Mastery of
Convex
Mathematics
Unerringly
Led to
Lovely \&
Enlightening
Novelties

Let $P$ be a finite graded poset of rank $n+1$ with $\hat{0}$ and $\hat{1}$, and with rank function $\rho$. Thus $\rho(\hat{0})=0$ and $\rho(\hat{1})=n+1$.


$$
\begin{aligned}
& \text { Let } S \subseteq[n]=\{1,2, \ldots, n\}, \text { say } \\
& \qquad S=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\} .
\end{aligned}
$$

Define the flag $f$-vector

$$
\tilde{f}(P): 2^{[n]} \rightarrow \mathbb{N}=\{0,1, \ldots\}
$$

of $P$ by
$\tilde{f}_{S}(\boldsymbol{P})=\#\left\{\hat{0}<t_{1}<\cdots<t_{k}<\hat{1}: \rho\left(t_{i}\right)=a_{i}\right\}$.
Define the flag $h$-vector $\tilde{h}(P): 2^{[n]} \rightarrow \mathbb{N}$ of $P$ by

$$
\tilde{h}_{S}(\boldsymbol{P})=\sum_{T \subseteq S}(-1)^{\#(S-T)} \tilde{f}_{T}(P)
$$

Equivalently,

$$
\tilde{f}_{S}(P)=\sum_{T \subseteq S} \tilde{h}_{T}(P)
$$

EXAMPLE: $P=$ face-lattice of 3 -cube.

| $S$ | $\tilde{f}_{S}(P)$ | $\tilde{h}_{S}(P)$ |
| :---: | ---: | ---: |
| $\emptyset$ | 1 | 1 |
| 1 | 8 | 7 |
| 2 | 12 | 11 |
| 3 | 6 | 5 |
| 1,2 | 24 | 5 |
| 1,3 | 24 | 11 |
| 2,3 | 24 | 7 |
| $1,2,3$ | 48 | 1 |

Define the order complex $\Delta(P)$ to be the abstract simplicial complex whose faces are the chains of $P-\{\hat{0}, \hat{1}\}$. If $P$ is the face poset of a regular CW-complex $\Gamma$ (e.g., a polyhedral complex) with $\hat{1}$ adjoined, then $\Delta(P)=\operatorname{sd}(\Gamma)$, the first barycentric subdivision of $\Gamma$. Note:

$$
n:=\operatorname{rank}(P)-1=\operatorname{dim}(\Delta(P))+1
$$



If $\Delta \neq \emptyset$ is any $(n-1)$-dimensional simplicial complex, define the $f$-vector $\left(f_{0}, \ldots, f_{n-1}\right)$ (with $f_{-1}=1$ ) and $h$-vector $\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ of $\Delta$ by

$$
f_{i}=\#\{F \in \Delta: \operatorname{dim}(F)=i\}
$$

$$
\sum_{i=0}^{n} f_{i-1}(x-1)^{n-i}=\sum_{i=0}^{n} h_{i} x^{n-i}
$$

Then

$$
\begin{aligned}
& f_{i}(\Delta(P))=\sum_{\# S=i+1} \tilde{f}_{S}(P) \\
& h_{i}(\Delta(P))=\sum_{\# S=i} \tilde{h}_{S}(P) .
\end{aligned}
$$

Rank-selection and homology. Given $S \subseteq[n]$, define the rank-selected subposet $P_{S} \subseteq P$ by

$$
\boldsymbol{P}_{S}=\{t \in P: t=\hat{0}, \hat{1} \text { or } \operatorname{rank}(t) \in S\}
$$

Then

$$
\begin{aligned}
& \tilde{f}_{S}(P)=\# \text { maximal chains of } P_{S} \\
& \tilde{h}_{S}(P)=\tilde{\chi}\left(\Delta\left(P_{S}\right)\right)
\end{aligned}
$$

where $\tilde{\chi}$ denotes reduced Euler characteritic.
Thus $\tilde{h}_{S}(P)$ can be investigated purely topologically, unlike $h_{i}$.

Let $\Delta$ be a simplicial complex. If $F \in \Delta$, define the link
$\operatorname{lk}(\boldsymbol{F})=\{G \in \Delta: F \cap G=\emptyset, F \cup G \in \Delta\}$, so $\operatorname{lk}(\emptyset)=\Delta$.

Definition. $\Delta$ is Cohen-Macaulay (C-M) over the field $K$ if

$$
\tilde{H}_{i}(\operatorname{lk}(F) ; K)=0, \quad i<\operatorname{dim}(\operatorname{lk}(F)),
$$

for all $F \in \Delta$. Equivalently, the face ring $K[\Delta]$ is a Cohen-Macaulay ring.

Theorem (rank-selection). If $P$ is $C-M$ and $S \subseteq[n]$, then $P_{S}$ is $C-M$.

