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| Posets

A poset (partially ordered set) Is a set P and
relation < satisfying Vz, vy, z € P:

(P1) (reflexivity) » <z

(P2) (antisymmetry) If + <y and y < z, then
T =1.

(P3) (transitivity) If » <y and y < z, then = < z.

—



I Arrangements

K : a field
A : a (finite) arrangement in V = K"

rk(.A) (rank of A) : dimension of space
spanned by normals to H € A

—



| Subspaces X, Y, W

Y = any complement to subspace X of K"
spanned by normalsto H € A

W={veV :iv-y=0VyeY}.
If char(K') = 0 can take W = X.

—



| Essentialization

codimy(HNW)=1, VH e A
Essentialization of A:

ess(A)={HNW : He A},

an arrangment in V.
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| Essentialization

codimy(HNW) =1, VH € A
Essentialization of A:

ess(A)={HNW : He A},
an arrangment in 1.

rk(ess(A)) = rk(A)

A s essential if ess(A) = A, i.e.,

rk(A) = dim(A). |



I Example of essentialization




I T he intersection poset

L(A) : nonempty intersections of hyperplanes
in A, ordered by reverse inclusion

Include V' as the bottom element of L(A),
denoted 0.

Note. L(A) = L(ess(A))

—



| T he intersection poset

L(A) : nonempty intersections of hyperplanes
in A, ordered by reverse inclusion

Include V' as the bottom element of L(A),
denoted 0.

Note. L(A) = L(ess(A))

L(A) is the most important combinatorial object

associated with A.



I Examples of intersection posets

O DY
—



| Rank function

Chainof length k: »p < 2, < -+ < 1

Graded poset of rank n: every maximal chain
has length n

Rank function: p(x) is the length % of longest
chanzy <z < --- <z = .

—



| Rank function on L(.A)

Proposition. L(.A) is graded of rank equal to
rk(.A). Rank function:

rk(x) = codim(x) = n — dim(x),

where dim(x) is the dimension of x as an affine
subspace of V.

B



I Rank function on L(.A)

Proposition. L(.A) is graded of rank equal to
rk(.A). Rank function:

rk(x) = codim(x) = n — dim(x),

where dim(x) is the dimension of x as an affine
subspace of V.

Proof. Straightforward.

B



| Example of L(.A)

rank dim
P q 2 0
a b 1 1
\V = R2 0 2



| The Mobius function

P is locally finite: every interval
z,yl ={z : v <z <y} isfinite.

INt(P) = set of (nonempty) intervals of P



| The Mobius function

P is locally finite: every interval
z,yl ={z : v <z <y} isfinite.

INt(P) = set of (nonempty) intervals of P

Define pu = pp : Int(P) — Z (the MObius
function of P) by:

u(rz,z) = 1, foralz e P
ulr,y) = — Z u(z, z), forall x < yin P.

r<z<y



| The Mobius function

P is locally finite: every interval

r,yl =1z : x < z <y} isfinite.

INt(P) = set of (nonempty) intervals of P
Define pu = pp : Int(P) — Z (the MObius
function of P) by:

u(rz,z) = 1, foralz e P
ulr,y) = — Z u(z, z), forall x < yin P.

r<z<y

Write p(x) = (0, ). |



I Example of Mobius function

Numbers denote p(x).



| Mobius thversion formula

P = finite poset

f,g: P — L (afield, or even just an abelian
group)

Theorem. Equivalent:

flx) = Zg(y), forallz € P

g(xr) = Z,uxy , forallz € P.

B



| Mobius thversion formula

P = finite poset
f,g: P — L (afield, or even just an abelian
group)

Theorem. Equivalent:

f(x) = Zg(y), forall x € P

Yy>x

g(xr) = Z,umy , forallz € P.

Yy>x

Proof. Straightforward. _l




I T he characteristic polynomial

Definition. The characteristic polynomial y 4(%)
of the arrangement A is defined by

xa(t) = > pl)t™

rel(A)




| T he characteristic polynomial

Definition. The characteristic polynomial y 4(%)
of the arrangement A is defined by

xa(t) = >  p(r)r™m

rel(A)

r = V contributes ¢, and each H € A

contributes —t"~1. Hence

xa(t) =t" — (FA)" +



I An example

oo {)

xa(t) =2 —4t* +5t —2 = (t — 1)*(t — 2).

B




| The boolean algebra

Suppose all hyperplanes in A are linearly
Independent, and #.4 = n. Then all intersections
are nonempty and distinct, so

L(A) = By,
the boolean algebra of all subsets of
n] ={1,...,n}, ordered by inclusion.

—



| Characteristic polynomial of B,,

Easy induction argument: x(0, z) = (—1)"dimz,
Hence

w =3 ()= - v

—



I Regions

Let K = R. Region (or chamber) of A:
connected component of R" —  J,_, H.

r(,A) = number of regions of A

A region R of A is relatively bounded if it
becomes bounded in ess(A).

b(.A) = number of relatively bounded regions of A

B



| Example of »(.A) and b(.A)
AN /
N/

r(A) =10, b(A) =2



I Zaslavsky’s theorem (1975)

Current goal:

Theorem. Let A be an arrangement of rank r in
R™. Then

=
—~
)
~—
|

(—1)"xa(—1)

(—1)"xa(1).

S

~~

A

~—
|



| Zaslavsky’s theorem (1975)

Current goal:

Theorem. Let A be an arrangement of rank r in
R™. Then

=
—~
)
~—
|

(—1)"xa(—1)

(—1)"xa(1).

S

~~

A

~—
|

Proof will be by induction on #.A4 (the number of

hyperplanes). |



Subarrangements and restrictions

subarrangement of A: a subset 5 C A

For x € L(.A) define
A, ={HeA: xCH}CA



Subarrangements and restrictions

subarrangement of A: a subset 5 C A

For x € L(.A) define
A, ={He A: 2 CH}CA

Also define the restriction of A to = to be the
arrangement in the affine space A

A* = (o NH#£0: He A—A,).

