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(Cayley, Whitworth). Let f(n) be the number of
ordered set partitions of [n] ={1,2,...,n} (Fubini number), i.e.,
the number of sequences (B, Ba, ..., By) of sets B; + @,
BinBj=g ifi+j, and UB;j=[n]. Then
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(Kalmar, 1931). Let g(n) be the number of ordered
factorizations of n, i.e., the number of ways to write n = ajay---ap,

1
a;>1. Then g(n)n™> = ]
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Let c(n) be the number of compositions of n, i.e., the
number of ways to write n= by + -+ by, b; > 1 (so c(n) = on=1 for
n>1). Then ) c(n)x" = —.
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Chains in posets

e f(n) is the number of chains @ =ty < t; <--- < tx = [n] in the
boolean algebra B,,.
@ g(n) is the number of chains 1 =ty < t; < < tx = n in the
lattice of divisors of n.
@ c(n) is the number of chains 0 =ty < t; <--- < tx = n in the
chain0<1<2<--<n.
Motivation for much further work on generating functions and
posets.



MathOverflow 29490: Gowers
|mathoverﬂow

LYo
[ Jaueston
13-

nEE
Ty ]

W many surjections are there from a set of size n?

Asked 13 years, 10 months ago  Modfied 5 years ago  Viewed 18k times
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Itis well-known that the number of surjections from a set of size n to a set of size m is quite a bit
harder to calculate than the number of functions or the number of injections, (Of course, for
surjections | assume that n s at least m and for injections that it is at most m.) Itis also well-known
that one can get a formula for the number of surjections using inclusion-exclusion, applied to the
sets Xi,..., Xm, where for each i the set X is defined to be the set of functions that never take
the value i. This gives rise to the following expression:

m" — (P)m—1)"+ () (m—-2)"— ((m-3)" +....

Let us call this number S(n, m). I'm wondering if anyone can tell me about the asymptotics of
S(n,m). A particular question | have is this: for (approximately) what value of m is S(n, m)
maximized? It is a little exercise to check that there are more surjections to a set of size n. — 1 than
there are to a set of size n. (To do it, one calculates S(n, n — 1) by exploiting the fact that every
surjection must hit exactly one number twice and all the others once.) So the maximum is not
attained atm = Lorm = n.

I'm assuming this is known, but a search on the web just seems to lead me to the exact formula. A
reference would be great. A proof, or proof sketch, would be even better.

Update. | should have said that my real reason for being interested in the value of m for which
S(nm) is maximized (to use the notation of this post) or miS(n,m) is maximized (to use the more
conventional notation where S(n,m) stands for a Stirling number of the second kind) is that what |
care about is the rough size of the sum. The sum is big enough that | think ' probably not too
concerned about a factor of n, so | was prepared to estimate the sum as lying between the
maximum and n times the maximum.

co.combinatorics || polymaths
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A reply

55

It seems to be the case that the polynomial Py (z) = Ym_, m!S(n, m)z™ has only real zeros. (I
know it is true that Z;J S(n,m)z™ has only real zeros.) If this is true, then the value of m
maximizing m!S(n, m) is within 1 of P4 (1)/Pa(1) by a theorem of J. N. Darroch, Ann. Math. Stat.
35 (1964), 1317-1321. See also J. Pitman, /. Combinatorial Theory, Ser. A 77 (1997), 279-303. By
standard combinatorics

" 1
ZP"(I)E 1 —zfet—1)

>0

Hence
" 1
EP”(I)_l = 92—t
= n! —e

" e-1
P(l)— = ——-
nzzo . )n! (2—et)?

Since these functions are meromorphic with smallest singularity at t = log 2, it is routine to work
out the asymptotics, though | have not bothered to do this.

Update. It is indeed true that P, (z) has real zeros. This is because

(z — 1)*Py(1/(z — 1)) = Ap(z)/z, where Ap(z) is an Eulerian polynomial. It is known that
Ay (z) has only real zeros, and the operation Py (z) — (z — 1)"P,(1/(z — 1)) leaves invariant
the property of having real zeros.
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Response of Gowers

Thanks for this. It makes me realize that | need a more developed "write down the generating
function" reflex (together with some knowledge about how to deal with it once it's written down).
gowers Jun 26, 2010 at 8:57



Response of Terry Tao

1 Given that Tim ultimately only wants to sum m! S(n.m) rather than find its maximum, it is
really only P_n(1) which one needs to compute. In principle this s an exercise in the saddle
point method, though one which does require a nontrivial amount of effort. - Terry Tao

9 You don't need the saddle point method to find the asymptotic rate of growth of the
coefficients of 1/(2 — e*). The smallest singularity s at £ = log 2. It is a simple pole with
residue —1/2. Hence

n!