Corollary. If $P$ is $C-M$ and $S \subseteq[n]$, then $\tilde{h}_{S}(P) \geq 0$.

## Examples of C-M $P$ :

- semimodular lattices (e.g., distributive, modular, and geometric lattices)
- face lattices of convex polytopes (or of regular CW-spheres and balls)

Edge labelings and shellability: the fundamental combinatorial tool for proving C-M.


Maximal chains: 123, 132, 213, 231, 321, 322, 332, 312
$E$-labeling: unique weakly increasing chain between any $s<t$ in $P$.

L-labeling: in addition, this chain is lexicographically least among all chain from $s$ to $t$.

Theorem. (a) If $\lambda$ is an E-labeling of $P$, then $\tilde{h}_{S}(P)$ is the number of maximal chains in $P$ whose label $\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)$ satisfies $a_{i}>a_{i+1}$ if and only if $i \in S$.
(b) If $\lambda$ is an EL-labeling of $P$, then ordering all maximal chains of $P$ lexicographically by their labels gives a shelling order. Hence $P$ is $C-M$.

Example. $P=$ face-lattice of a square.

| label | descent set |
| :---: | :---: |
| 123 | $\emptyset$ |
| 132 | 2 |
| 213 | 1 |
| 231 | 2 |
| 321 | 1,2 |
| 322 | 1 |
| 332 | 2 |
| 312 | 1 |
| $\Rightarrow \tilde{h}_{\emptyset}=1, \quad \tilde{h}_{1}=3$ |  |
| $\tilde{h}_{2}=3, \quad \tilde{h}_{1,2}=1$. |  |

Recall: If $\Delta$ is $\mathrm{C}-\mathrm{M}$ simplicial complex, then $\exists$ a multicomplex $\Gamma$ with $f(\Gamma)=$ $h(\Delta)$. I.e., $\Gamma \subset \mathbb{N}^{k}$,
$\left(a_{1}, \ldots, a_{k}\right) \in \Gamma,\left(b_{1}, \ldots, b_{k}\right) \leq\left(a_{1}, \ldots, a_{k}\right)$

$$
\Rightarrow\left(b_{1}, \ldots, b_{k}\right) \in \Gamma
$$

$h_{i}(\Delta)=\#\left\{\left(b_{1}, \ldots, b_{k}\right) \in \Gamma: \sum b_{j}=i\right\}$.
Example. $\Delta=\partial$ (simplicial 3-polytope with 5 vertices).

$$
\begin{aligned}
f(\Delta) & =(5,9,6) \\
h(\Delta) & =(1,2,2,1) \\
\Gamma & =\{00,10,01,11,20,30\} .
\end{aligned}
$$

Proved using $K[\Delta]$.

What about $\tilde{h}(P)$ for C-M $P$ ?
Theorem. Let $P$ be C-M. Then $\exists$ a colored simplicial complex $\Gamma$, i.e., each vertex $v$ has a "color" $c(v) \in \mathbb{P}$ such that no face uses a color more than once, and $\tilde{h}_{S}(P)=\#\{F \in \Gamma:\{c(v): v \in F\}=S\}$.


Definition. A pure simplicial complex of dimension $n-1$ is Eulerian if

$$
\tilde{\chi}(\operatorname{lk}(F))=(-1)^{\operatorname{dim} F}
$$

for all $F \in \Delta$ (e.g., triangulations of spheres). $\Delta$ is Gorenstein* if C-M and Eulerian, i.e.,

$$
\tilde{H}_{i}(\operatorname{lk}(F) ; K)=\left\{\begin{array}{l}
K, i=\operatorname{dim}(\operatorname{lk}(F)) \\
0, \text { otherwise }
\end{array}\right.
$$

Dehn-Sommerville equations: If $\Delta$ is Eulerian then $h_{i}=h_{n-i}$.

GLBC: If $\Delta$ is Gorenstein* then in addition

$$
1=h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor n / 2\rfloor} .
$$

(True for $\partial$ (simplicial polytope).)
"Naive" analogue of Dehn-Sommerville: if $P$ is Eulerian, then

$$
\tilde{h}_{S}(P)=\tilde{h}_{[n]-S}(P)
$$

These give $2^{n-1}$ linear relations. But there are more!

Theorem (Bayer-Billera). Let $\mathcal{B}_{n}$ be the subspace of the $2^{n}$ dimensional space of functions $f:[n] \rightarrow \mathbb{R}$ spanned by $\{\tilde{f}(P)$ : $P$ is Eulerian of rank $n+1\}$. Then

$$
\operatorname{dim} \mathcal{B}_{n}=F_{n+1}
$$

where $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$.
The cd-index (a "seedy" area of mathematics). Alternative formulation of BayerBillera relations conjectured by J. Fine, proved by Bayer-Klapper.

