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Three similar generating functions

Theorem (Cayley, Whitworth). Let f (n) be the number of
ordered set partitions of [n] = {1,2, . . . ,n} (Fubini number), i.e.,
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ordered set partitions of [n] = {1,2, . . . ,n} (Fubini number), i.e.,
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Theorem (Kalmár, 1931). Let g(n) be the number of ordered
factorizations of n, i.e., the number of ways to write n = a1a2⋯an,

ai > 1. Then ∑
n≥1

g(n)n−s = 1

2 − ζ(s) .
Theorem. Let c(n) be the number of compositions of n, i.e., the
number of ways to write n = b1 +⋯+ bk , bi ≥ 1 (so c(n) = 2n−1 for

n ≥ 1). Then ∑
n≥1

c(n)xn = 1

2 − 1

1−x
.
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Chains in posets

f (n) is the number of chains ∅ = t0 < t1 < ⋯ < tk = [n] in the
boolean algebra Bn.

g(n) is the number of chains 1 = t0 < t1 <⋯ < tk = n in the
lattice of divisors of n.

c(n) is the number of chains 0 = t0 < t1 < ⋅ ⋅ ⋅ < tk = n in the
chain 0 < 1 < 2 < ⋯ < n.

Motivation for much further work on generating functions and
posets.
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Response of Gowers

Jun 26, 2010 at 8:57

Thanks for this. It makes me realize that I need a more developed "write down the generating

function" reflex (together with some knowledge about how to deal with it once it's written down).

– gowers



Response of Terry Tao



Food for thought

Let f (n) be the number of partitions of n such that no part
appears exactly once. Then
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Food for thought

Let f (n) be the number of partitions of n such that no part
appears exactly once. Then

∑
n≥0

f (n)xn =∏
k≥1

1 − x6k

(1 − x2k)(1 − x3k) .
Let f (n) be the number of monic polynomials of degree n over
Fq such that no irreducible factor has multiplicity one. Then

∑
n≥0

f (n)xn = 1 − qx6

(1 − qx2)(1 − qx3) .
Let S be the set of all powerful positive integers n, i.e., no
prime p divides n with multiplicity one. Then

∑
n∈S

1

ns
=
ζ(2s)ζ(3s)

ζ(6s)
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Plane partitions

Plane partition of n: an array π = (πij)i ,j≥0 of nonnegative
integers, weakly decreasing in rows and columns, and summing to
n.

pp(n): number of plane partitions of n

pp(3) = 6 ∶ 3 21 2 111 11 1
1 1 1

1

Theorem (MacMahon, 1897, 1912).

∑
n≥0

pp(n)xn = 1

∏
i≥1
(1 − x i)i

Gateway to symmetric functions, RSK, P-partitions, combinatorial
reciprocity, . . . .
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z ′

z
= y2, z(0) = 1, where y(2 − exy) = 1

Ehrhart theory, representations of Sn, hyperplane arrangments
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G : simple (no loops, multiple edges) graph on vertex set [n]
deg(i): degree (number of adjacent vertices) of vertex i

d(G) ∶= (deg(1), . . . ,deg(n)), the ordered degree sequence of G
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Enumerating ordered degree sequences

f (n): number of distinct ordered degree sequences of graphs on[n]
f (1) = 1, f (2) = 2, f (3) = 8 (all 2(

n

2
) graphs have different ordered

degree sequences)

f (4) = 54 < 64, e.g., the three complete matchings have ordered
degree sequence (1,1,1,1).
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A mysterious generating function

Theorem (RS, 1991). ∑
n≥0

f (n)xn
n!
=
1
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Corollary (Kotsovec, 2013).

f (n) ∼ Γ(3/4)nn− 1

4

23/4
√
πe
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Intermediate result

Proof follows from manipulatorics* and the following key lemma.

Lemma. f (n) =∑
G

max{1,2c(G)−1}, where G ranges over all

simple graphs on [n] such that every connected component has at
most one cycle, which is of odd length, and c(G) is the number of
cycles of G .

* A felicitous term due to Adriano Garsia.
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Connection with zonotopes

Idea of proof. f (n) is the number of integer points in the
Minkowski sum Zn of the line segments between the origin and the
vectors ei + ej , 1 ≤ i < j ≤ n, where ei is the ith unit coordinate
vector.

Zn is a zonotope (Minkowski sum of line segments). Use a
formula for writing the number of integer points as a sum of
determinants. ◻

Is there a combinatorial proof?
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Theorem (B. Berndt, 1998, rephrased). Let E be an
indeterminate, and let Ψ be the linear operator defined by
Ψ(En) = En. Then
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W.F. Galway, 1999: let F (x) = ∑ f (n)xn. Find a combinatorial
interpretation of f (n).



Answer to Galway question

Theorem (RS, 2007) f (n) is the number of fixed-point free
involutions (i.e., n cycles of length two) w = a1a2⋯a2n in S2n that
are alternating, i.e., a1 > a2 < a3 > a4 < ⋯ > a2n.



Answer to Galway question

Theorem (RS, 2007) f (n) is the number of fixed-point free
involutions (i.e., n cycles of length two) w = a1a2⋯a2n in S2n that
are alternating, i.e., a1 > a2 < a3 > a4 < ⋯ > a2n.

Proof idea. There is a character χ of Sn (due to H. O. Foulkes)
such that for all w ∈ Sn,

χ(w) = 0 or ± Ek .

Now use known results on combinatorial properties of characters of
Sn.



Generalize?

E.g.,

lim
x→0+

2∑
n≥0
( 1 − x

1 + ax
)n(n+b) .



Interval orders

P = {I1, . . . , In}: closed intervals of positive length in R

Define Ii < Ij if Ii lies entirely to the left of Ij (interval order)

ℓ1, . . . ,ℓn ∈ R+, ℓ = (ℓ1, . . . , ℓn)
Iℓ: set of labelled interval orders with intervals of lengths
ℓ1, . . . , ℓn.
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number)



Unit interval orders

If ℓ1 = ⋯ = ℓn, number of unlabelled interval orders is Cn (Catalan
number)

Number f (n) of labelled interval orders given by

∑
n≥0

f (n)xn
n!
= C(1 − e−x),

where C(x) = ∑n≥0 Cnx
n
=

1−√1−4x
2x

.



Generic lengths
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Generic lengths

Let ℓ1, . . . , ℓn be generic, e.g., linear independent over Q. Let
cn =#Iℓ, the number of labelled interval orders of size n with
generic interval lengths. Set

z = ∑
n≥0

cn
xn

n!
= 1 + x + 2

x2

2!
+ 19

x3

3!
+ 195

x4

4!
+⋯.

Theorem (RS, 1998). Define y = 1 + x + 5x2

2!
+⋯ by

y(2 − exy) = 1. Then z is the unique power series satisfying

z ′

z
= y2, z(0) = 1.

Idea of proof. First show that cn is the number of regions of a
certain hyperplane arrangement. Then use the machinery of
hyperplane arrangements. ◻
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Open problems on interval orders

Call two sequences ℓ,m of lengths equivalent if they produce
sets of isomorphic labelled interval orders. Describe the
equivalence classes.

Can one characterize the interval orders obtained when
ℓ1 ≪ ℓ2 ≪ ⋯≪ ℓn or when all the ℓi ’s are almost equal and
generic?

What about unlabelled interval orders with generic interval
lengths? In particular, does the number of them depend only
on n?
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