B



I L(A;)and L(.A")

Note that if x € L(A), then

L(A,) =N, = {ye L(A) : y <z}

LAY =V, = {ye L(A) : y > x}.

B



I Example of A4, and A"

____________________



I Triple.of arrangments

Choose H, € A. Define



I Triple.of arrangments

Choose H, € A. Define

./4/ — ./4— {HQ}

A// - AHO.
Call (A, A’, A”) a triple of arrangements with

distinguished hyperplane H,.



| Recurrence for »(.A) and b(.A)

Lemma. Let (A, A", A”) be a triple of real
arrangements with distinguished hyperplane H,.

Then
r(A)

r(A) +r(A")

k(A"
rk(A") + 1.

—

<” b(A) + b(A"), if rk(A)
0, if rk(.A)

\



| Thecase rk(A) = rk(A') + 1




| Proof of lemma (sketch)

Note that r(.4) equals r(A") plus the number of
regions of A’ cut into two regions by H,. Easy to
give a bijection between regions of A’ cut in two

by H, and regions of A", proving
r(A) =r(A) +r(A").



| Proof of lemma (sketch)

Note that r(.4) equals r(A") plus the number of
regions of A’ cut into two regions by H,. Easy to
give a bijection between regions of A’ cut in two
by H, and regions of A", proving

r(A) =r(A) +r(A").

Proof of recurrence for b(.4) analogous.

B



| T he deletion-restriction recurrence

Lemma. Let (A, A, A”) be a triple of real
arrangements. Then

xa(t) = xa(t) — xar(t).



| T he deletion-restriction recurrence

Lemma. Let (A, A", A”) be a triple of real
arrangements. Then

xa(t) = xa(t) — xar(t).

Zaslavsky’s theorem (r(A) = (—1)"xa(—1)) is an
Immediate conseguence of above lemma and
the recurrence r(A) = r(A’) + r(A").

B



| T he deletion-restriction recurrence

Lemma. Let (A, A", A”) be a triple of real
arrangements. Then

xa(t) = xa(t) — xar(t).

Zaslavsky’s theorem (r(A) = (—1)"xa(—1)) is an
Immediate conseguence of above lemma and
the recurrence r(A) = r(A’) + r(A").

The proof for 6(.4) is analogous but a little more

complicated.



| Whitney’s theorem

To prove: x4(t) = xa(t) — xar(t).

(H. Whitney, 1935, for linear
arrangements). A subarrangement 5 C A Is

central if (), 5 H # .

B



| Whitney’s theorem

To prove: x4(t) = xa(t) — xar(t).

(H. Whitney, 1935, for linear
arrangements). A subarrangement 5 C A Is

central if (), 5 H # .

Theorem. Let A be an arrangement in an
n-dimensional vector space. Then

xa(t)y= ) (=17,

BCA

BB central |



I Example of Whitney’s theorem

C d

B |#B rk(B)
D1 O 0

a

. al| 1 1 bc| 2 2
b| 1 1 bd | 2 2
cl| 1 1 cd |2 2
dl 1 1 acd | 3 2
ac | 2 2
ad | 2 2




| The crosscut theorem

Easy fact: Every interval [0, z] of L(A) is a
lattice, I.e., any two elements x, y have a meet
(greatest lower bound) x A y and join (least
upper bound) z V y.

B



| The crosscut theorem

Easy fact: Every interval [0, z] of L(A) is a
lattice, I.e., any two elements x, y have a meet
(greatest lower bound) x A y and join (least
upper bound) z V y.

Lemma (crosscut theorem for L(.4)). For all
z € L(A),



I Proof of Whitney’s theorem

Lemma (crosscut theorem for L(.4)). For all
z € L(A),




| Proof of Whitney’s theorem

Lemma (crosscut theorem for L(.4)). For all
z € L(A),

BCA,
Z:ﬂHeB H

Note that z = (.5 H implies that
rk(B) = n — dim z. Multiply both sides by t4m(*)
and sum over z to obtain

(t) . (_1>#Btn—rk(8).
XA BEC; _l

BB central




| Alternative formulation

coefficients of y 4(¢) alternate in sign.
More strongly, if rk(z) = ¢ then

(—=1)'u(x) > 0.



| Alternative formulation

coefficients of y 4(t) alternate in sign.
More strongly, if rk(x) = ¢ then

(—=1)'u(x) > 0.

Thus:
r(A) = ) ()
bA) = | D nla)




| A corollary

Corollary. Let A be a real arrangement. Then
r(A) and b(.A) depend only on L(A).



I A corollary

Corollary Let A be areal arrangement Then
A) and b(A) depend only on L(.A

\/ N

/ \




| Faces

R(A): set of regions of A

Definition. A (closed) face of a real
arrangement A is a set

D+4<F=RNu,

where R € R(A), v € L(A), and R = closure of
R.

B



| Faces

R(A): set of regions of A

Definition. A (closed) face of a real
arrangement A is a set

D+4<F=RNu,

where R € R(A), v € L(A), and R = closure of
R.

fx(A): number of k-dimensional faces (k-faces)

of A |



| Example of f;(.A)

/N

folA) =3, filA) =9, fo(A)=7r(A) =T



I Formula for f.(.A)

reL(A) y=zz
cor ank( ) k



I Formula for f.(.A)

fr(A) = Z > lulz,y)

reL(A) y=z
corank( ) k

Proof. Easy consequence of Zaslavsky’s formula
for r(A).

B



| Zonotopes

Let X, Y C K"

Minkowskil sum:
X+Y={ov+y:2eX yeY}

zonotope: a Minkowski sum Ly + --- + L, of line
segments in R”

—



I Example of zonotope

(0,0)



I Example of zonotope

S

(0,0)

—



| Characterization of zonotopes

Theorem. Let ‘P be a convex polytope. The
following are equivalent.

