Mastery of

Convex

Mathematics

Unerringly

Led to

Lovely &

Enlightening

Novelties

Let P be a finite graded poset of rank n+1 with $\hat{0}$ and $\hat{1}$, and with rank function ρ . Thus $\rho(\hat{0})=0$ and $\rho(\hat{1})=n+1$.

Let
$$S \subseteq [n] = \{1, 2, \dots, n\}$$
, say $S = \{a_1 < a_2 < \dots < a_k\}$.

Define the flag f-vector

$$\tilde{f}(P): 2^{[n]} \to \mathbb{N} = \{0, 1, \ldots\}$$

of P by

$$\tilde{f}_{S}(P) = \#\{\hat{0} < t_1 < \dots < t_k < \hat{1} : \rho(t_i) = a_i\}.$$

Define the **flag** h-vector $\tilde{h}(P): 2^{[n]} \to \mathbb{N}$ of P by

$$\tilde{\boldsymbol{h}}_{\boldsymbol{S}}(\boldsymbol{P}) = \sum_{T \subset S} (-1)^{\#(S-T)} \tilde{f}_T(P).$$

Equivalently,

$$\tilde{f}_S(P) = \sum_{T \subseteq S} \tilde{h}_T(P).$$

EXAMPLE: P = face-lattice of 3-cube.

S	$ \tilde{f}_S(P) $	$ \tilde{h}_S(P) $
Ø	1	1
1	8	7
2	12	11
3	6	5
1,2	24	5
1,3	24	11
2,3	24	7
1, 2, 3	48	1

Define the **order complex** $\Delta(P)$ to be the abstract simplicial complex whose faces are the chains of $P - \{\hat{0}, \hat{1}\}$. If P is the face poset of a regular CW-complex Γ (e.g., a polyhedral complex) with $\hat{1}$ adjoined, then $\Delta(P) = \operatorname{sd}(\Gamma)$, the first barycentric subdivision of Γ . Note:

$$n := \operatorname{rank}(P) - 1 = \dim(\Delta(P)) + 1.$$

If $\Delta \neq \emptyset$ is any (n-1)-dimensional simplicial complex, define the f-vector (f_0, \ldots, f_{n-1}) (with $f_{-1} = 1$) and h-vector (h_0, h_1, \ldots, h_n) of Δ by

$$\mathbf{f_i} = \#\{F \in \Delta : \dim(F) = i\}$$

$$\sum_{i=0}^{n} f_{i-1}(x-1)^{n-i} = \sum_{i=0}^{n} \mathbf{h}_{i} x^{n-i}.$$

Then

$$f_i(\Delta(P)) = \sum_{\#S=i+1} \tilde{f}_S(P)$$

$$h_i(\Delta(P)) = \sum_{\#S=i} \tilde{h}_S(P).$$

Rank-selection and homology. Given $S \subseteq [n]$, define the rank-selected subposet $P_S \subseteq P$ by

$$\mathbf{P_S} = \{ t \in P : t = \hat{0}, \hat{1} \text{ or } \operatorname{rank}(t) \in S \}.$$

Then

$$\tilde{f}_S(P) = \# \text{ maximal chains of } P_S$$

$$\tilde{h}_S(P) = \tilde{\chi}(\Delta(P_S)),$$

where $\tilde{\chi}$ denotes reduced Euler characteritic.

Thus $\tilde{h}_S(P)$ can be investigated purely topologically, unlike h_i .

Let Δ be a simplicial complex. If $F \in \Delta$, define the **link**

$$\mathbf{lk}(\mathbf{F}) = \{G \in \Delta : F \cap G = \emptyset, F \cup G \in \Delta\},\$$
so $\mathbf{lk}(\emptyset) = \Delta.$

Definition. Δ is Cohen-Macaulay (C-M) over the field K if

$$\tilde{H}_i(\operatorname{lk}(F); K) = 0, \quad i < \dim(\operatorname{lk}(F)),$$

for all $F \in \Delta$. Equivalently, the **face ring** $K[\Delta]$ is a Cohen-Macaulay ring.

Theorem (rank-selection). If P is C-M and $S \subseteq [n]$, then P_S is C-M.

Corollary. If P is C-M and $S \subseteq [n]$, then $\tilde{h}_S(P) \geq 0$.

