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Sperner’s theorem

Theorem (E. Sperner, 1927). Let 51,5,,...,Sm be subsets of an
n-element set X such that S; S for i # j, Then m < (Ln72j)’
achieved by taking all | n/2|-element subsets of X.



Sperner’s theorem

Theorem (E. Sperner, 1927). Let 51,5,,...,Sm be subsets of an
n-element set X such that S; S for i # j, Then m < (L"72J)’
achieved by taking all | n/2|-element subsets of X.

Emanuel Sperner
9 December 1905 — 31 January 1980




Graded posets

Let
P=PUPLU---UP,

be a finite graded poset of rank n.
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Rank-symmetry and unimodality

Let p; = #P;.
Rank-generating function: Fp(q) = Zp,
Rank-symmetric: p; = p,—; Vi

Rank-unimodal: pg < p; <--- < p; > pj;1 > -+ > p, for some j

rank-unimodal and rank-symmetric = j = [n/2]
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The Sperner property

antichain A C P:
s, teA, s<t=s=t
[N N X ]

P; is an antichain

P is Sperner (or has the Sperner property) if

max #A = maxp;
1



An example

rank-symmetric, rank-unimodal, Fp(q) = 3 + 3¢



An example

rank-symmetric, rank-unimodal, Fp(q) = 3+ 3q
not Sperner



The boolean algebra

B, subsets of {1,2,...,n}, ordered by inclusion



The boolean algebra

B, subsets of {1,2,...,n}, ordered by inclusion

pi=(7), Fe,(q)=(1+q)"

rank-symmetric, rank-unimodal
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Sperner’s theorem, restated
The boolean algebra B, is Sperner.

Proof (D. Lubell, 1966).
@ B, has n! maximal chains.

o If S € B, and #S = i, then i!(n — i)! maximal chains of B,
contain S.

@ Let A be an antichain. Since a maximal chain can intersect at
most one element of A, we have

D IS (n =[S < .

SeA

@ Divide by n!:
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Lubell’s proof (cont.)

@ Divide by n!:

o)
1]
>
ns

—_

IN



Lubell’s proof (cont.)

@ Divide by n!:
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Lubell’s proof (cont.)

@ Divide by n!:

—_

D

sea

ns3
S—

o Now (‘§|) < (Ln72j)' so




A generalization

Lubell’s proof carries over to all graded posets P of rank n
satisfying:
@ The number of elements covered by x € P depends only on
rank(x).
@ The number of elements covering x € P depends only on
rank(x).



Examples

The poset B,(q) of all subspaces of Fy.

The face poset of an n-cube (and its g-analogue).

(not unimodal,



Order-matchings

Order matching: p: P; — P;y1: injective and p(t) >t
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Order-matchings

Order matching: p: P; — P;y1: injective and p(t) >t

° e P

Similarly p: P; — Pj_1: injective and u(t) <t



A combinatorial condition for Spernicity

Theorem. Let P be graded of rank n. Suppose that for some j
there exist order-matchings

Po— Py — - = P Piy1 << Py

Then P is rank-unimodal and Sperner.
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A combinatorial condition for Spernicity

Theorem. Let P be graded of rank n. Suppose that for some j
there exist order-matchings

Po— Py — - = P Piy1 << Py
Then P is rank-unimodal and Sperner.

Proof. Rank-unimodal clear:
po<p1 < <P = pjr1=c = o

“Glue together” the order-matchings.
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A chain decomposition

P=GU---UC, (chains)
A = antichain, C = chain = #(ANC) <1
= #AL pj- ]



Back to B,

Explicit order matching (B,,)i — (Bn)it+1 for i < n/2:

Example. § ={1,4,6,7,11} € (Bi3)s
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Back to B,

Explicit order matching (B,,)i — (Bn)it+1 for i < n/2:

Example. § ={1,4,6,7,11} € (Bi3)s

o T
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Stronger properties

Symmetric chain decomposition: a partition into saturated
chains about the middle. Implies rank-symmetry and
rank-unimodality. Includes B,,.
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Stronger properties (cont.)

Symmetric boolean decomposition: a partition into boolean
algebras symmetric about the middle. Implies rank-symmetry,

~-positivity (stronger than rank-unimodality), and symmetric
chain decomposition. Trivial for B,,.

O

Fr(q) = 26> +2q(1 + q)° + (1 + q)*
v — vector : (2,2,1)
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Open for By(q).
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Explicit order-matchings

Open for Bp(q).

Known for:
@ products of chains (includes B,)

@ noncrossing partition lattice NC,,
Simion-Ullman (1991):
explicit symmetric boolean decomposition.
Generalized by Miihle, 2015.