# P Is a zonotope.

» Every face of P is centrally-symmetric.

» Every 2-dimensional face of P is
centrally-symmetric.

B



T he zonotope of a real arrangement

A a real central arrangement

ni,...,NE. NOrmalsto H € A
L;: line segment from 0 to n;
Z(A): the zonotope L; + -+ Ly



| Number of faces of Z(.A)

Theorem. Let f;(Z(.A)) denote the number of
i-dimensional faces of Z(.A). Then

filZ(A)) = fu-i(A).




| Number of faces of Z(.A)

Theorem. Let f;(Z(.A)) denote the number of
i-dimensional faces of Z(.A). Then

fi(Z(A)) = fai(A).

Informally, Z(.A) is a “dual object” to A.

—



I An example of Z(.A)

\/
/N

B



I An example of Z(.A)

a9
/X



I Another example

B




| Another example

pe
&

hexagonal prism

—



I Another example

D

N




| Another example

rhombic dodecahedron



| Graphical arrangements

G graph on vertex set [n] (no loops or multiple
edges)
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| Graphical arrangements

G graph on vertex set [n] (no loops or multiple
edges)

E(G): edge set of G

Ag: arrangement in K with hyperplanes z; = z;
ifij € E(G)

B



| Graphical arrangements

G graph on vertex set [n] (no loops or multiple
edges)

E(G): edge set of G

Ag: arrangement in K with hyperplanes z; = z;
ifij € E(G)

If ¢ = K, the complete graph on |n|, then A

Is the braid arrangement 5,,.



| Set partitions

partition of a finite set S: w = { By, ..., By}, such
that

Bi#0, | JBi=S, BinB; =0 (i #j)

B; Is a block of .
I1g: set of partitions of .S

Let r,0 € Ilg. Then 7 is a refinement of o,
written w < o, If every block of 7 Is contained In

a block of o.



| The bond lattice of G

G: graph on vertex set |n)|

connected partition of |n|: a partition of n| for
which each block induces a connected subgraph
of G

B



| The bond lattice of G

G: graph on vertex set |n)|

connected partition of |n|: a partition of n| for
which each block induces a connected subgraph
of G

bond lattice L(G) of G&: set of connected
partitions of |n], ordered by refinement

B



Example of bond lattice




I Bond lattices and intersection posets

G graph with bond lattice L(G)

Ac: graphical arrangement

Theorem. L(G) = L(A(G))



| Bond lattices and intersection posets

G graph with bond lattice L(G)

Ac: graphical arrangement
Theorem. L(G) = L(A(G))

Proof. Let H;; be the hyperplane defined by

r; =xj, 1] € E(G). Letxz € L(A). Define vertices
. ~ 7 1fx C H;;. Then ~ Is an equivalence
relation whose equivalence classes form a

connected partition of [n|, etc.




Chromatic polynomial of G

coloringof Gisk: [n] =P ={1,2,...}



Chromatic polynomial of G

coloringof Gisk: n| - P={1,2,...}

proper coloring: k(i) # k(j) ifij € E(G)



Chromatic polynomial of G

coloringof Gisk: n| - P={1,2,...}
proper coloring: k(i) # k(j) ifij € E(G)
chromatic polynomial: For ¢ > 1,

xc(q) = #{proper x: [n] — [q¢]}



Chromatic polynomial of G

coloringof Gisk: n| - P ={1,2,...}
proper coloring: k(i) # k(j) ifij € E(G)
chromatic polynomial: For ¢ > 1,

xc(q) = #{proper x: [n] — [q¢]}

Easy fact: va(q) € Z[g]



I XA (t)

XA (t) = xa(t)



I XAG) (1)

Theorem. x 4 (t) = xa(t)

Proof. Let 0 € L(G).

Xo(q) = number of f: [n] — [q] such that:

» a,bin same block of ¢ = f(a) = f(b)

» a,bin different blocks, ab € £ = f(a) # f(b).

B



| Continuation of proof

Given f: |n] — |q], there is a unique
o € L(G) such that f is enumerated by ., (q).
Hence Vr € L(G),

"= xo(q).

O>T



| Continuation of proof

Given f: |n] — |q], there is a unique
o € L(G) such that f is enumerated by ., (q).
Hence Vr € L(G),

"= Xo(q).

o>

Mobius inversion = x.(q) = » ¢*"u(r,0).

o>



| Continuation of proof

Given f: |n] — |q], there is a unique
o € L(G) such that f is enumerated by ., (q).
Hence Vr € L(G),

"= Xo(q).

o>

Mobius inversion = x.(q) = » ¢*"u(r,0).

o>

Note x3(q) = xal(q)-




| Characteristic polynomial of B,,

Recall: B, = A(K,,) (braid arrangement)




| Characteristic polynomial of B,,

Recall: B, = A(K,,) (braid arrangement)

LBn = Hna

the lattice of all partitions of [n] (ordered by
refinement)

—



| Characteristic polynomial of B,,

Recall: B, = A(K,) (braid arrangement)

LBn = Hna

the lattice of all partitions of [n] (ordered by
refinement)

Clearly xx,(q) =q(¢g—1)---(¢g—n+1).
g ()=t —1)---(t—n+1).

—



| Chordal graphs

A graph ' Is chordal (triangulated, rigid
circuit) if the vertices can be ordered v4, ..., v,
so that for all 7, v; Is connected to a cligue
(complete subgraph) of the restriction of &G to
{”(}1, C ,?)Z'_l}.

—



| Chordal graphs

A graph ' Is chordal (triangulated, rigid
circuit) if the vertices can be ordered v4, ..., v,
so that for all 7, v; Is connected to a cligue
(complete subgraph) of the restriction of &G to
{”(}1, C 77]2'—1}-

Known fact: GG iIs chordal if and only if every
cycle of length at least four has a chord.

