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The main reference

An introduction to hyperplane arrangements,
in Geometric Combinatorics (E. Miller, V. Reiner,
and B. Sturmfels, eds.), IAS/Park City
Mathematics Series, vol. 13, American
Mathematical Society, Providence, RI, 2007,
pp. 389–496.

math.mit.edu/∼rstan/arrangements/arr.html
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Posets

A poset (partially ordered set) is a set P and
relation ≤ satisfying ∀x, y, z ∈ P :

(P1) (reflexivity) x ≤ x

(P2) (antisymmetry) If x ≤ y and y ≤ x, then
x = y.

(P3) (transitivity) If x ≤ y and y ≤ z, then x ≤ z.
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Arrangements

K : a field

A : a (finite) arrangement in V = Kn

rk(A) (rank of A) : dimension of space

spanned by normals to H ∈ A
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Subspaces X, Y, W

Y = any complement to subspace X of Kn

spanned by normals to H ∈ A

W = {v ∈ V : v · y = 0 ∀y ∈ Y }.

If char(K) = 0 can take W = X.
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Essentialization

codimW (H ∩ W ) = 1, ∀H ∈ A

Essentialization of A:

ess(A) = {H ∩ W : H ∈ A},

an arrangment in W .

rk(ess(A)) = rk(A)

A is essential if ess(A) = A, i.e.,
rk(A) = dim(A).
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Example of essentialization

A ess(   )A

W
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The intersection poset

L(A) : nonempty intersections of hyperplanes
in A, ordered by reverse inclusion

Include V as the bottom element of L(A),
denoted 0̂.

Note. L(A) ∼= L(ess(A))

L(A) is the most important combinatorial object
associated with A.
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Examples of intersection posets
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Rank function

Chain of length k: x0 < x1 < · · · < xk

Graded poset of rank n: every maximal chain
has length n

Rank function: ρ(x) is the length k of longest
chain x0 < x1 < · · · < xk = x.
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Rank function on L(A)

Proposition. L(A) is graded of rank equal to
rk(A). Rank function:

rk(x) = codim(x) = n − dim(x),

where dim(x) is the dimension of x as an affine
subspace of V .

Proof. Straightforward. �
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Example of L(A)

a
p

V = R

bca

p q

1

2

1

0

0

2

rank dim

2

b

c
q
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The Möbius function

P is locally finite: every interval
[x, y] = {z : x ≤ z ≤ y} is finite.

Int(P ) = set of (nonempty) intervals of P

Define µ = µP : Int(P ) → Z (the Möbius
function of P ) by:

µ(x, x) = 1, for all x ∈ P

µ(x, y) = −
∑

x≤z<y

µ(x, z), for all x < y in P.

Write µ(x) = µ(0̂, x).
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Example of Möbius function

1

−1 −1 −1

112

−2

−1

1

Numbers denote µ(x).

Arrangements and Combinatorics – p. 14



Möbius inversion formula

P = finite poset

f, g : P → L (a field, or even just an abelian
group)

Theorem. Equivalent:

f(x) =
∑

y≥x

g(y), for all x ∈ P

g(x) =
∑

y≥x

µ(x, y)f(y), for all x ∈ P.

Proof. Straightforward. �
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The characteristic polynomial

Definition. The characteristic polynomial χA(t)
of the arrangement A is defined by

χA(t) =
∑

x∈L(A)

µ(x)tdim(x).

Note. x = V contributes tn, and each H ∈ A
contributes −tn−1. Hence

χA(t) = tn − (#A)tn−1 + · · · .
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An example

Example.

1

−1

112

−2

1

−1−1−1

χA(t) = t3 − 4t2 + 5t − 2 = (t − 1)2(t − 2).
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The boolean algebra

Suppose all hyperplanes in A are linearly
independent, and #A = n. Then all intersections
are nonempty and distinct, so

L(A) ∼= Bn,

the boolean algebra of all subsets of
[n] = {1, . . . , n}, ordered by inclusion.
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Characteristic polynomial of Bn

Easy induction argument: µ(0̂, x) = (−1)n−dim x.
Hence

χA(t) =
n∑

i=0

(
n

i

)
(−1)n−iti = (t − 1)n.
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Regions

Let K = R. Region (or chamber) of A:

connected component of Rn −
⋃

H∈A H.

r(A) = number of regions of A

A region R of A is relatively bounded if it

becomes bounded in ess(A).

b(A) = number of relatively bounded regions of A
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Example of r(A) and b(A)

r(A) = 10, b(A) = 2
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Zaslavsky’s theorem (1975)

Current goal:

Theorem. Let A be an arrangement of rank r in
Rn. Then

r(A) = (−1)nχA(−1)

b(A) = (−1)rχA(1).

