) of partitions of
n for which no part appears exactly once equals the number of
partitions of n into parts # +1 (mod 6).

Proof. Z f(n)x" = H(l +xP 3 XA )

n>0 i>1
_ H 1 i
- 1—x!
i>1
. H 1-— Xi + X2I
- 1—x!
i>1
H 1-— X6i
N =1 (1 — x2)(1—x30)
= I a-)t o

JjZ+1mod6)



Why does this work?

®,(x): the nth cyclotomic polynomial

®,(x) = H (e27rij/n _ X) _ H(l — xd)yuln/d)
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Why does this work?

®,(x): the nth cyclotomic polynomial

®,(x) = H (627rfj/n _ X) _ H(l — xd)yuln/d)

1<j<n d|n
ged(j,n)=1

k
= H(l - Xi)ai, aj S Z
i=1

We use the normalization ®,(0) = 1. Only matters for
n = 1: traditionally ®1(x) = x — 1, but here ®1(x) =1 — x.
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Two points

1. (the main point)

1 _ Pg(x) 1—x°
F(X)'_ﬁ_x_16—x_(1—x2)(1—x3)
2.
> F(nx" = FO)F(C)F() -
n>0

(1 —x5)(1 —x12)(1 —x*®)...

(1-=x2)1—=xM)(1—=x5)---(1—x3)(1 —x5)(1—x9)---

1
(1)1 )1 )1 —xO) (I —B)(T ) -




Cyclotomic sets

A cyclotomic set is a subset S of P = {1,2,...

such that

_ 1 j_ Ns(x)
Fs(x) := l_X—jez;x = Dz(x)’

where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.



Cyclotomic sets

A cyclotomic set is a subset S of P = {1,2,...}

1 - Ns(x
Folo) = s~ ¥ = 5o,

1—x ¢4
jES

such that

where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.

Think of S as the set of “forbidden part multiplicities.”



An example: S = {1,2,3,5,7,11}

Fs(x) = % —(x+ X2+ + X+ xT X1
¢6(X)¢12(X)¢18(X)
1—x
(1 - x2)(1 - %)
(1 —x*)(1—x%)(1—x9




An example: S = {1,2,3,5,7,11}

1
Fs(x) = m—(x+x2+x3—|—x5+x7—|—xll)
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An example: S = {1,2,3,5,7,11}

Fs(x) = % —(x+ X2+ + X+ xT X1
¢6(X)¢12(X)¢18(X)
1—x
(1 - x2)(1 - %)
(1 —x*)(1—x%)(1—x9

FOOFOA)F(R) - = [ =),

i
i=0,4,6,8,9,12,16, 18,20, 24,27, 28,30, 32 (mod 36). (x)
For all n > 0, the number of partitions of n such that

no part occurs exactly 1,2,3,5,7 or 11 times equals the number of
partitions of n into parts i satisfying (*).



A further example

S =1{2,3,4,... } is cyclotomic:

1
m—(X2+X3+“‘):




A further example

S =1{2,3,4,... } is cyclotomic:

1 2., .3 _ _
(X +x+-) = o=

1—x

2i

15— =Tl

i>1 i>1



A further example

S =1{2,3,4,... } is cyclotomic:

L 2.3
) = =1
T (x*4+x>+--) ~ + x

2i

15— =Tl

i>1 i>1

(Euler). The number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.
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Properties of finite cyclotomic sets

: wide open.

1. If S is a finite cyclotomic set, then max(S) is odd.

N
- ZXJ = S(X), where Ns(x) and
jes Ds(x)
Ds(x) are finite products of cyclotomic polynomials. When S
is finite, Ds(x) =1 — x and

Ns(x) =1—(1—x)) .

Jjes

Proof. Recall
1—x

Hence deg Ns(x) = 1 + max(S).

Now deg ®,(x) is even for n > 2.Thus it suffices to show that
Ns(x) isn't divisible by ®1(x) =1 — x or ®»(x) = x + 1. But
Ns(+£1) is odd. O



A second property

2. If Ns(x) is divisible by ®,(x) then n # 1 (by above) and
n# p", p prime.
Proof. Suppose

(1—x) ZXJ A(x), A(x) € Z[x].

Jes

Set x =1 to get 1 = pA(1), a contradiction. [



A third property

3. For 0 <j < d = max(S), exactly one of j and d — j belongs
to S. Hence #S = (d +1)/2 (yielding another proof that d is
odd).