—



I Example of a chordal graph




| Chordal graph coloring

Let v, ..., v, be a vertex ordering so that for all s,
v; 1S connected to a clique of the restriction G;_1
of G to {Ul, - 7Ui—1}-



| Chordal graph coloring

Let v, ..., v, be a vertex ordering so that for all s,
v; 1S connected to a clique of the restriction G;_1
of G to {Ul, - 7Ui—1}-

Let a; be the number of vertices of G,_; to which

v; 1S connected (so a; = 0). Once vy, ...,v;_; are
(properly) colored, there are ¢ — a; ways to color
v;. Hence

B



| Chordal graph coloring

Let v, ..., v, be a vertex ordering so that for all s,
v; 1S connected to a clique of the restriction G;_1
of G to {Ul, - 7vi—1}-

Let a; be the number of vertices of G,_; to which

v; 1S connected (so a; = 0). Once vy, ...,v;_; are
(properly) colored, there are ¢ — a; ways to color
v;. Hence

XG(Q) — (C] — Cbl)(q — &2) T (CI - an)-

B



I Acyclic orientations

Orientation of (. assignment o of a direction
1 — j Or 4 — ¢ to each edge.

Acyclic orientation: an orientation with no
directed cycles

B



Given o, define

R, ={(z1,...,2,) € R" : ; < z; wheneveri — jino}.



Given o, define

R, ={(z1,...,2,) € R" : ; < z; wheneveri — jino}.

Then R, is a region of A(G), and conversely.
(Conditions are consistent because o Is acyclic.)

B



I xXc(—1)

Given o, define

R, ={(z1,...,2,) € R" : ; < z; wheneveri — jino}.

Then R, is a region of A(G), and conversely.
(Conditions are consistent because o Is acyclic.)

ao(G):. number of acyclic orientations of G

Theorem. r(Ag) = (=1)"xa(—1) = ao(G).

B



I xXc(—1)

Given o, define

R, ={(z1,...,2,) € R" : ; < z; wheneveri — jino}.

Then R, is a region of A(G), and conversely.
(Conditions are consistent because o Is acyclic.)

ao(G):. number of acyclic orientations of G

Theorem. r(Ag) = (=1)"xa(—1) = ao(G).

B

This proof is due to Greene (1977).



I (_1)i“($7 y)

Goal: interpret (—1)'u(z,y) combinatorially,
where i = rank(x, y).




I (_1)2’“(:13’ y)

Goal: interpret (—1)'u(z,y) combinatorially,
where i = rank(x, y).

For simplicity we deal only with hyperplane
arrangements, though the “right” level of
generality Is

B



| Broken.circuits

A arrangement

circuit: a minimal linearly dependent subset of A

H,,H,...,H,,: ordering of A



| Broken.circuits

A. arrangement
circuit: a minimal linearly dependent subset of A
H,,H,,...,H,,: ordering of A

broken circuit: aset ' — {H}, where C'is a
circuit and H the last element of C' In the above
ordering

—



| Broken.circuits

A. arrangement
circuit: a minimal linearly dependent subset of A
H,,H,,...,H,,: ordering of A

broken circuit: aset ' — {H}, where C'is a
circuit and H the last element of C' In the above
ordering

broken circuit complex:

BC(A) ={F C A : F contains no broken circuit } |



I An example

Note: BC(.A) is a simplicial complex, i.e.,
FeBC(A), GCF=GeBC(A).



I An example

Note: BC(.A) is a simplicial complex, i.e.,
FeBC(A), GCF=GeBC(A).

1 S 3 5



I An example

Note: BC(.A) is a simplicial complex, i.e.,
FeBC(A), GCF=GeBC(A).




I Example (continued)




| Example (continued)

D AT

fi = fi(BC(A)): # i-dim. faces of BC(A)

f-i=1, Jo=5, h=8 fa=4

|



| Example (continued)

D AT

fi = fi(BC(A)): # i-dim. faces of BC(A)

f-i=1, Jo=5, h=8 fa=4

xa(t) =t> —5t> + 8t — 4 |



| Covers

L=1,

ycoversxin L. x <y, Ar <z <y

E(L): edges of Hasse diagram of L, i.e,
E(L)=A{(x,y) : y covers x}

B



| abelings

A: E(L) — Pis alabeling of L



| abelings

A E(L) — Pis alabeling of L

fC: z=20< 21 <--- <z, =y IS a saturated
chain from x to y (l.e., each z; 4 T;),
define

AC) = (Mzo, x1), M1, 29), ..., M@Tp_1, 71))

B



| abelings

A E(L) — Pis alabeling of L

fC: x=2y<x1 <--- <, =yIS asaturated
chain from z to y (i.e., each x; T;),
define

AC) = (Mzo, x1), M1, 29), ..., M@Tp_1, 71))

(' Is Increasing Iif

AMzo, 1) < Mx1,@2) < -+ < Mag—1, 7).

B



I E-labelings

(@) (b)

(©)



I E-labelings

E-labeling: a labeling for which every interval

z,y| has a increasing chain.



Labeling and Mobius functions

Theorem. Let A be an E-labeling of L, and let
v <yin L, rank(z,y) = k. Then (—=1)*u(x,y) is
equal to the number of strictly decreasing
saturated chains from x to y, I.e.,

(—D)'ulz,y) =#{r=20g<z1 < - <2K =7 :

Mxg, x1) > May, x2) > -+ > M1, 7) }

B



I Labeling L(.A)

H,,...,H,,: ordering of A (as before)
If y covers z in L(.A) then define

Az, y) =max{i : 2V H, =y}



Example of \




| Properties of \

Claim 1. Define A: £(L(A)) — P by

~

)\(CU, y) =m+1 - )‘<$7y)'
Then X\ Is an E-labeling.



| Properties of \

Claim 1. Define A: £(L(A)) — P by

~

)\(CU, y) =m+1 - )\(:E,y).
Then X\ Is an E-labeling.