Proof will be by induction on #A (the number of
hyperplanes).
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Subarrangements and restrictions

subarrangement of A: a subset B ⊆ A

For x ∈ L(A) define

Ax = {H ∈ A : x ⊆ H} ⊆ A

Also define the restriction of A to x to be the
arrangement in the affine space A:

Ax = {x ∩ H 6= ∅ : H ∈ A−Ax}.

Arrangements and Combinatorics – p. 23



Subarrangements and restrictions

subarrangement of A: a subset B ⊆ A

For x ∈ L(A) define

Ax = {H ∈ A : x ⊆ H} ⊆ A

Also define the restriction of A to x to be the
arrangement in the affine space A:

Ax = {x ∩ H 6= ∅ : H ∈ A−Ax}.

Arrangements and Combinatorics – p. 23



L(Ax) and L(Ax)

Note that if x ∈ L(A), then

L(Ax) ∼= Λx := {y ∈ L(A) : y ≤ x}

L(Ax) ∼= Vx := {y ∈ L(A) : y ≥ x}.
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Example of Ax and Ax

AKA

x

xA

K

K
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Triple of arrangments

Choose H0 ∈ A. Define

A′ = A− {H0}

A′′ = AH0.

Call (A, A′, A′′) a triple of arrangements with
distinguished hyperplane H0.
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Recurrence for r(A) and b(A)

Lemma. Let (A,A′,A′′) be a triple of real
arrangements with distinguished hyperplane H0.
Then

r(A) = r(A′) + r(A′′)

b(A) =

{
b(A′) + b(A′′), if rk(A) = rk(A′)

0, if rk(A) = rk(A′) + 1.
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The case rk(A) = rk(A′) + 1

0
H
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Proof of lemma (sketch)

Note that r(A) equals r(A′) plus the number of
regions of A′ cut into two regions by H0. Easy to
give a bijection between regions of A′ cut in two
by H0 and regions of A′′, proving

r(A) = r(A′) + r(A′′).

Proof of recurrence for b(A) analogous. �
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The deletion-restriction recurrence

Lemma. Let (A,A′,A′′) be a triple of real
arrangements. Then

χA(t) = χA′(t) − χA′′(t).

Zaslavsky’s theorem (r(A) = (−1)nχA(−1)) is an
immediate consequence of above lemma and
the recurrence r(A) = r(A′) + r(A′′).

The proof for b(A) is analogous but a little more
complicated.
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Whitney’s theorem

To prove: χA(t) = χA′(t) − χA′′(t).

Basic tool (H. Whitney, 1935, for linear
arrangements). A subarrangement B ⊆ A is
central if

⋂
H∈B H 6= ∅.

Theorem. Let A be an arrangement in an
n-dimensional vector space. Then

χA(t) =
∑

B⊆A
B central

(−1)#Btn−rk(B).
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Example of Whitney’s theorem

c d

a

b

B #B rk(B)

∅ 0 0
a 1 1
b 1 1
c 1 1
d 1 1

ac 2 2
ad 2 2

bc 2 2
bd 2 2
cd 2 2

acd 3 2

⇒ χA(t) = t2 − 4t + (5 − 1) = t2 − 4t + 4.
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The crosscut theorem

Easy fact: Every interval [0̂, z] of L(A) is a
lattice, i.e., any two elements x, y have a meet
(greatest lower bound) x ∧ y and join (least
upper bound) x ∨ y.

Lemma (crosscut theorem for L(A)). For all
z ∈ L(A),

µ(z) =
∑

B⊆Az

z=
⋂

H∈B
H

(−1)#B.
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Proof of Whitney’s theorem

Lemma (crosscut theorem for L(A)). For all
z ∈ L(A),

µ(z) =
∑

B⊆Az

z=
⋂

H∈B
H

(−1)#B.

Note that z =
⋂

H∈B H implies that
rk(B) = n − dim z. Multiply both sides by tdim(z)

and sum over z to obtain

χA(t) =
∑

B⊆A
B central

(−1)#Btn−rk(B). �

This proves Zaslavsky’s theorem.
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Alternative formulation

Later: coefficients of χA(t) alternate in sign.
More strongly, if rk(x) = i then

(−1)iµ(x) > 0.