Explicit order-matchings (cont.)

@ Shuffle posets (Hersh, 1999): symmetric chain decomposition

¢ 2a

b«»

12

12



Normalized matchings

Marriage Theorem (Hall's theorem) = existence of
order-matching
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Normalized matchings

Marriage Theorem (Hall's theorem) = existence of
order-matching

Normalized matching property = condition for Marriage
Theorem

Absolute order. On G,

Fp(q) =(1+q)(1+2q)---(1+(n—1)q)

w maximal = [id, w] =2 NC,



Absolute order (continued)
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Absolute order (continued)

(123)  (132)

(12)(3) ) \'(\ (1)(23)
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Spernicity for &, and the hyperoctahedral group $),: Harper,
Kim, Livesay, 2019



Absolute order (continued)

(123)  (132)

R
(12)(3) (1)(23)

O C)

Spernicity for &, and the hyperoctahedral group $),: Harper,
Kim, Livesay, 2019

Some more general Coxeter groups: Gaetz, Gao, 2019.



Linear algebra

P=PyU---UP,: graded poset

QP; : vector space with basis Q
U: QP; — QPj41 is order-raising if for all s € P;,

U(s) € spang{t € Piy1 : s <t}



Linear algebra

P=PyU---UP,: graded poset

QP; : vector space with basis Q
U: QP; — QPj41 is order-raising if for all s € P;,

U(s) € spang{t € Piy1 : s <t}

U is a “quantum” order-matching.
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P=PyU---UP,: finite graded poset

Proposition. If for some j there exist order-raising operators
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Proposition. If for some j there exist order-raising operators
inj. inj. inj. surj. surj. surj.
QPo = QPL = - QP QP - QP
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Order-raising and order-matchings

Key Lemma. If U: QP; — QPj11 is injective and order-raising,
then there exists an order-matching 11: P; — Piy1.



Order-raising and order-matchings

Key Lemma. If U: QP; — QPj11 is injective and order-raising,
then there exists an order-matching 11: P; — Piy1.

Proof. Consider the matrix of U with respect to the bases P; and
Pii1.



Key lemma proof

1 oty o th

51 750 ‘ *
S £0|

det #0



Key lemma proof

1 o tm

S1 75 0 ‘

Sm # 0|
det #0

=5 <t,...,5m < tp

th



Dual version

Similarly if there exists surjective order-raising U: QP; — QPj41,
then there exists an order-matching p: Piy1 — P;.



Dual version

Similarly if there exists surjective order-raising U: QP; — QPj41,
then there exists an order-matching p: Piy1 — P;.

Implies Spernicity criterion

surj.

QR B QP Y B R QP Y - R,



Order-raising for B,

Define
U: Q(Bn)i = Q(Bn)i+1
by
US)y= > T, Se(By)

#T=i+1
SCcT
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Order-raising for B,

Define
U: Q(B,)i — Q(Bn)it1
by
US)y= > T, Se(By)
#T=i+1
SCcT

Similarly define D: Q(B,)i+1 — Q(B,); by

D(T) = Z S, T e (Bn)itr-
#S=i
SCT
UD is positive semidefinite, and hence has nonnegative real
eigenvalues, since the matrices of U and D with respect to the
bases (B,); and (B,);+1 are transposes.
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Lemma. On Q(B,); we have
DU — UD = (n— 2i)l,

where | is the identity operator.
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A commutation relation

Lemma. On Q(B,); we have

DU — UD = (n—2i)l,
where | is the identity operator.
Corollary. If i < n/2 then U is injective.

Proof. UD has eigenvalues § > 0, and eigenvalues of DU are
0+ n—2i > 0. Hence DU is invertible, so U is injective. [

Similarly U is surjective for i > n/2.

Corollary. B, is Sperner.
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What'’s the point?

The symmetric group &, acts on B, by
w-{a1,...,ak} ={w-a1,...,w-ag}.

If G is a subgroup of &, define the quotient poset B,/G to be
the poset on the orbits of G (acting on B,), with

0<o & 3ISco,Tco, SCT.



An example

n=3, G={1)(2)3)(1,2)3)}
123

13,23 12
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Spernicity of B,/ G

B,/ G is graded of rank n and rank-symmetric.
Theorem. B,/G is rank-unimodal and Sperner.
Crux of proof. The action of w € G on B, commutes with U, so

we can “transfer” U to B,/G, preserving injectivity on the bottom
half.



An interesting example

R: set of squares of an m x n rectangle of squares.