Claim 2. The broken circuit complex BC(M)

consists of all chain labels \(C) (regarded as a
set), where C'Is an Increasing saturated chain

from 0 to some z € L(M). Moreover, all such

A(C) are distinct.



Example of Claim 2.




I Example of Claim 2.

broken circuits : 12,34, 124
BC(A) ={0,1,2,3,4,5,13,14, 15, 23, 24, 25, 35, 45,

135, 145, 235, 245} |



| Broken.circuit theorem

Immediate consequence of Claims 1 and 2:

Theorem. yu(t) = )  (=1)#F#F
FeBC(A)



| Broken.circuit theorem

Immediate consequence of Claims 1 and 2:

Theorem. yu(t) = )  (=1)#F#F
FeBC(A)

Corollary. The coefficients of y 4(¢) alternate in
sign, i.e., x4(t) = t" —ait" P+ apt" % — -+,
where a; > 0. In fact

(—=1)'w(z,y) > 0, where i = rank(z, y).

B



I A glimpse of topology

(@, y|: (finite) interval in a poset P
c;: numberofchainszs=zy <1< - <x; =1y
Note. ¢y, = 0 unless x = y.



I A glimpse of topology

(@, y|: (finite) interval in a poset P
c;. numberofchainsrxr=zy <1 <---<x;, =1y
Note. ¢y, = 0 unless x = y.

Philip Hall’s theorem (1936).
p(e,y) =co—cr+cp— -+



I T he order complex

P: a poset
order complex of F:

A(P) = {chains of P},
an abstract simplicial complex.

Write A(x, y) for the order complex of the
interval (x,y) ={z€ P : x < z <y}.

—



I Example of an order complex

C
e f a
C d S
d
a b
f b



| Euler characteristic

A finite simplicial complex
fi; = # +-dimensional faces of A

Note: /| = 1 unless A = ().



| Euler characteristic

A finite simplicial complex
fi = # 1-dimensional faces of A
Note: /| = 1 unless A = ().

Euler characteristic: x(A) = fo— fi+ fo — -

B



| Euler characteristic

A finite simplicial complex

fi: = # i-dimensional faces of A

Note: /| = 1 unless A = ().

Euler characteristic: x(A) = fo— fi+ fo — -

reduced Euler characteristic:
X(A)=—fa+fo—fitfo—

Note: Y(A) = x(A) — 1 unless A = ().

B



I Philip Hall’s theorem restated

Theorem. For x < y In a finite poset,

iz, y) = X(Ax,y)).



| Philip Hall’s theorem restated

Theorem. For x < y In a finite poset,

w(z,y) = X(Ax,y)).

Recall for any finite simplicial complex A,

X(A) = (=1)! dim Hy(A; K),

J

where ﬁj(A; K') denotes reduced simplicial

homology over the field K. |



I A topological guestion

For z < yin L(A), with ¢+ = rank(z, y), we have
d:=dimA(z,y) =1— 2.

In particular, (—1)¢ = (1)~



I A topological guestion

For z < yin L(A), with ¢+ = rank(z, y), we have
d:=dimA(z,y) =1— 2.

In particular, (—1)¢ = (1)~

We get:

> (=) dim Hy(A; K) = (—1)'pu(z, ) > 0.



| A topological guestion

For z < yin L(A), with ¢+ = rank(z, y), we have
d:=dimA(z,y) =1— 2.

In particular, (—1)¢ = (1)~

We get:

> (=) dim Hy(A; K) = (—1)'pu(z, ) > 0.

7=0

|s there a topological reason for this? |



| Folkman’s theorem

d
Previous slide: » "(—1)*7 dim H;(A; K) > 0.

7=0



| Folkman’s theorem

d
Previous slide: » "(—1)*7 dim H;(A; K) > 0.
=0

Theorem (Folkman, 1966).

(

~ 0. i4d
Hi(A K) + 7
7 0, 5=d

Note. dim Hy(A; K) = (—1)%u(z, y)



| Folkman’s theorem

d
Previous slide: » "(—1)*7 dim H;(A; K) > 0.
=0

Theorem (Folkman, 1966).

(

~ 0. i4d
Hi(A K) + 7
7 0, 5=d

Note. dim Hy(A; K) = (—1)%u(z, y)

Early result in topological combinatorics. |



| Cohen-Macaulay posets

A finite poset P Is Cohen-Macaulay (over i) if

after adjoining a top and bottom element to P,
every interval |z, y| satisfies:

If d = dim A(z,y) then f[j(A(x,y); K)=0
whenever j # d.

B



| Cohen-Macaulay posets

A finite poset P Is Cohen-Macaulay (over i) if

after adjoining a top and bottom element to P,
every interval |z, y| satisfies:

If d = dim A(z,y) then ﬁj(A(af,y); K)=0
whenever j # d.

Folkman’s theorem, restated. If A Is central
then L(A) is Cohen-Macaulay.

B



| Modular.elements

Let A be central. An element x € L(A) is
modular if for all y € L we have

rk(z) + rk(y) = rk(z Ay) + rk(z V y).

B



| Modular.elements

Let A be central. An element x € L(A) is
modular if for all y € L we have

rk(z) + rk(y) = rk(z Ay) + rk(z V y).

T IS modular: rk(z) + rk(y) = 2 + 2 =4, |
rk(z Ay)+rk(zVy) =04+3=3



| Simple properties

0= K", 1=\yeq H (the top element),
and each H € A i1s modular.



I More properties

©,y € L(A) are complements if 2 Ay = 0,

e

xVy=1.



| More properties

v,y € L(A) are complements if = Ay = 0,

A

xVy=1.

Theorem. Letr = rk(A). Letx € L. The
following four conditions are equivalent.

(1) « 1s a modular element of L.
(i) If 2 Ay = 0, then rk(z) + rk(y) = tk(z V v).

(i) If x and y are complements, then
rk(x) + rk(y) = n.

(iv) All complements of x are incomparable. |



| Two additional results

Theorem.