Examples of C-M P:

- semimodular lattices (e.g., distributive, modular, and geometric lattices)
- face lattices of convex polytopes (or of regular CW-spheres and balls)

Edge labelings and shellability: the fundamental combinatorial tool for proving C-M.

Maximal chains: 123, 132, 213, 231, 321, 322, 332, 312

E-labeling: unique weakly increasing chain between any s < t in P.

L-labeling: in addition, this chain is lexicographically least among all chain from s to t.

- **Theorem.** (a) If λ is an E-labeling of P, then $\tilde{h}_S(P)$ is the number of maximal chains in P whose label $(a_1, a_2, \ldots, a_{n+1})$ satisfies $a_i > a_{i+1}$ if and only if $i \in S$.
- (b) If λ is an EL-labeling of P, then ordering all maximal chains of P lexicographically by their labels gives a shelling order. Hence P is C-M.

Example. P = face-lattice of a square.

label	descent set
123	\emptyset
132	2
213	1
231	2
321	1,2
322	1
332	2
312	1

$$\Rightarrow \tilde{h}_{\emptyset} = 1, \quad \tilde{h}_1 = 3$$
$$\tilde{h}_2 = 3, \quad \tilde{h}_{1,2} = 1.$$

Recall: If Δ is C-M simplicial complex, then \exists a **multicomplex** Γ with $f(\Gamma) = h(\Delta)$. I.e., $\Gamma \subset \mathbb{N}^k$,

$$(a_1, \dots, a_k) \in \Gamma, (b_1, \dots, b_k) \leq (a_1, \dots, a_k)$$

$$\Rightarrow (b_1, \dots, b_k) \in \Gamma,$$

$$h_i(\Delta) = \# \left\{ (b_1, \dots, b_k) \in \Gamma : \sum b_j = i \right\}.$$

Example. $\Delta = \partial(\text{simplicial 3-polytope})$ with 5 vertices).

$$f(\Delta) = (5, 9, 6)$$

$$h(\Delta) = (1, 2, 2, 1)$$

$$\Gamma = \{00, 10, 01, 11, 20, 30\}.$$

Proved using $K[\Delta]$.

What about $\tilde{h}(P)$ for C-M P?

Theorem. Let P be C-M. Then \exists a colored simplicial complex Γ , i.e., each vertex v has a "color" $c(v) \in \mathbb{P}$ such that no face uses a color more than once, and

$$\tilde{h}_S(P) = \#\{F \in \Gamma : \{c(v) : v \in F\} = S\}.$$

S	$ \tilde{f}_S(P) $	$ \tilde{h}_S(P) $
Ø	1	1
1	3	3
2	4	3
3	3	2
1, 2	8	2
1,3	8	8
2,3	8	2
1,2,3	16	1

Definition. A pure simplicial complex of dimension n-1 is **Eulerian** if

$$\tilde{\chi}(\operatorname{lk}(F)) = (-1)^{\dim F}$$

for all $F \in \Delta$ (e.g., triangulations of spheres). Δ is **Gorenstein*** if C-M and Eulerian, i.e.,

$$\tilde{H}_i(\operatorname{lk}(F); K) = \begin{cases} K, & i = \dim(\operatorname{lk}(F)) \\ 0, & \text{otherwise.} \end{cases}$$

Dehn-Sommerville equations: If Δ is Eulerian then $h_i = h_{n-i}$.

GLBC: If Δ is Gorenstein* then in addition

$$1 = h_0 \le h_1 \le \dots \le h_{|n/2|}$$
.

(True for ∂ (simplicial polytope).)

"Naive" analogue of Dehn-Sommerville: if P is Eulerian, then

$$\tilde{h}_S(P) = \tilde{h}_{[n]-S}(P).$$

These give 2^{n-1} linear relations. But there are more!

Theorem (Bayer-Billera). Let \mathcal{B}_n be the subspace of the 2^n dimensional space of functions $f:[n] \to \mathbb{R}$ spanned by $\{\tilde{f}(P): P \text{ is Eulerian of rank } n+1\}$. Then

$$\dim \mathcal{B}_n = F_{n+1},$$

where $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$.