Thus:

r(A) =
∑

x∈LA

|µ(x)|

b(A) =

∣∣∣∣∣
∑

x∈LA

µ(x)

∣∣∣∣∣ .
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A corollary

Corollary. Let A be a real arrangement. Then
r(A) and b(A) depend only on L(A).

a

b

dc

a

b

c d
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Faces

R(A): set of regions of A

Definition. A (closed) face of a real
arrangement A is a set

∅ 6= F = R ∩ x,

where R ∈ R(A), x ∈ L(A), and R = closure of
R.

fk(A): number of k-dimensional faces (k-faces)
of A
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Example of fi(A)

f0(A) = 3, f1(A) = 9, f2(A) = r(A) = 7
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Formula for fk(A)

fk(A) =
∑

x∈L(A)
corank(x)=k

∑

y≥x

|µ(x, y)|

Proof. Easy consequence of Zaslavsky’s formula
for r(A). �
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Zonotopes

Let X,Y ⊆ Kn

Minkowski sum:
X + Y = {x + y : x ∈ X, y ∈ Y }

zonotope: a Minkowski sum L1 + · · · + Lk of line
segments in Rn
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Example of zonotope

(0,0)

(0,0)
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Example of zonotope

(0,0)
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Characterization of zonotopes

Theorem. Let P be a convex polytope. The
following are equivalent.

P is a zonotope.

Every face of P is centrally-symmetric.

Every 2-dimensional face of P is
centrally-symmetric.
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The zonotope of a real arrangement

A: a real central arrangement

n1, . . . , nk: normals to H ∈ A

Li: line segment from 0 to ni

Z(A): the zonotope L1 + · · · + Lk
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Number of faces of Z(A)

Theorem. Let fi(Z(A)) denote the number of
i-dimensional faces of Z(A). Then

fi(Z(A)) = fn−i(A).

Informally, Z(A) is a “dual object” to A.
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An example of Z(A)
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An example of Z(A)
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Another example

hexagonal prism
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Another example

hexagonal prism
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Another example

rhombic dodecahedron
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Another example

rhombic dodecahedron

Arrangements and Combinatorics – p. 47



Graphical arrangements

G: graph on vertex set [n] (no loops or multiple
edges)

E(G): edge set of G

AG: arrangement in Kn with hyperplanes xi = xj

if ij ∈ E(G)

If G = Kn, the complete graph on [n], then AKn

is the braid arrangement Bn.
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Set partitions

partition of a finite set S: π = {B1, . . . , Bk}, such
that

Bi 6= ∅,
⋃

Bi = S, Bi ∩ Bj = ∅ (i 6= j)

Bi is a block of π.

ΠS: set of partitions of S

Let π, σ ∈ ΠS. Then π is a refinement of σ,
written π ≤ σ, if every block of π is contained in
a block of σ.
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The bond lattice of G

G: graph on vertex set [n]

connected partition of [n]: a partition of [n] for
which each block induces a connected subgraph
of G

bond lattice L(G) of G: set of connected
partitions of [n], ordered by refinement
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Example of bond lattice

G

)L(G

12 13 23 14 34

123 124 134 234

1234

34
12 14

23

4 3

21

Arrangements and Combinatorics – p. 51



Bond lattices and intersection posets

G: graph with bond lattice L(G)

AG: graphical arrangement

Theorem. L(G) ∼= L(A(G))

Proof. Let Hij be the hyperplane defined by
xi = xj, ij ∈ E(G). Let x ∈ L(A). Define vertices
i ∼ j if x ⊆ Hij. Then ∼ is an equivalence
relation whose equivalence classes form a
connected partition of [n], etc. �

Arrangements and Combinatorics – p. 52



Bond lattices and intersection posets

G: graph with bond lattice L(G)

AG: graphical arrangement

Theorem. L(G) ∼= L(A(G))

Proof. Let Hij be the hyperplane defined by
xi = xj, ij ∈ E(G). Let x ∈ L(A). Define vertices
i ∼ j if x ⊆ Hij. Then ∼ is an equivalence
relation whose equivalence classes form a
connected partition of [n], etc. �

Arrangements and Combinatorics – p. 52



Chromatic polynomial of G

coloring of G is κ : [n] → P = {1, 2, . . . }

proper coloring: κ(i) 6= κ(j) if ij ∈ E(G)

chromatic polynomial: For q ≥ 1,

χG(q) = #{proper κ : [n] → [q]}

Easy fact: χG(q) ∈ Z[q]
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χA(G)(t)

Theorem. χA(G)(t) = χG(t)

Proof. Let σ ∈ L(G).

χσ(q) = number of f : [n] → [q] such that:

a, b in same block of σ ⇒ f(a) = f(b)

a, b in different blocks, ab ∈ E ⇒ f(a) 6= f(b).
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Continuation of proof

Given any f : [n] → [q], there is a unique
σ ∈ L(G) such that f is enumerated by χσ(q).
Hence ∀π ∈ L(G),

q#π =
∑

σ≥π

χσ(q).

Möbius inversion ⇒ χπ(q) =
∑

σ≥π

q#σµ(π, σ).