(a) (transitivity of modularity) If « iIs a modular
element of L and y is modular in the interval

0, ], then y is a modular element of L.

(b) If x and y are modular elements of L, then
x A y 1S also modular.

B



| Modular.element factorization thm.

Theorem. Let z be a modular element of L(.A),
A central of rank r. Write x.(¢) = x5 ;(¢). Then

XL(t> — XZ(t) Z ML(y)tn—rk(y)—rk(z) |

e y/\z:@

B



| Modular.element factorization thm.

Theorem. Let z be a modular element of L(.A),
A central of rank r. Write x.(¢) = xj5_;(¢). Then

Xo(t) =x:(t) | Y pry)t" @

e y/\z:O

Since each H € A is modular in L(A), we get:
Corollary. Forall H € A,

alt)=(t=1) 3 pyr |



| Supersolvability

A central arrangement A (or L(.A)) is
supersolvable if L(.A) has a maximal chain

0=ux9<x1<--+<ux, = 10f modular elements
Li

B



| Supersolvability

A central arrangement A (or L(.A)) is
supersolvable if L(.A) has a maximal chain

0=ux9<x1<--+<ux, = 10f modular elements
L

In this case, let
az:#{HEA : HSLISZ, Hﬁﬂf@'_l}.

Corollary. If A Is supersolvable, then

xAlt) =t""(t—a)(t —as) - (t —a,).

B



| Chordal graphs, revisited

For what graphs GG is A supersolvable?
Recall: z;, = x, forij € E(G)



| Chordal graphs, revisited

For what graphs G is Ag supersolvable?
Recall: z;, = x, forij € E(G)

Recall that a chordal graph has a vertex

ordering v4, ..., v, So that for all ¢, v; Is connected
to a cligue of the restriction G;_; of G to
{Ul, Ce 7Ui—1}-

B



| Chordal graphs, revisited

For what graphs G is Ag supersolvable?
Recall: z;, = x, forij € E(G)

Recall that a chordal graph has a vertex

ordering v4, ..., v, So that for all ¢, v; Is connected
to a cligue of the restriction G;_; of G to
{Ul, Ce 7Ui—1}-

If v; IS connected to a; vertices of G;_1, then

XG(Q) — (C] — Cbl)(q — &2) T (CI - @n)-

B



| Supersolvable graphs

Suggests that
G chordal = G (or Ag) supersolvable.



| Supersolvable graphs

Suggests that
G chordal = G (or Ag) supersolvable.

In fact:

Theorem. G is chordal if and only if As Is
supersolvable.

B



I Free arrangements

Saito defined free arrangements A. Terao
(1980) proved

xa(t) = (t—a) - (= ay),

where a; € {0,1,2,... }. (Definition not given
here.)

B



I Free arrangements

Saito defined free arrangements A. Terao
(1980) proved

xa(t) = (t—a) - (= ay),

where a; € {0,1,2,... }. (Definition not given
here.)

Supersolvable arrangements are free.

B



| Free arrangements

Saito defined free arrangements A. Terao
(1980) proved

xa(t) = (t—a) - (= ay),

where a; € {0,1,2,... }. (Definition not given
here.)

Supersolvable arrangements are free.

. IS freeness of A a combinatorial
property? That is, does it just depend on y 4(t)?

—



| Finite fields and good reduction

A arrangement over Q

By multiplying hyperplane equations by a
suitable integer, can assume A Is defined over Z.

B



| Finite fields and good reduction

A arrangement over Q

By multiplying hyperplane equations by a
suitable integer, can assume A Is defined over Z.

Consider coefficients modulo a prime p to get an

arrangment A, defined over the finite field I,

q=7p".

B



| Finite fields and good reduction

A arrangement over Q

By multiplying hyperplane equations by a
suitable integer, can assume A Is defined over Z.

Consider coefficients modulo a prime p to get an

arrangment A, defined over the finite field I,

q=7p".

A, has good reduction if L4 = L 4 .

B



I Almost always good reduction

Example. A = {2,10}: affine arrangement in
Q! = Q. Good reduction < p # 2, 5.




| Almost always good reduction

Example. A = {2,10}: affine arrangement in
Q! = Q. Good reduction < p # 2, 5.

Theorem. Let A be an arrangement defined over
Z.. Then A has good reduction for all but finitely

many primes p.

B



| Almost always good reduction

Example. A = {2,10}: affine arrangement in
Q! = Q. Good reduction < p # 2, 5.

Theorem. Let A be an arrangement defined over
Z.. Then A has good reduction for all but finitely
many primes p.

Proof idea. Consider minors of the coefficient

matrix, etc.




| The finite field method

Theorem. Let A be an arrangement in Q”, and
suppose that L(A) = L(A,) for some prime
power ¢. Then

xalg) = # (F; L H)



Let x € L(A,) so #x = ¢@™®) (computed either
over Q or F,). Define f,g: L(A,) — Z by

flx) = #x
g(z) = #(SEUy)
= g(0) = gF)) =# (FZ} L H)
HeA,

—



| Proof concluded

Clearly f(z) =) g(y)

Yy>x



| Proof concluded

Clearly f(z) =) g(y)

Yy>x

Mobius inversion =

= > ulz,y)f(y)

y=w

= > plz,y)g™V

Yy=>x



| Proof concluded

Clearly f(x Zg

Yy>x

Mobius inversion =

= > p(z,y)f(y)

Yy=>x

= > plz,y)g™V

Yy=>x

r=0=g(0) =) uy)q™¥ = xalq)

Y




| Graphical arrangements

G graph on vertexset1,2,....n
Ag: graphical arrangement z; = z;, ij € E(G)



| Graphical arrangements

G graph on vertexset1,2,....n
Ag: graphical arrangement z; = z;, ij € E(G)

finite field method: for p >> 0 (actually, all p),

Xa, (@) = #{ (1, ..., o) €F) 1 a; # ayif iy € E(G)}

B



| Graphical arrangements

G graph on vertexset1,2,....n
Ag: graphical arrangement z; = z;, ij € E(G)

finite field method: for p >> 0 (actually, all p),
Xa, (@) = #{ (1, ..., o) €F) 1 a; # ayif iy € E(G)}