T

Using all the singularities log 2 + 2mik, k € Z one obtains an asymptotic series for
Py (1). It can be shown that this series actually converges to Py(1). - Richard Stanley

1 1 quit being lazy and worked out the asymptotics for P4(1). The Laurent expansion of
(et —1)/(2 — €*)? about ¢ = log 2 begins
et —1 1 it
it R N L . S,
@—e? ~ 4(t—log2)?  4(t—log2)
_ 1 1
= 5 - .
4(1og2)2(1 a ﬁ) 4(log2) (1 -

whence

n+l 1 "
4(log2)"?  4(log2)™!
Thus Py(1)/Py(1) ~ n/2(log2). - Richard Stanley

Pi(1) =n!<

10 Ah, I didn't realise that it was so simple to read off asymptotics of a Taylor series from
nearby singularities (though, in retrospect, | implicitly knew this in several contexts).
Thanks, | learned something today! - Terry Tao
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o Let f(n) be the number of partitions of n such that no part
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Food for thought

o Let f(n) be the number of partitions of n such that no part
appears exactly once. Then

" 1_X6k
Zf(n)x = H 121 %)

n>0 k>1

o Let f(n) be the number of monic polynomials of degree n over
F4 such that no irreducible factor has multiplicity one. Then

1-gx°
f(n)x" = )
,§> (1-gx*)(1-qx3)
@ Let S be the set of all powerful positive integers n, i.e., no
prime p divides n with multiplicity one. Then

1 _((25)¢(3s)

neS n® - C(65)
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Plane partitions

Plane partition of n: an array m = (7;); j»0 of nonnegative
integers, weakly decreasing in rows and columns, and summing to
n.

pp(n): number of plane partitions of n

3 21 2 111 11 1
pp(3) =6: 1 1 %

(MacMahon, 1897, 1912).
1
pp(n)x" = =
A ()
i>1

Gateway to symmetric functions, RSK, P-partitions, combinatorial
reciprocity, ....



My own three favorites
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My own three favorites

n\1/2
Hic2y X
2 s1on
X (1 - > (n- 1)"_1X—) - 1] exp(z n"_zx—)
n>1 n! nz1 n!
1 (E%2+1)/4
w( +X) . where VE" = E,,
1-x
Z/

=~ =y2,2(0) =1, where y(2-€¥) =1

V4

Ehrhart theory, representations of &,, hyperplane arrangments



Ordered degree sequences
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deg(i): degree (number of adjacent vertices) of vertex i

d(G) := (deg(1),...,deg(n)), the ordered degree sequence of G



Ordered degree sequences

G: simple (no loops, multiple edges) graph on vertex set [n]
deg(i): degree (number of adjacent vertices) of vertex i
d(G) := (deg(1),...,deg(n)), the ordered degree sequence of G

Traditionally one looked at d(G)gsorted, the degree
sequence of G. number of distinct degree sequences

of graphs on [n].



Enumerating ordered degree sequences

f(n): number of distinct ordered degree sequences of graphs on
[n]

f(1)=1,f(2)=2, f(3) =8 (all 2(2) graphs have different ordered
degree sequences)



Enumerating ordered degree sequences

f(n): number of distinct ordered degree sequences of graphs on
[n]

f(1)=1,f(2)=2, f(3) =8 (all 2(2) graphs have different ordered
degree sequences)

f(4) =54 < 64, e.g., the three complete matchings have ordered
degree sequence (1,1,1,1).



A mysterious generating function
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A mysterious generating function

o1 1/2
Theorem (RS, 1991). > f(n)—| =5 [(1 +2yn —)

n>0 n>1
(I—Z(n 1)”1 ) ]exp(Zn" 2X )
n>1 n>1
Corollary (Kotsovec, 2013).

F(3/4)n i

f(n)~ 23/4\/_
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Proof follows from manipulatorics* and the following key lemma.
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most one cycle, which is of odd length, and c¢(G) is the number of
cycles of G.



