A Fibonacci Arrary

Richard P. Stanley

February 17, 2024

The diagram \mathfrak{D}

Define a diagram \mathfrak{D} as follows.
(P0) Single vertex (or point or node) T at the top.
(P1) Each vertex is connected by an edge to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon.
Step 1. Two vertices below T:

The diagram \mathfrak{D}

Define a diagram \mathfrak{D} as follows.
(P0) Single vertex (or point or node) T at the top.
(P1) Each vertex is connected by an edge to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon.
Step 2. Two vertices below each of these:

The diagram \mathfrak{D}

Define a diagram \mathfrak{D} as follows.
(P0) Single vertex (or point or node) T at the top.
(P1) Each vertex is connected by an edge to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon.
Step 3. Complete to a hexagon:

The diagram \mathfrak{D}

Define a diagram \mathfrak{D} as follows.
(P0) Single vertex (or point or node) T at the top.
(P1) Each vertex is connected by an edge to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon.
Step 4. Add remaining vertices on bottom row:

The diagram \mathfrak{D}

Define a diagram \mathfrak{D} as follows.
(P0) Single vertex (or point or node) T at the top.
(P1) Each vertex is connected by an edge to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon.
Step 5. Complete the two hexagons:

The diagram \mathfrak{D}

Define a diagram \mathfrak{D} as follows.
(P0) Single vertex (or point or node) T at the top.
(P1) Each vertex is connected by an edge to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon.
Step 6. Add remaining elements on bottom row:

The Fibonacci array

Label each vertex with the number of chains from that vertex to T. Equivalently, T is labelled 1 , and other vertices v are labelled by the sum of the vertex labels to which v is connected on the row above.

What are these numbers?

Two consecutive rows

What is this sequence $3,5,3,5,5,3,5,3$?

Enter the golden mean

$$
\phi=\frac{1+\sqrt{5}}{2}=1.61803398 \cdots, \text { the golden mean }
$$

Recall for rows 4-5 we got $3,5,3,5,5,3,5,3$. Sequence is symmetric (or palindromic), so we need only describe first four terms $c_{1}, c_{2}, c_{3}, c_{4}$.

Enter the golden mean

$$
\phi=\frac{1+\sqrt{5}}{2}=1.61803398 \cdots, \text { the golden mean }
$$

Recall for rows 4-5 we got 3,5,3,5,5,3,5,3. Sequence is symmetric (or palindromic), so we need only describe first four terms $c_{1}, c_{2}, c_{3}, c_{4}$.

$$
\begin{array}{rlrl}
c_{1} & =1+2\lfloor\phi\rfloor & =3 \\
c_{2} & =1+2\lfloor 2 \phi\rfloor-2\lfloor\phi\rfloor & =5 \\
c_{3} & =1+2\lfloor 3 \phi\rfloor-2\lfloor 2 \phi\rfloor & =3 \\
c_{4} & =1+2\lfloor 4 \phi\rfloor-2\lfloor 3 \phi\rfloor & =5 \\
& \vdots & & \\
c_{n} & =1+2\lfloor n \phi\rfloor-2\lfloor(n-1) \phi\rfloor &
\end{array}
$$