The cd-index (a "seedy" area of mathematics). Alternative formulation of Bayer-Billera relations conjectured by J. Fine, proved by Bayer-Klapper.

Given $S \subseteq n$ define $\mathbf{u}_S = u_1 \cdots u_n$ by

$$u_i = \begin{cases} a, & \text{if } i \notin S \\ b, & \text{if } i \in S. \end{cases}$$

where a, b are **noncommutative** indeterminates.

For any graded poset P of rank n + 1, define

$$\Upsilon_{\mathbf{P}}(\mathbf{a}, \mathbf{b}) = \sum_{S \subseteq [n]} \tilde{f}_S(P) u_S$$

$$\Psi_{\boldsymbol{P}}(\boldsymbol{a},\boldsymbol{b}) = \sum_{S \subseteq [n]} \tilde{h}_S(P) u_S.$$

Thus

$$\Psi_P(a,b) = \Upsilon_P(a,b-a)$$

$$\Upsilon_P(a,b) = \Psi_P(a,a+b).$$

Example. P = face-lattice of 3-cube:

$$\Upsilon_P(a,b) = aaa + 8baa + 12aba + 6aab + 24bba + 24bab + 24abb + 48bbb$$

$$\Psi_{P}(a,b) = aaa + 7baa + 11aba + 5aab$$

$$= +5bba + 11bab + 7abb + bbb$$

$$= (a+b)^{3} + 6(ab+ba)(a+b)$$

$$+4(a+b)(ab+ba).$$

Theorem. If P is Eulerian, then \exists a polynomial $\Phi_{P}(c, d)$, called the cd-index of P, in the noncommutative variables c, d such that

$$\Psi_P(a,b) = \Phi_P(a+b,ab+ba).$$

Even for $P = B_{n+1}$ (the face lattice of an n-simplex), $\Phi_P(c,d)$ is interesting. For instance, if

$$E_{n+1} = \Phi_{B_{n+1}}(1,1),$$

then (Purtill)

$$\sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x.$$

In general:

Proposition. We have

$$\Phi_P(1,1) = \tilde{h}_{\{1,3,5,\dots\}}(P)
= \tilde{h}_{\{2,4,6,\dots\}}(P).$$

Main open problem on cd-index (analogue of GLBC for Gorenstein* simplicial complexes):

Conjecture. Suppose P is Gorenstein* (i.e, C-M and Eulerian). Then every coefficient of $\Phi_P(c,d)$ is nonnegative.

Is there a sensible conjecture for a **complete characterization** of flag f-vectors of Gorenstein* posets (flag analogue of Mc-Mullen's g-conjecture)?

Theorem. The above conjecture, if true, gives all linear inequalities satisfied by the coefficients of $\Phi_P(c,d)$ for all Gorenstein* P of rank n+1. Equivalently, the above conjecture determines the smallest polyhedral cone containing the flag f-vectors of all Gorenstein* posets of rank n+1.

Theorem. If P is the face poset (with $\hat{1}$ adjoined) of a "shellable" regular CW-sphere (e.g., the face lattice of a convex polytope), then every coefficient of $\Phi_P(c,d)$ is nonnegative.

The Charney-Davis conjecture. A flag complex is a simplicial complex Δ for which every "missing face" (minimal set of vertices not forming a face) has two elements. E.g., $\Delta(P)$ for any poset P.

Let Δ be an (n-1)-dimensional Gorenstein* flag complex (e.g., $\Delta(P)$ for a Gorenstein* poset P) with

$$h(\Delta) = (h_0, h_1, \dots, h_n).$$

If n = 2m + 1, then

$$h_0 - h_1 + h_2 - \dots - h_n = 0,$$

since $h_i = h_{n-i}$.

Conjecture. If n = 2m then

$$CD(\Delta) := (-1)^m (h_0 - h_1 + h_2 - \dots + h_n) \ge 0.$$

If
$$\Delta = \Delta(P)$$
 then
$$CD(\Delta) = [d^m]\Phi_P(c, d),$$

the coefficient of d^m in $\Phi_P(c,d)$. Hence:

Proposition. If $\Phi_P x(c,d)$ has nonnegative coefficients for Gorenstein* P, then the Charney-Davis conjecture is true for (Gorenstein*) order complexes.