Gmn C GR: can permute elements in each row, and permute rows
among themselves, so #Gp,, = n!™ml.

Gmn = 6,16, (wreath product)



L(m, n)

Every orbit of G,,, contains exactly one Young diagram Y C R.



L(m, n)

Every orbit of G,,, contains exactly one Young diagram Y C R.
L(m, n): poset of Young diagrams in an m x n rectangle

Br/Gmn = L(m, n)



Examples of L(m, n)

22

21

22

11

21

33

32

31



L(3,3)
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F(L(m,n),q) = <m’-n|- n> (g-binomial coefficient)

(m;") has unimodal coefficients.

@ First proved by J. J. Sylvester (1878) using invariant theory
of binary forms.

@ Combinatorial proof by K. O’Hara (1990): explicit injection
L(m,n); — L(m,n)it1, 0 < i < Smn.



g-binomial coefficients

m+n ..
F(L(m,n),q) = < > (g-binomial coefficient)
m
("™*") has unimodal coefficients.
@ First proved by J. J. Sylvester (1878) using invariant theory
of binary forms.
@ Combinatorial proof by K. O’Hara (1990): explicit injection
L(m,n); — L(m,n)it1, 0 < i < Smn.
@ Not an order-matching. Still open to find an explicit
order-matching L(m, n); — L(m, n)i41.



Algebraic geometry

X: smooth complex projective variety of dimension n

H*(X; C) = HY(X;C) ® H{(X;C) & - - - @ H2(X; C);
cohomology ring, so H' = H>"~/.

There exists w € H? (the class of a
generic hyperplane section) such that for 0 < i < n, the map

w”_2i: Hi N H2n—i

is a bijection. Thus w: H' — H™*! is injective for i < n and
surjective for i > n.



Cellular decompositions

X has a cellular decompo§ition if X =UC;, each C; = CY (as
affine varieties), and each C; is a union of Cj's.



Cellular decompositions

X has a cellular decompo§iti0n if X =UC;, each C; = CY (as
affine varieties), and each C; is a union of Cj's.

If X has a cellular decomposition and [Cj] € H2("—)

denotes the corresponding cohomology classes, then the [C;]'s form
a C-basis for H*.



The cellular decomposition poset

Let X = UC; be a cellular decomposition. Define a poset
Px = {C}, by _
G<GitGCG

(closure in Zariski or classical topology).
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The cellular decomposition poset

Let X = UC; be a cellular decomposition. Define a poset
Px = {C}, by _
G<GitGCG

(closure in Zariski or classical topology).

® Px is graded of rank n.
o #(Px); = dim¢ HA"=)(X;C)
@ Px is rank-symmetric (Poincaré duality)

@ Px is rank-unimodal (hard Lefschetz)
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Identify CP with H*(X;C) via C; <> [Cj].



Spernicity of Px

Identify CP with H*(X;C) via C; <> [Cj].
Recall: w € H?(X;C) (class of hyperplane section)

Interpretation of cup product on H*(X;C) as intersection implies
that w is order-raising.

Hard Lefschetz = w: H?* — H2(+1) is injective for i < n/2 and
surjective for i > n/2.



Spernicity of Px

Identify CP with H*(X;C) via C; <> [Cj].
Recall: w € H?(X;C) (class of hyperplane section)

Interpretation of cup product on H*(X;C) as intersection implies
that w is order-raising.

Hard Lefschetz = w: H?* — H2(+1) is injective for i < n/2 and
surjective for i > n/2.

= Px has the Sperner property.
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the Grassmann variety of all k-dimensional subspaces of C".



Main example

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where G is a semisimple
algebraic group over C, and @ is a parabolic subgroup

Are there other combinatorially interesting varieties with cellular
decompositions?

Gr(n, k) = SL(n,C)/Q for a certain Q,
the Grassmann variety of all k-dimensional subspaces of C".

rational canonical form = Pgy(mynm) = L(m, n)



Another special case

G =S0(2n+1,C), Q = “spin” maximal parabolic subgroup

M(n) == Pg,q = B,/6,, where B, is the hyperoctahedral group
(symmetries of n-cube) of order 2"n!, so #M(n) = 2"



Another special case

G =S0(2n+1,C), Q = “spin” maximal parabolic subgroup

M(n) == Pg,q = B,/6,, where B, is the hyperoctahedral group
(symmetries of n-cube) of order 2"n!, so #M(n) = 2"

M(n) is isomorphic to the set of all subsets of {1,2,...,n} with
the ordering

{ag >ax>-->a} <{bi1>by> > bs},

ifr<sanda, <bjforl<i<r.