Proof. Let

Ps(x) := in = 1-Nsbx) NS(X).

£ 1—x
ieS
Symmetry of ®,(x) (n # 1) (and hence of Ns(x)) implies

Ps(x)+x?Ps(1/x) = 14x+- - -+x9, where Ps(x) = in.
icS



Some data

Let d be odd. There are 2(4=1)/2 sets S ¢ P with max(S) = d
such that Ns(x) is symmetric. Let f(d) be the number of these
that are cyclotomic. Then

d_|

|1 357 9 11 13 15 17 19 21 23 25 27 29
fd)J]1 2 3 5 5 9 10 12 18 22 22 37 39 41 54



Small cyclotomic sets

Write e.g. 125 = {1,2,5}.
The cyclotomic sets S with max(S) < 9:

1
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12359, 12569, 13579, 14679, 56789



Small cyclotomic sets

Write e.g. 125 = {1,2,5}.
The cyclotomic sets S with max(S) < 9:

1

13, 23

125, 135, 345

1237, 1247, 1357, 2367, 4567
12359, 12569, 13579, 14679, 56789

Some infinite families, e.g., 1,23, 345, 4567,56789, ...



An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

Ns(x) =1 - (1-x) 3,

Jjes

where S is a finite subset of P, seem to have lots of zeros & on the
unit circle (|a] = 1).
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There are 2™ such polynomials when max(S) =2m + 1. For
instance, when n = 33, the proportion of zeros on the unit circle of
the 216 = 65536 polynomials is
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An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form
Ns(x)=1—(1—x))_«,
JES
where S is a finite subset of P, seem to have lots of zeros & on the

unit circle (|a] = 1).

There are 2™ such polynomials when max(S) =2m + 1. For
instance, when n = 33, the proportion of zeros on the unit circle of
the 216 = 65536 polynomials is

751153

o 0.69464 - - .
1081344 _ 00940

No reason known.



Cleanness

Any f(x) € Z[[x]] with f(0) =1 can be uniquely written
(formally) as

F)=J[@-x")"", a,€Z
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Cleanness

Any f(x) € Z[[x]] with f(0) =1 can be uniquely written
(formally) as

F)=J[@-x")"", a,€Z

n>1

Let S be a subset of P and

F(x) = lix ) X

Jjes

S is clean if

FOFGA)FOE) - = [T —xm),

n>1

where each a, = 0,1. (Get a “clean” partition identity—no
weighted or colored parts.)



An example

Not every cyclotomic set S is clean, e.g., S ={1,5,7,8,9,11}, for
which
F(X)F(X2)F(X3) —_—

(1 —x%)(1 — x?®)(1 — x¥)(1 - x5®)-..

(1—x2)(1—x3)(1 —x*)(1—x5)(1 —x8)(1 —x9)(1 — x10)(1 — x'2)..."



An example

Not every cyclotomic set S is clean, e.g., S ={1,5,7,8,9,11}, for
which
F(x)F(x2)F(x3) —_—

(1 —x%)(1 — x?®)(1 — x¥)(1 - x5®)-..

(1—x2)(1—x3)(1 —x*)(1—x5)(1 —x8)(1 —x9)(1 — x10)(1 — x'2)..."

No nice theory of clean sets.
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Definition. A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.



Numerical semigroups

A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.
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Numerical semigroups

A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.
(b) Every submonoid of N is finitely-generated.

Define Ap(x) = in.
ieM



Numerical semigroups

A numerical semigroup is a submonoid M of
N =1{0,1,2,...} (under addition) such that N — M is finite.

(a) Every submonoid of N is either {0} or of the form nM,
where M is a numerical semigroup and n > 1.
(b) Every submonoid of N is finitely-generated.

Define Ap(x Z x'.
ieM

Note Apm(x) Z x!,

ieEN—M



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.



Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is
cyclotomic if (1 — x)Ap(x) is a product of cyclotomic
polynomials. Equivalently, N — M is a cyclotomic set.

Example. M = (a, b), where a,b > 2, gcd(a, b) = 1. Then

1_Xab

Al = Ty T by

so M is a cyclotomic semigroup (and clean).