= x¢(q)

B



| Graphical arrangements

G graph on vertexset1,2,....n
Ag: graphical arrangement z; = z;, ij € E(G)

finite field method: for p >> 0 (actually, all p),
Xa, (@) = #{ (1, ..., o) €F) 1 a; # ayif iy € E(G)}

= x¢(q)

B



I The braid arrangement B(B,,)

r,—x; =0, 1<i1<y<n
ri+x; =0, 1<i1<y<n
ri=0, 1<1<n



I The braid arrangement B(B,,)

r,—x; =0, 1<i1<y<n
ri+x; =0, 1 <1<y <n

Thus for p >> 0 (actually p > 2),
XB(Bn)((]) — #{(alv e 7@71) S FZ :

a; # Faj (i # J), a; # 0}

B




I The braid arrangement B(B,,)

r,—x; =0, 1<i1<y<n
ri+x; =0, 1 <1<y <n
v, =0, 1 <1<n

Thus for p >> 0 (actually p > 2),
XB(Bn)(C]) — #{(alv e 7@71) S FZ :

a; # Ty (Z # j), Q; 7é O}

Choose o5 In ¢ — 1 ways, then oy In ¢ — 3 ways,

etc. |




| Characteristic polynomial of B(B,,)

= xBB,)(q) =(q@—1)(¢—=3) (¢ —2n+1)




| Characteristic polynomial of B(B,,)

= xBB,)(q) =(q@—1)(¢—=3) (¢ —2n+1)

In fact, B(B,,) is supersolvable.




| B(D»)

r,—x; =0, 1<i1<y<n
ri+x; =0, 1 <1<y <n



| B(D»)

r,—x; =0, 1<i1<y<n
ri+x; =0, 1 <1<y <n

Exercise: If n > 3 then

X5, = (@—1)(g=3)---(g—2n+3)-(¢g—n+1).

—



| B(D»)

r,—x; =0, 1<i1<y<n
ri+x; =0, 1 <1<y <n

Exercise: If n > 3 then

X5, = (@—1)(g=3)---(g—2n+3)-(¢g—n+1).

Not supersolvable (n > 4), but it Is free.

—



I The Shiarrangement

Spn:xi—2;,=0,1, 1<i<j5<n
dimS, =n, kS, =n—-1, #S,=n(n—1)



I The Shiarrangement

Spn:xi—2;,=0,1, 1<i<j5<n
dimS, =n, kS, =n—-1, #S,=n(n—1)

W
7N




| Characteristic polynomial of S,

Theorem. s (t) = t(t —n)" 1, so

r(S,) = (n+1)""1 bS,) =mn-1"1



| Characteristic polynomial of S,

Theorem. s (t) = t(t —n)" 1, so

r(S,) = (n+ 1" bS,) =n—1)"""

Proof. Finite field method =
Xs,(p) = #ila1, ..., a,) € F)

i < j=a; #ajand oy # a; + 1},

—

for p >> 0 (actually, all p).



| Proof continued

Choose # = (By, ..., B,_,) such that

| JBi=1[n], B.NB;=0ifi#j, 1€ B

—



| Proof continued

Choose # = (By, ..., B,_,) such that
| JBi=1[n], B.NB;=0ifi#j, 1€ B

For 2 < k < n there are p — n choices for : such
that £ € B;, so choices In all.

—



I Circular placement of F,,

Arrange the elements of [F, clockwise on a circle.

Place 1,2,...,n on some n of these points as
follows.

Place elements of B; consecutively (clockwise)
In Increasing order with 1 placed at some
element o; € F,,.

Skip a space and place the elements of B,
consecutively In increasing order.

Skip another space and place the elements of B;

consecutively In increasing order, etc. |



I Example for p = 11, n = 6

7= ({1,4},{5},0,{2,3,6},0)




| Conclusion of proof

o;: position (element of IF,) at which ¢ was placed



| Conclusion of proof

o;: position (element of IF,) at which ¢ was placed

Previous example:
(aq,...,06) = (6,1,2,7,9,3) € FY,



| Conclusion of proof

o;: position (element of I¥))) at which ¢ was placed

Previous example:
<Oél7 Co 7&6) — (67 172777973) = F?l

Gives bijection

{(m=(B1,...,By,—), ()41}%[5‘” U H.

—



| Conclusion of proof

o;: position (element of I¥))) at which ¢ was placed

Previous example:
(aq,...,06) = (6,1,2,7,9,3) € FY,

Gives bijection

{(m=(B1,...,By,—), ()41}%15‘” U H.

(p — n)" ! choices for = and p choices for a;, so

xs,(p) =plp —n)"". |



I T he Catalan arrangement

Cn:zi—2;=0,—-1,1, 1<i<ji<n

dimC,, =n, rkC,=n—1, #S§, = 3(7;)

—



I T he Catalan arrangement

Cn:zi—2;=0,—-1,1, 1<i<ji<n

dimC,, =n, rkC,=n—1, #S§, = 3(7;)




| Char. poly. of Catalan arrangment

Theorem.
Xe, (t) =t(t—n—1)(t—n—-2)(t—n—3) - (t—2n+1),
SO

r(C,) = nlC,, b(C,) =nlC, 1,

where C,,, = (") (Catalan number).

—



| Char. poly. of Catalan arrangment

Theorem.
Xe, (t) =t(t—n—1)(t—n—-2)(t—n—3) - (t—2n+1),
SO

r(C,) = nlC,, b(C,) =nlC, 1,

where C,,, = (") (Catalan number).

Easy to prove using finite field method.