Intermediate result

Proof follows from manipulatorics* and the following key lemma.

f(n) = Z max{1,2C(G)_1}, where G ranges over all
G

simple graphs on [n] such that every connected component has at
most one cycle, which is of odd length, and c¢(G) is the number of
cycles of G.

* A felicitous term due to Adriano Garsia.



Connection with zonotopes

Idea of proof. f(n) is the number of integer points in the
Minkowski sum Z, of the line segments between the origin and the
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Connection with zonotopes

Idea of proof. f(n) is the number of integer points in the
Minkowski sum Z, of the line segments between the origin and the
vectors e; +ej, 1 <i<j<n, where g is the ith unit coordinate

vector.

Z, is a zonotope (Minkowski sum of line segments). Use a
formula for writing the number of integer points as a sum of
determinants. O

Is there a combinatorial proof?
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Alternating fixed-point free involutions

Theorem (Ramanujan). As x - 0+,

1-x n(n+1)
22( ) vl x+x2+ 23 +5x* +17x% + = F(x).
o\l +x

n

X
Euler number E,;: Z E,,—| =secx +tanx
n>0 n:

Theorem (B. Berndt, 1998, rephrased). Let E be an
indeterminate, and let W be the linear operator defined by
V(E™) = E,. Then
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Alternating fixed-point free involutions

Theorem (Ramanujan). As x — 0+,

1-x n(n+1)
22( ) vl x+x2+ 23 +5x* +17x% + = F(x).
o\l +x

n

X
Euler number E,;: Z E,,—| =secx +tanx
n>0 n:

Theorem (B. Berndt, 1998, rephrased). Let E be an
indeterminate, and let W be the linear operator defined by
V(E™) = E,. Then

14 x\(E*+1)/4
l—x) '

Fo = v

W. F. Galway, 1999: let F(x) =Y f(n)x". Find a combinatorial
interpretation of f(n).



Answer to Galway question

Theorem (RS, 2007) f(n) is the number of fixed-point free
involutions (i.e., n cycles of length two) w = ajay---az, in Gy, that
are alternating, i.e.,, a1 > ax <az > ag <> aop.



Answer to Galway question

Theorem (RS, 2007) f(n) is the number of fixed-point free
involutions (i.e., n cycles of length two) w = ajay---az, in Gy, that
are alternating, i.e.,, a1 > ax <az > ag <> aop.

Proof idea. There is a character x of G, (due to H. O. Foulkes)
such that for all w € &,

x(w)=0or = E.

Now use known results on combinatorial properties of characters of
G,.



Generalize?

Eg.,

lim 22( — )n(n+b)'

x—>0+ >0



Interval orders

P ={h,...,I,}: closed intervals of positive length in R

Define /; < I; if I; lies entirely to the left of /; (interval order)

01, L eRy, £=(l1,....0)

Zy: set of labelled interval orders with intervals of lengths
ly,....0p.
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If ¢1 == £, number of unlabelled interval orders is C, (Catalan
number)



Unit interval orders

If ¢1 == £, number of unlabelled interval orders is C, (Catalan
number)

Number f(n) of labelled interval orders given by

> ()= C-e),

n>0

where C(x) =¥ 150 Cox" = %‘



Generic lengths

Let ¢1,...,¢, be generic, e.g., linear independent over Q. Let
Cn = #1;, the number of labelled interval orders of size n with
generic interval lengths. Set
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Generic lengths

Let ¢1,...,¢, be generic, e.g., linear independent over Q. Let
Cn = #1;, the number of labelled interval orders of size n with
generic interval lengths. Set

2 3 4

z_n;)c,, _ _1+x+2§+19§+195—+

(RS, 1998). Define y =1+ x +5% + - by

y(2-¢e) =1. Then z is the unique power series satisfying

/

)% 2(0)=1.
V4

Idea of proof. First show that ¢, is the number of regions of a
certain hyperplane arrangement. Then use the machinery of
hyperplane arrangements. O



Open problems on interval orders

o Call two sequences ¢, m of lengths equivalent if they produce
sets of isomorphic labelled interval orders. Describe the
equivalence classes.
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Open problems on interval orders

o Call two sequences ¢, m of lengths equivalent if they produce
sets of isomorphic labelled interval orders. Describe the
equivalence classes.

@ Can one characterize the interval orders obtained when
l1 < fy < -+ << £, or when all the ¢;'s are almost equal and
generic?

@ What about unlabelled interval orders with generic interval
lengths? In particular, does the number of them depend only
on n?
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