Example. (a) M = (4,6,7) = N —{1,2,3,5,9} is cyclotomic.
(b) M =(5,6,7) =N —{1,2,3,4,8,9} is not cyclotomic.



Consequence of (a, b) being cyclotomic

Theorem. Let a,b > 2, ged(a,b) =1. Let M = (a, b). Then for
all n > 0, the following numbers are equal:

» the number of partitions of n all of whose part multiplicities
belong to M

» the number of partitions of n into parts divisible by a or b (or
both)



Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup
M is .
KM =K[z' : i e M].

Let M = (ay,...,a,). M is a complete intersection
if all the relations among the generators z%1, ... z% are
consequences of r — 1 of them (the minimum possible).
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Semigroup algebra

The semigroup algebra K[M] (over K) of a numerical semigroup
M is .
KM =K[z' : i e M].

Let M = (ay,...,a,). M is a complete intersection
if all the relations among the generators z%1, ... z% are
consequences of r — 1 of them (the minimum possible).

By elementary commutative algebra, if K[M] is a complete
intersection, then M is cyclotomic.

Converse is (main open problem on cyclotomic numerical
semigroups).



An example

Example. M = (4,6,7) = N—{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:
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An example
M= (4,6,7) =N —{1,2,3,5,9}. Generators of K[M]
are a=z% b= 2% c = z’. Some relations:
B =b,a°b=c? a'=c* b =c" .. ..

All are consequences of the first two, so K[M] is a complete
intersection. E.g.,

ct= (b =t ="l =4

The relation a® = b? has degree 3-4=6-2 = 12.
The relation a®b = ¢ has degree 2 - 4 +6=2-7 =14

(1 — x12)(1 — x)

= Aum(x) = (1 —x*)(1—x5)(1—x7)’
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M = (4,13,23). Generators of K[M] are a = z*, b= z!3, and

c=z%.
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A nonexample

M = (4,13,23). Generators of K[M] are a = z* b= z'3, and

c=z%.

- a% = bc, b = a*c, ¢ =a°h? sonot a
complete intersection.
Multiply ¢? = a°b? by b: c?b = a®b3. Substitute a*c for

b3: ¢?b = a%c. Divide by c: bc = a° (first relation). So why not
just two relations?



A nonexample

M = (4,13,23). Generators of K[M] are a = z*, b= z!3, and

c=z%.

» a2 = be, b3 = a*c, ¢ = a®b?, so not a

complete intersection.

Multiply ¢? = a°b? by b: c?b = a®b3. Substitute a*c for
b3: ¢?b = a%c. Divide by c: bc = a° (first relation). So why not
just two relations?

Answer: not allowed to divide (not a ring operation).
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Theorem (H. Herzog, 1969) Let M = (a, b, ¢). The following
conditions are equivalent.

» K[M] is a complete intersection.
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A theorem of Herzog

(H. Herzog, 1969) Let M = (a, b, c). The following
conditions are equivalent.

» K[M] is a complete intersection.

» M is a cyclotomic semigroup.

> If M=N-5 then1—(1-x)> s xJ is symmetric
(palindromic).

Thus the main open problem on cyclotomic numerical semigroups
is true for semigroups with at most three generators.



A theorem of Herzog

(H. Herzog, 1969) Let M = (a, b, c). The following
conditions are equivalent.

» K[M] is a complete intersection.

» M is a cyclotomic semigroup.

> If M=N-5 then1—(1-x)> s xJ is symmetric
(palindromic).

Thus the main open problem on cyclotomic numerical semigroups
is true for semigroups with at most three generators.

(may be tractable). Describe all numerical
semigroups M for which K[M] is a complete intersection.



Generalizations

Recall: A cyclotomic set is a subset S of
P ={1,2,...} such that

_ 1 i N (x)
Fs(x) = 1—x _J_Ez;x - Dz(x)’

where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.



Generalizations

Recall: A cyclotomic set is a subset S of
P ={1,2,...} such that

_ 1 i N (x)
Fs(x) = 1—x _J_Ez;x - D:z(x)’

where Ns(x) and Ds(x) are finite products of cyclotomic
polynomials.

The application of this concept to partition identities can be
considerably extended. For simplicity, we omit a general statement
and mention only two special cases:

» polynomials over finite fields
» Dirichlet series
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Fix a prime power q.

B(n): number of monic irreducible polynomials of degree n over
Fq.
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Polynomials over finite fields

Fix a prime power q.