—



| Char. poly. of Catalan arrangment

Theorem.
Xe, (t) =t(t—n—1)(t—n—-2)(t—n—3) - (t—2n+1),
SO

r(C,) = nlC,, b(C,) =nlC, 1,

where C,,, = -

—L_(*") (Catalan number).

Easy to prove using finite field method.

Each region of the braid arrangement 55,
contains C),, regions and C),_; relatively bounded

regions of the Catalan arrangment C,,. |



| Catalan.numbers

> 172 combinatorial interpretations of C,, at

mat h. mt. edu/ ~r st an/ ec



I The Linlal arrangement

Lpn:x—z;=1 1<i<j<n

dimL, =n, tkL,=n—1, #L, = (Z)

—



I The Linlal arrangement

Lpn:x—z;=1 1<i<j<n

dimL, =n, tkL,=n—1, #L, = (Z)

/N ]



| Char. poly. of Linial arrangment

SO



| Two proofs

Postnikov: (difficult) proof using Whitney’s
theorem

Athanasiadis: (difficult) proof using finite field
method

—



I Alternating trees

An alternating tree on [n] is a tree on the vertex
set [n| such that every vertex is either less than
all its neighbors or greater than all its neighbors.



I Alternating trees

An alternating tree on [n] is a tree on the vertex
set [n| such that every vertex is either less than
all its neighbors or greater than all its neighbors.

1
®

1
o

L4\

L4\

L4\

3 2 4
o o ®
4 2 3
o o o
1 4 3
o o ®
3 1 4
o o ®
4 1 3
o o e

1 2



I Alternating trees and L,,

f(n): number of alternating trees on |n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

fln+1) = Qin Z <Z> (k+1)""

k=1

—



I Alternating trees and L,,

f(n): number of alternating trees on |n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

fln+1) = Qin Z <Z> (k+1)""

k=1

Corollary. f(n+1) =1r(L,)

—



I Alternating trees and L,,

f(n): number of alternating trees on |n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

fln+1) = Qin Z <Z> (k+1)""

k=1

Corollary. f(n+1) =1r(L,)

—



I T he threshold arrangment

T,: 2;i+2;=0, 1<i<j<n

dim7,, =n, k7, =n, #7, = (Z)

—



I T he threshold arrangment

T,: 2;i+2;=0, 1<i<j<n

dim7, =n, tk7, =n, #7, = <Z>

threshold graph:
» () is a threshold graph
» G threshhold = G U {vertex} threshold

» (G threshold = join(G, v) threshold



Char. poly. of threshold arrangemer

Theorem. r(7,) = # threshold graphs on [n/.
Hence (by a known result on threshold graphs)

ZT(%):C” B 633(1—513).

n! 2 —e*
n>0




Char. poly. of threshold arrangemer

Theorem. r(7,) = # threshold graphs on |n|.
Hence (by a known result on threshold graphs)

ZT(%)QZ“ B 63;(1—33).

n! 2 —e*




| Small values of x 7 ()

x,(t) = t° —=3t" +3t—1
x7.(t) = t* =6t +15t° — 17t + 7
xz(t) = t° — 10t* + 45¢° — 105¢° + 120t — 51.

—



| Coefficients of x 7, (t)

Let



| Coefficients of x 7, (t)

Let

X7 (t) = t" — ap_1t" 4+ -+ (=1)"ay.

Thus )  a; = #{threshold graphs on |n|}.

—



| Coefficients of x 7, (t)

Let

X7 (t) = t" — ap_1t" 4+ -+ (=1)"ay.

Thus )  a; = #{threshold graphs on |n|}.

Interpret a; as the number of threshold
graphs on |n] with some property.

—



| Minkowski space R1?

R13: Minkowski spacetime with one time and
three space dimensions

p=(t,x) € RS = (x,y,2) € R’

p"=t"—|z|"=t"— (2" +y" + 2°)

—



| Ordering events in R

Let p,,...,p, € RY. In different reference
frames (at constant velocities with respect to
each other) these events can occur Iin different
orders (but never violating causality).



| Ordering events in R

Let p,,...,p, € RY. In different reference
frames (at constant velocities with respect to
each other) these events can occur Iin different
orders (but never violating causality).

Main question: what is the maximum number of
different orders in which these events can occur?

—



| The hyperplane of simultaneity

Let p1 = (t1,x1), p2 = (o, x2) € R,

For a reference frame at velocity v, the Lorentz
transformation = pq, p» occur at the same time If
and only If

tl—tQZ(CBl—a}z)"U.

The set of all such v € R® forms a hyperplane.

—



I T he Einstein arrangement

Thus the number of different orders in which the
events can occur Is the number of regions R of
the Einstein arrangement

E=E(p1,- - Dx)
defined by
ti—tj:(wl—azz)-v, 1 <1< g <k,

such that |v| < 1 (the speed of light) for some

v € R.



I Intersection poset of £

Can insure that v € R for all R by taking
p1, - - ., Pi Sufficiently “far apart”.

Can maximize r(&) for fixed k by choosing
P1, ..., Pr JENErIC.

—



| Intersection poset of £

Can insure that v € R for all R by taking
p1, - - ., Pi Sufficiently “far apart”.

Can maximize r(&) for fixed k by choosing
P1, ..., Pr JENErIC.

In this case, L(£) is isomorphic to the rank 3
truncation of L(5;) = 11;.

—



| Coefficients of xz, (t)

Recall
Xg,(t) = tt—=1)---(t—k+1)
= c(k,k)t" —c(k,k— Dt 1.

where c(k, ¢) is the number of permutations of

1,2,...,k with ¢ cycles (signless Stirling number
of the first kind).

—



I Computation of » (&)

Corollary.

xe(t) = clk, k)t’ —c(k, k — 1)t* + c(k, k — 2)t
—c(k, k — 3)

=€) = clk,k)+clk,k—1)+c(k, k—2)
+c(k, k — 3)

1
= = (K% — Tk + 23k* — 37k® + 48Kk

— 28k + 48) |
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