Note χ0̂(q) = χG(q). �

Arrangements and Combinatorics – p. 55



Continuation of proof

Given any f : [n] → [q], there is a unique
σ ∈ L(G) such that f is enumerated by χσ(q).
Hence ∀π ∈ L(G),

q#π =
∑

σ≥π

χσ(q).

Möbius inversion ⇒ χπ(q) =
∑

σ≥π

q#σµ(π, σ).

Note χ0̂(q) = χG(q). �

Arrangements and Combinatorics – p. 55



Continuation of proof

Given any f : [n] → [q], there is a unique
σ ∈ L(G) such that f is enumerated by χσ(q).
Hence ∀π ∈ L(G),

q#π =
∑

σ≥π

χσ(q).

Möbius inversion ⇒ χπ(q) =
∑

σ≥π

q#σµ(π, σ).

Note χ0̂(q) = χG(q). �

Arrangements and Combinatorics – p. 55



Characteristic polynomial of Bn

Recall: Bn = A(Kn) (braid arrangement)

LBn

∼= Πn,

the lattice of all partitions of [n] (ordered by
refinement)

Clearly χKn
(q) = q(q − 1) · · · (q − n + 1).

⇒ χBn
(t) = t(t − 1) · · · (t − n + 1).
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Chordal graphs

A graph G is chordal (triangulated, rigid
circuit) if the vertices can be ordered v1, . . . , vn

so that for all i, vi is connected to a clique
(complete subgraph) of the restriction of G to
{v1, . . . , vi−1}.

Known fact: G is chordal if and only if every
cycle of length at least four has a chord.
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Example of a chordal graph

7

2 5

1

4 6

8
3

Arrangements and Combinatorics – p. 58



Chordal graph coloring

Let v1, . . . , vn be a vertex ordering so that for all i,
vi is connected to a clique of the restriction Gi−1

of G to {v1, . . . , vi−1}.

Let ai be the number of vertices of Gi−1 to which
vi is connected (so a1 = 0). Once v1, . . . , vi−1 are
(properly) colored, there are q − ai ways to color
vi. Hence

χG(q) = (q − a1)(q − a2) · · · (q − an).
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Acyclic orientations

Orientation of G: assignment o of a direction
i → j or j → i to each edge.

Acyclic orientation: an orientation with no
directed cycles
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χG(−1)

Given o, define

Ro = {(x1, . . . , xn) ∈ Rn : xi < xj whenever i → j in o}.

Then Ro is a region of A(G), and conversely.
(Conditions are consistent because o is acyclic.)

ao(G): number of acyclic orientations of G

Theorem. r(AG) = (−1)nχG(−1) = ao(G).

This proof is due to Greene (1977).
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(−1)iµ(x, y)

Goal: interpret (−1)iµ(x, y) combinatorially,
where i = rank(x, y).

For simplicity we deal only with hyperplane
arrangements, though the “right” level of
generality is matroid theory.
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Broken circuits

A: central arrangement

circuit: a minimal linearly dependent subset of A

H1, H2, . . . , Hm: ordering of A

broken circuit: a set C − {H}, where C is a
circuit and H the last element of C in the above
ordering

broken circuit complex:

BC(A) = {F ⊆ A : F contains no broken circuit}
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An example

Note: BC(A) is a simplicial complex, i.e.,
F ∈ BC(A), G ⊆ F ⇒ G ∈ BC(A).

2 4

53

1

2

3

4

51

4

5

2

31
2

4 3

1

5
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Example (continued)

4

5

2

31
2

4 3

1

5

fi = fi(BC(A)): # i-dim. faces of BC(A)

f−1 = 1, f0 = 5, f1 = 8, f2 = 4

χA(t) = t3 − 5t2 + 8t − 4
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Covers

L = LA

y covers x in L: x < y, 6 ∃x < z < y

E(L): edges of Hasse diagram of L, i.e,

E(L) = {(x, y) : y covers x}
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Labelings

λ : E(L) → P is a labeling of L

If C : x = x0 < x1 < · · · < xk = y is a saturated
chain from x to y (i.e., each xi+1 covers xi),
define

λ(C) = (λ(x0, x1), λ(x1, x2), . . . , λ(xk−1, xk))

C is increasing if

λ(x0, x1) ≤ λ(x1, x2) ≤ · · · ≤ λ(xk−1, xk).
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E-labelings

(a)

1 2 3

321
3
1 2312

3 2 1

1

1 1

2

1

3

2 11

2
21

(b) (c)

E-labeling: a labeling for which every interval
[x, y] has a unique increasing chain.
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Labeling and Möbius functions