B(n): number of monic irreducible polynomials of degree n over
Fq.

B(n) = %Zu(d)q"/d (irrelevant)
d|n

There are g” monic polynomials of degree n over F,. Every such
polynomial is uniquely (up to order of factors) a product of monic
irreducible polynomials. Hence

Zq l_qX—Hl—x Blm).

n>0 m>1




Powerful polynomials

Example. Let f(n) be the number of monic polynomials of degree
n over g such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus



Powerful polynomials

Let f(n) be the number of monic polynomials of degree
n over g such that every irreducible factor has multiplicity at least
two (powerful polynomials). Thus

S fxm = T+ 3T )P

n>0 m>1
1— X6m B(m)
- 1 (i)
1— gx®

(1—gx?)(1 - gx3)

T+x+x2+x3  x(1+x+x3)

1—gx? 1—gx3
= f(n) = ql"/? 4 gln/2-1 _ gln=-1)/3],



Generalization.

Let S be a cyclotomic subset of P, so

1 : 1—x\)%
__ZX/:H( )

_ -\ p:?
1=x i€s [T —x)"

where the products are finite. Let f(n) be the number of monic
polynomials of degree n over I such that no irreducible factor has
multiplicity m € S. Then

o I @y
2 = L= q



Generalization.

Let S be a cyclotomic subset of P, so

\ar
oy - dE
1=x i€S H(I_XJ)J

where the products are finite. Let f(n) be the number of monic

polynomials of degree n over I such that no irreducible factor has
multiplicity m € S. Then

o I @y
R i

Can convert to a partial fraction in g and find an explicit (though
in general very lengthy) formula for f(n).



An example

S = {1,2,3,5,7,11}

" (1— gx1?)(1 — gx'8)
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An example

S = {1,2,3,5,7,11}

no (1— gx1?)(1 — gx'8)
2 = a1 ed) - o)

¢2¢4¢8¢7¢14 ¢3¢9 X8

®s5(1—gx*)  d5(1—gx?)
¢2¢3¢4¢%¢12 X2
1—gxb

)

where ®; = ®;(x).



Yet another example
Let S ={2,3,4,...}. Recall

1 ; 1—x
——szl—i—xz .
1—x P 1—x

2

f(n): number of squarefree monic polynomials of degree n over
Fg. Then

Z f(n)x" = 1- o<

= 1—gx
= 1+) (@-1)g" X"
n>1

= f(n)=(q—1)g"* (well-known),



Yet another example
Let S ={2,3,4,...}. Recall

1 ; 1—x
——szl—i—xz .
1—x P 1—x

2

f(n): number of squarefree monic polynomials of degree n over
Fg. Then

1 — gx?

Zf(n)x” = 9= o

n>0
= 1+) (@-1)g" X"
n>1

= f(n)=(q—1)g"* (well-known),

a kind of finite field analogue (though not a g-analogue in the
usual sense) of Euler's result on partitions of n into distinct parts

and into odd parts.
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Factorization of integers

» Argument did not involve 3(d).
» Hence works for other situations with unique factorization.
» What about Z7?

For functions f(n) involving factorization of integers into primes,
often convenient to use Dirichlet series ) ., f(n)n™°. In

particular,
(s) = Y n?

n>1

— H(1+P_S+P_2S+P_3s+"')
P

- 11 1

- I
p 1-p

Formally, a Dirichlet series is simply a power series in the
infinitely many variables x; = p:*, where pj; is the ith prime.



Powerful numbers

A positive integer is powerful if p|n = p?|n when p is prime.
(Thus 1 is powerful.)

F(s) := Z n—*

n>1
n powerful

— H(1+P_2S+P_3S+P_4S+”’)

1 —s
N 1:[ (1 —p= P >
_ 1— p—6s
- Ua==a—
(s)c(35)

¢(6s)



Insignificant corollary

7wt 70 691712
<) 90’ <(6) 045’ ¢(12) 638512875

1 ¢(4)¢(6)
- ; ? ¢(12)
n powerful

15015
138272

1.100823 - - -

Q



A general result

Let S be a finite cyclotomic subset of P, so

— x)¥
1 —x)bi

(finite products).

Then [1¢(bis)

where n ranges over all positive integers such that if m € S, then
no prime p divides n with multiplicity m.