Given $S \subseteq n$ define $u_{S}=u_{1} \cdots u_{n}$ by

$$
u_{i}=\left\{\begin{array}{l}
a, \text { if } i \notin S \\
b, \text { if } i \in S
\end{array}\right.
$$

where $a, b$ are noncommutative indeterminates.

For any graded poset $P$ of rank $n+1$, define

$$
\begin{aligned}
& \Upsilon_{\boldsymbol{P}}(\boldsymbol{a}, \boldsymbol{b})=\sum_{S \subseteq[n]} \tilde{f}_{S}(P) u_{S} \\
& \Psi_{\boldsymbol{P}}(\boldsymbol{a}, \boldsymbol{b})=\sum_{S \subseteq[n]} \tilde{h}_{S}(P) u_{S} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \Psi_{P}(a, b)=\Upsilon_{P}(a, b-a) \\
& \Upsilon_{P}(a, b)=\Psi_{P}(a, a+b) .
\end{aligned}
$$

Example. $P=$ face-lattice of 3-cube:

$$
\Upsilon_{P}(a, b)=a a a+8 b a a+12 a b a+6 a a b
$$

$$
+24 b b a+24 b a b+24 a b b+48 b b b
$$

$$
\begin{aligned}
\Psi_{P}(a, b)= & a a a+7 b a a+11 a b a+5 a a b \\
= & +5 b b a+11 b a b+7 a b b+b b b \\
= & (a+b)^{3}+6(a b+b a)(a+b) \\
& +4(a+b)(a b+b a) .
\end{aligned}
$$

Theorem. If $P$ is Eulerian, then $\exists a$ polynomial $\Phi_{P}(c, d)$, called the $c d$-index of $P$, in the noncommutative variables $c, d$ such that

$$
\Psi_{P}(a, b)=\Phi_{P}(a+b, a b+b a) .
$$

Even for $P=B_{n+1}$ (the face lattice of an $n$-simplex), $\Phi_{P}(c, d)$ is interesting. For instance, if

$$
\boldsymbol{E}_{n+1}=\Phi_{B_{n+1}}(1,1)
$$

then (Purtill)

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

In general:
Proposition. We have

$$
\begin{aligned}
\Phi_{P}(1,1) & =\tilde{h}_{\{1,3,5, \ldots\}}(P) \\
& =\tilde{h}_{\{2,4,6, \ldots\}}(P)
\end{aligned}
$$

Main open problem on cd-index (analogue of GLBC for Gorenstein* simplicial complexes):

Conjecture. Suppose $P$ is Gorenstein* (i.e, C-M and Eulerian). Then every coefficient of $\Phi_{P}(c, d)$ is nonnegative.

Is there a sensible conjecture for a complete characterization of flag $f$-vectors of Gorenstein* posets (flag analogue of McMullen's $g$-conjecture)?

Theorem. The above conjecture, if true, gives all linear inequalities satisfied by the coefficients of $\Phi_{P}(c, d)$ for all Gorenstein* $P$ of rank $n+1$. Equivalently, the above conjecture determines the smallest polyhedral cone containing the flag $f$-vectors of all Gorenstein* posets of rank $n+1$.

Theorem. If $P$ is the face poset (with $\hat{1}$ adjoined) of a "shellable" regular $C W$ sphere (e.g., the face lattice of a convex polytope), then every coefficient of $\Phi_{P}(c, d)$ is nonnegative.

The Charney-Davis conjecture. A flag complex is a simplicial complex $\Delta$ for which every "missing face" (minimal set of vertices not forming a face) has two elements. E.g., $\Delta(P)$ for any poset $P$.

Let $\Delta$ be an $(n-1)$-dimensional Gorenstein* flag complex (e.g., $\Delta(P)$ for a Gorenstein* poset $P$ ) with

$$
h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{n}\right)
$$

If $n=2 m+1$, then

$$
h_{0}-h_{1}+h_{2}-\cdots-h_{n}=0,
$$

since $h_{i}=h_{n-i}$.

Conjecture. If $n=2 m$ then
$\mathrm{CD}(\Delta):=(-1)^{m}\left(h_{0}-h_{1}+h_{2}-\cdots+h_{n}\right) \geq 0$.
If $\Delta=\Delta(P)$ then

$$
\mathrm{CD}(\Delta)=\left[d^{m}\right] \Phi_{P}(c, d)
$$

the coefficient of $d^{m}$ in $\Phi_{P}(c, d)$. Hence:
Proposition. If $\Phi_{P} x(c, d)$ has nonnegative coefficients for Gorenstein * $P$, then the Charney-Davis conjecture is true for (Gorenstein*) order complexes.