Theorem. Let λ be an E-labeling of L, and let
x ≤ y in L, rank(x, y) = k. Then (−1)kµ(x, y) is
equal to the number of strictly decreasing
saturated chains from x to y, i.e.,

(−1)kµ(x, y) = #{x = x0 < x1 < · · · < xk = y :

λ(x0, x1) > λ(x1, x2) > · · · > λ(xk−1, xk)}.
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Labeling L(A)

H1, . . . , Hm: ordering of A (as before)
If y covers x in L(A) then define

λ̃(x, y) = max{i : x ∨ Hi = y}.
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Example of λ

1

2

3

4

5

5

1 2 3 4 5

3
2

4 5 4
5 5 4

2

5 54 4 25

1 2 3 4 5

21

3

1
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Properties of λ

Claim 1. Define λ : E(L(A)) → P by

λ(x, y) = m + 1 − λ̃(x, y).

Then λ is an E-labeling.

Claim 2. The broken circuit complex BC(M)

consists of all chain labels λ̃(C) (regarded as a
set), where C is an increasing saturated chain
from 0̂ to some x ∈ L(M). Moreover, all such
λ̃(C) are distinct.
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Example of Claim 2.

1

2

3

4

5

5

1 2 3 4 5

3
2

4 5 4
5 5 4

2

5 54 4 25

1 2 3 4 5

21

3

1

broken circuits : 12, 34, 124

BC(A) = {∅, 1, 2, 3, 4, 5, 13, 14, 15, 23, 24, 25, 35, 45,

135, 145, 235, 245}
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Broken circuit theorem

Immediate consequence of Claims 1 and 2:

Theorem. χA(t) =
∑

F∈BC(A)

(−1)#F tn−#F

Corollary. The coefficients of χA(t) alternate in
sign, i.e., χA(t) = tn − a1t

n−1 + a2t
n−2 − · · · ,

where ai ≥ 0. In fact

(−1)iµ(x, y) > 0, where i = rank(x, y).
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A glimpse of topology

[x, y]: (finite) interval in a poset P

ci: number of chains x = x0 < x1 < · · · < xi = y

Note. c0 = 0 unless x = y.

Philip Hall’s theorem (1936).
µ(x, y) = c0 − c1 + c2 − · · ·
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The order complex

P : a poset

order complex of P :

∆(P ) = {chains of P},

an abstract simplicial complex.

Write ∆(x, y) for the order complex of the open
interval (x, y) = {z ∈ P : x < z < y}.
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Example of an order complex

b

ca

f

x

a

c d

fe

b

y

d

e

P P)(∆
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Euler characteristic

∆: finite simplicial complex

fi = # i-dimensional faces of ∆

Note: f−1 = 1 unless ∆ = ∅.

Euler characteristic: χ(∆) = f0 − f1 + f2 − · · ·

reduced Euler characteristic:
χ̃(∆) = −f−1 + f0 − f1 + f2 − · · ·

Note: χ̃(∆) = χ(∆) − 1 unless ∆ = ∅.
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Philip Hall’s theorem restated

Theorem. For x < y in a finite poset,

µ(x, y) = χ̃(∆(x, y)).

Recall for any finite simplicial complex ∆,

χ̃(∆) =
∑

j

(−1)j dim H̃j(∆; K),

where H̃j(∆; K) denotes reduced simplicial
homology over the field K.
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A topological question

For x < y in L(A), with i = rank(x, y), we have

d := dim ∆(x, y) = i − 2.

In particular, (−1)d = (−1)i.

We get:

d∑

j=0

(−1)d−j dim H̃j(∆; K) = (−1)iµ(x, y) > 0.

Is there a topological reason for this?
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Folkman’s theorem

Previous slide:
d∑

j=0

(−1)d−j dim H̃j(∆; K) > 0.

Theorem (Folkman, 1966).

H̃j(∆; K)

{
= 0, j 6= d

6= 0, j = d.

Note. dim H̃d(∆; K) = (−1)dµ(x, y)

Early result in topological combinatorics.
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Cohen-Macaulay posets

A finite poset P is Cohen-Macaulay (over K) if
after adjoining a top and bottom element to P ,
every interval [x, y] satisfies:

If d = dim ∆(x, y) then H̃j(∆(x, y); K) = 0
whenever j 6= d.

Folkman’s theorem, restated. If A is central
then L(A) is Cohen-Macaulay.
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Modular elements

Let A be central. An element x ∈ L(A) is
modular if for all y ∈ L we have

rk(x) + rk(y) = rk(x ∧ y) + rk(x ∨ y).

x y

x is not modular: rk(x) + rk(y) = 2 + 2 = 4,
rk(x ∧ y) + rk(x ∨ y) = 0 + 3 = 3
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Simple properties

Easy: 0̂ = Kn, 1̂ =
⋂

H∈A H (the top element),
and each H ∈ A is modular.
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More properties

x, y ∈ L(A) are complements if x ∧ y = 0̂,
x ∨ y = 1̂.