Examples of M(n)

321
32
21
3
1 2
2
3
0] 1
M(1) z
[
1
M@)
[

M3)




Rank-generating function of M(n)

rank of {a1,...,a,} in M(n)is >_ a;
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rank of {a1,...,a,} in M(n)is >_ a;

~—~~

)
= F(M(n),q) =Y _[M(n)il-¢'=(1+q)(1+q¢)---(1+q")
i=0

Corollary. The polynomial (1 + q)(L + ¢?)--- (1 + q") has
unimodal coefficients.



Rank-generating function of M(n)

rank of {a1,...,a,} in M(n)is >_ a;

~—~~

)
= F(M(n),q) =Y _[M(n)il-¢'=(1+q)(1+q¢)---(1+q")
i=0

Corollary. The polynomial (1 + q)(L + ¢?)--- (1 + q") has
unimodal coefficients.

No combinatorial proof known, though can be done with just
elementary linear algebra (Proctor).
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si==(i,i+1) €&, 1<i<n-—1 (adjacent transposition)
For w € &,

Uw) = #{(.J) - 1 <jw(i) > w()}

= min{p: w=s, -5}
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The weak order on S,

si==(i,i+1) €&, 1<i<n-—1 (adjacent transposition)
For w € &,

Uw) = #{(.J) - 1 <jw(i) > w()}

= min{p: w=s, -5}
weak (Bruhat) order W, on &,: u < v if
v =usy---sp, p=4Lv)—L(u).
¢ is the rank function of W, so
F(Wa,q)=(1+q)1+q+¢°) - (1+qg+---+q")

A. Bjorner (1984): does W, have the Sperner property?



Examples of weak order

321

231

213

123

Ws




An order-raising operator

theory of Schubert polynomials suggests:



An order-raising operator

theory of Schubert polynomials suggests:

U(w) = Z I+ ws;

1<i<n-1
ws;>s;

Fact (Macdonald, Fomin-S, Billey-Hoylroyd-Young). Let u < v
in W, £(v) — ¢(u) = p. The coefficient of v in UP(u) is

pl&,,(1,1,...,1),

where &,,(x1,...,%s—1) is a Schubert polynomial.



A down operator

C. Gaetz and Y. Gao (2018): constructed
D: Q(W,); — Q(W,);—1 such that

ov-10- (3)-3)-

Suffices for Spernicity.



A down operator

C. Gaetz and Y. Gao (2018): constructed
D: Q(W,); — Q(W,);—1 such that

ov-10- (3)-3)-

Suffices for Spernicity.

D is order-lowering on the Bruhat order. Leads to
duality between weak and strong order.



Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt
(2018): for k < 3(3), let

D(n, k) = matrix of ORE QWy)k — Q(Wn)(g)_k

with respect to the bases (W, ), and (Wn)(n)_k (in some order).
2
Then (conjectured by RS):

n #(Wn) k
det D(n, k) = £ <<2> - 2k>!

1

k— i

1 <(,2,) B (k.—i— i)>#(Wn)i'

Il
o



Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt
(2018): for k < 3(3), let

D(n, k) = matrix of y(5)—2k. : Q(Wh)k — Q(W, )( )—k

with respect to the bases (W, ), and (Wn)(n)_k (in some order).
2
Then (conjectured by RS):
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Also suffices to prove Sperner property (just need det D(n, k) # 0).



Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt
(2018): for k < 3(3), let

D(n, k) = matrix of y(5)—2k. : Q(Wh)k — Q(W, )( )—k

with respect to the bases (W, ), and (Wn)(n)_k (in some order).
2
Then (conjectured by RS):

det D(n, k) = + <<’2’> - 2k> " ij: ( —(k+ ')>#(Wn)i.

Also suffices to prove Sperner property (just need det D(n, k) # 0).

Gaetz-Gao: Smith normal form of D(n, k)



An open problem

The weak order W(G) can be defined for any (finite) Coxeter
group G. Is W(G) Sperner?



Infinite posets

Exercise. If P is a poset for which every chain and antichain is
finite, then P is finite.
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Infinite posets

If P is a poset for which every chain and antichain is
finite, then P is finite.

There is a poset of cardinality continuum in which
all chains and all antichains are countable.

Proof. Let < be usual ordering of R, and < a well-ordering of R.
For x,y € R define x < y if x <y and x < y. In (R, <), every
chain is a well-ordered subset of (R, <) (since on a chain < and <
are the same), and every antichain is a well-ordered subset of

(R, <*). It is easy to see that every well-ordered subset of (R, <)
is countable, so the proof follows. [



The final slide