Theorem. Let r = rk(A). Let x ∈ L. The
following four conditions are equivalent.

(i) x is a modular element of L.

(ii) If x ∧ y = 0̂, then rk(x) + rk(y) = rk(x ∨ y).

(iii) If x and y are complements, then
rk(x) + rk(y) = n.

(iv) All complements of x are incomparable.
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Two additional results

Theorem.

(a) (transitivity of modularity) If x is a modular
element of L and y is modular in the interval
[0̂, x], then y is a modular element of L.

(b) If x and y are modular elements of L, then
x ∧ y is also modular.
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Modular element factorization thm.

Theorem. Let z be a modular element of L(A),
A central of rank r. Write χz(t) = χ[0̂,z](t). Then

χL(t) = χz(t)


 ∑

y : y∧z=0̂

µL(y)tn−rk(y)−rk(z)


 .

Since each H ∈ A is modular in L(A), we get:

Corollary. For all H ∈ A,

χL(t) = (t − 1)
∑

y∧H=0̂

µ(y)tn−1−rk(y).
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Supersolvability

A central arrangement A (or L(A)) is
supersolvable if L(A) has a maximal chain
0̂ = x0 < x1 < · · · < xr = 1̂ of modular elements
xi.

In this case, let
ai = #{H ∈ A : H ≤ xi, H 6≤ xi−1}.

Corollary. If A is supersolvable, then

χA(t) = tn−r(t − a1)(t − a2) · · · (t − ar).
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Chordal graphs, revisited

For what graphs G is AG supersolvable?

Recall: xi = xj for ij ∈ E(G)

Recall that a chordal graph has a vertex
ordering v1, . . . , vn so that for all i, vi is connected
to a clique of the restriction Gi−1 of G to
{v1, . . . , vi−1}.

If vi is connected to ai vertices of Gi−1, then

χG(q) = (q − a1)(q − a2) · · · (q − an).
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Supersolvable graphs

Suggests that

G chordal ⇒ G (or AG) supersolvable.

In fact:

Theorem. G is chordal if and only if AG is
supersolvable.
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Free arrangements

Saito defined free arrangements A. Terao
(1980) proved

χA(t) = (t − a1) · · · (t − an),

where ai ∈ {0, 1, 2, . . . }. (Definition not given
here.)

Supersolvable arrangements are free.

Open: is freeness of A a combinatorial
property? That is, does it just depend on χA(t)?

Arrangements and Combinatorics – p. 91



Free arrangements

Saito defined free arrangements A. Terao
(1980) proved

χA(t) = (t − a1) · · · (t − an),

where ai ∈ {0, 1, 2, . . . }. (Definition not given
here.)

Supersolvable arrangements are free.

Open: is freeness of A a combinatorial
property? That is, does it just depend on χA(t)?

Arrangements and Combinatorics – p. 91



Free arrangements

Saito defined free arrangements A. Terao
(1980) proved

χA(t) = (t − a1) · · · (t − an),

where ai ∈ {0, 1, 2, . . . }. (Definition not given
here.)

Supersolvable arrangements are free.

Open: is freeness of A a combinatorial
property? That is, does it just depend on χA(t)?

Arrangements and Combinatorics – p. 91



Finite fields and good reduction

A: arrangement over Q

By multiplying hyperplane equations by a
suitable integer, can assume A is defined over Z.

Consider coefficients modulo a prime p to get an
arrangment Aq defined over the finite field Fq,
q = pk.

Aq has good reduction if LA
∼= LAq

.
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Almost always good reduction

Example. A = {2, 10}: affine arrangement in
Q1 = Q. Good reduction ⇔ p 6= 2, 5.

Theorem. Let A be an arrangement defined over
Z. Then A has good reduction for all but finitely
many primes p.

Proof idea. Consider minors of the coefficient
matrix, etc. �
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The finite field method

Theorem. Let A be an arrangement in Qn, and
suppose that L(A) ∼= L(Aq) for some prime
power q. Then

χA(q) = #


Fn

q −
⋃

H∈Aq

H




= qn − #
⋃

H∈Aq

H.
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Proof

Let x ∈ L(Aq) so #x = qdim(x) (computed either
over Q or Fq). Define f, g : L(Aq) → Z by

f(x) = #x

g(x) = #

(
x −

⋃

y>x

y

)

⇒ g(0̂) = g(Fn
q ) = #


Fn

q −
⋃

H∈Aq

H


 .
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Proof concluded

Clearly f(x) =
∑

y≥x

g(y).

Möbius inversion ⇒

g(x) =
∑

y≥x

µ(x, y)f(y)

=
∑

y≥x

µ(x, y)qdim(y)

x = 0̂ ⇒ g(0̂) =
∑

y

µ(y)qdim(y) = χA(q) �
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Graphical arrangements

G: graph on vertex set 1, 2, . . . , n

AG: graphical arrangement xi = xj, ij ∈ E(G)

finite field method: for p >> 0 (actually, all p),

χ
AG

(q) = #{(α1, . . . , αn) ∈ Fn
q : αi 6= αj if ij ∈ E(G)}

= χG(q)

!
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The braid arrangement B(Bn)

xi − xj = 0, 1 ≤ i < j ≤ n

xi + xj = 0, 1 ≤ i < j ≤ n

xi = 0, 1 ≤ i ≤ n

Thus for p >> 0 (actually p > 2),

χB(Bn)(q) = #{(α1, . . . , αn) ∈ Fn
q :

αi 6= ±αj (i 6= j), αi 6= 0}.

Choose α1 in q − 1 ways, then α2 in q − 3 ways,
etc.
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Characteristic polynomial of B(Bn)

⇒ χB(Bn)(q) = (q − 1)(q − 3) · · · (q − 2n + 1)

In fact, B(Bn) is supersolvable.
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B(Dn)

xi − xj = 0, 1 ≤ i < j ≤ n

xi + xj = 0, 1 ≤ i < j ≤ n

Exercise: If n ≥ 3 then

χB(Dn) = (q − 1)(q − 3) · · · (q − 2n + 3) · (q − n + 1).

Not supersolvable (n ≥ 4), but it is free.
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The Shi arrangement

Sn : xi − xj = 0, 1, 1 ≤ i < j ≤ n

dimSn = n, rkSn = n − 1, #Sn = n(n − 1)
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Characteristic polynomial of Sn

Theorem. χSn
(t) = t(t − n)n−1, so

r(Sn) = (n + 1)n−1, b(Sn) = (n − 1)n−1.

Proof. Finite field method ⇒

χSn
(p) = #{(α1, . . . , αn) ∈ Fn

p :

i < j ⇒ αi 6= αj and αi 6= αj + 1},

for p >> 0 (actually, all p).
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Proof continued

Choose π = (B1, . . . , Bp−n) such that
⋃

Bi = [n], Bi ∩ Bj = ∅ if i 6= j, 1 ∈ B1.

For 2 ≤ k ≤ n there are p − n choices for i such
that k ∈ Bi, so (p − n)n−1 choices in all.
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Circular placement of Fp

Arrange the elements of Fp clockwise on a circle.

Place 1, 2, . . . , n on some n of these points as
follows.

Place elements of B1 consecutively (clockwise)
in increasing order with 1 placed at some
element α1 ∈ Fp.

Skip a space and place the elements of B2

consecutively in increasing order.

Skip another space and place the elements of B3

consecutively in increasing order, etc.
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Example for p = 11, n = 6

π = ({1, 4}, {5}, ∅, {2, 3, 6}, ∅)

0

1

2

3

4
5

6

7

8

9

10
2

6

3

1

4

5
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Conclusion of proof

αi: position (element of Fp) at which i was placed

Previous example:
(α1, . . . , α6) = (6, 1, 2, 7, 9, 3) ∈ F6

11

Gives bijection

{(π = (B1, . . . , Bp−n), α1)} → Fn
p −

⋃

H∈(Sn)p

H.

(p − n)n−1 choices for π and p choices for α1, so

χSn
(p) = p(p − n)n−1.
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The Catalan arrangement

Cn : xi − xj = 0,−1, 1, 1 ≤ i < j ≤ n

dim Cn = n, rk Cn = n − 1, #Sn = 3

(
n

2

)
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The Catalan arrangement

Cn : xi − xj = 0,−1, 1, 1 ≤ i < j ≤ n

dim Cn = n, rk Cn = n − 1, #Sn = 3

(
n

2

)
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Char. poly. of Catalan arrangment

Theorem.
χ

Cn
(t) = t(t−n−1)(t−n−2)(t−n−3) · · · (t−2n+1),

so
r(Cn) = n!Cn, b(Cn) = n!Cn−1,

where Cm = 1
m+1

(
2m
m

)
(Catalan number).

Easy to prove using finite field method.

Each region of the braid arrangement Bn

contains Cn regions and Cn−1 relatively bounded
regions of the Catalan arrangment Cn.
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Catalan numbers

≥ 172 combinatorial interpretations of Cn at

math.mit.edu/∼rstan/ec
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The Linial arrangement

Ln : xi − xj = 1, 1 ≤ i < j ≤ n

dimLn = n, rkLn = n − 1, #Ln =

(
n

2

)
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Char. poly. of Linial arrangment

Theorem. χ
Ln

(t) =
t

2n

n∑

k=1

(
n

k

)
(t − k)n−1,

so

r(Ln) =
1

2n

n∑

k=1

(
n

k

)
(k + 1)n−1

b(Ln) =
1

2n

n∑

k=1

(
n

k

)
(k − 1)n−1
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Two proofs

Postnikov: (difficult) proof using Whitney’s
theorem

Athanasiadis: (difficult) proof using finite field
method
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Alternating trees

An alternating tree on [n] is a tree on the vertex
set [n] such that every vertex is either less than
all its neighbors or greater than all its neighbors.

1 3 2 4

1 4 2 3

2 1 4 3

2 3 1 4

2 4 1 3

4

1 2

3

32

1

4
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Alternating trees and Ln

f(n): number of alternating trees on [n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

f(n + 1) =
1

2n

n∑

k=1

(
n

k

)
(k + 1)n−1

Corollary. f(n + 1) = r(Ln)

No combinatorial proof known!
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The threshold arrangment

Tn : xi + xj = 0, 1 ≤ i < j ≤ n

dim Tn = n, rk Tn = n, #Tn =

(
n

2

)

threshold graph:

∅ is a threshold graph

G threshhold ⇒ G ∪ {vertex} threshold

G threshold ⇒ join(G, v) threshold
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Char. poly. of threshold arrangement

Theorem. r(Tn) = # threshold graphs on [n].
Hence (by a known result on threshold graphs)

∑

n≥0

r(Tn)
xn

n!
=

ex(1 − x)

2 − ex
.

Theorem.
∑

n≥0

χ
Tn

(t)
xn

n!
= (1 + x)(2ex − 1)(t−1)/2
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Small values of χTn
(t)

χT3
(t) = t3 − 3t2 + 3t − 1

χT4
(t) = t4 − 6t3 + 15t2 − 17t + 7

χT5
(t) = t5 − 10t4 + 45t3 − 105t2 + 120t − 51.
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Coefficients of χTn
(t)

Let

χTn
(t) = tn − an−1t

n−1 + · · · + (−1)na0.

Thus
∑

ai = #{threshold graphs on [n]}.

Open: interpret ai as the number of threshold
graphs on [n] with some property.
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Minkowski space R1,3

R1,3: Minkowski spacetime with one time and
three space dimensions

p = (t,x) ∈ R1,3, x = (x, y, z) ∈ R3

|p|2 = t2 − |x|2 = t2 − (x2 + y2 + z2)
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Ordering events in R1,3

Let p1, . . . ,pk ∈ R1,3. In different reference
frames (at constant velocities with respect to
each other) these events can occur in different
orders (but never violating causality).

Main question: what is the maximum number of
different orders in which these events can occur?
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The hyperplane of simultaneity

Let p1 = (t1,x1), p2 = (t2,x2) ∈ R1,3.

For a reference frame at velocity v, the Lorentz
transformation ⇒ p1,p2 occur at the same time if
and only if

t1 − t2 = (x1 − x2) · v.

The set of all such v ∈ R3 forms a hyperplane.
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The Einstein arrangement

Thus the number of different orders in which the
events can occur is the number of regions R of
the Einstein arrangement

E = E(p1, . . . ,pk)

defined by

ti − tj = (x1 − x2) · v, 1 ≤ i < j ≤ k,

such that |v| < 1 (the speed of light) for some
v ∈ R.
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Intersection poset of E

Can insure that v ∈ R for all R by taking
p1, . . . ,pk sufficiently “far apart”.

Can maximize r(E) for fixed k by choosing
p1, . . . ,pk generic.

In this case, L(E) is isomorphic to the rank 3
truncation of L(Bk) ∼= Πk.
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Coefficients of χBk
(t)

Recall

χBk
(t) = t(t − 1) · · · (t − k + 1)

= c(k, k)tk − c(k, k − 1)tk−1 + · · · ,

where c(k, i) is the number of permutations of
1, 2, . . . , k with i cycles (signless Stirling number
of the first kind).
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Computation of r(E)

Corollary.

χE(t) = c(k, k)t3 − c(k, k − 1)t2 + c(k, k − 2)t

−c(k, k − 3)

⇒ r(E) = c(k, k) + c(k, k − 1) + c(k, k − 2)

+c(k, k − 3)

=
1

48

(
k6 − 7k5 + 23k4 − 37k3 + 48k2

−28k + 48)
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