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Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015, to appeatr.



Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015, to appeatr.

Includes 214 combinatorial interpretations of C),
and 68 additional problems.

B



An early version (1970’s)
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How to sample?

Compare D. E. Knuth, 3:76 Bible Texts
llluminated.

Sample from Bible by choosing verse 3:16 from
each chapter.
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Compare D. E. Knuth, 3:76 Bible Texts
llluminated.

Sample from Bible by choosing verse 3:16 from
each chapter.

| will be less random.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu (%K), and Jing An

(c. 1692—c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu (%K), and Jing An

(c. 1692—c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.

Typical result (1730's):

O
: : On 1
sin(2a) = 2sina — E sin”" ! o
An—1

n=1

No combinatorics, no further work in China. I




More history, via Igor Pak

» Euler (1751): conjectured formula for number
C, of triangulations of a convex (n + 2)-gon

A NSADS
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Completion of proof

» Goldbach and Segner (1758—1759): helped
Euler complete the proof, in pieces.

» Lame (1838): first self-contained, complete
proof.
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Catalan

» Eugene Charles Catalan (1838): wrote C,, in

the form n!((iﬂ)! and showed they counted

(nonassociative) bracketings (or
parenthesizations) of a string of n -+ 1 letters.
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Catalan

» Eugene Charles Catalan (1838): wrote C,, in

the form n!%ﬂ)! and showed they counted

(nonassociative) bracketings (or
parenthesizations) of a string of n -+ 1 letters.

Born in 1814 in Bruges (now in Belgium, then
under Dutch rule). Studied in France and worked
in France and Liege, Belgium. Died in Liege in

1894.



Why ‘“‘Catalan numbers”’?

» Riordan (1948): introduced the term “Catalan
number” in Math Reviews.
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Why “‘Catalan numbers”’?

» Riordan (1948): introduced the term “Catalan
number” in Math Reviews.

» Riordan (1964): used the term again in Math.
Reviews.

» Riordan (1968): used the term in his book
Combinatorial Identities. Finally caught on.

o Gardner (1976): used the term in his
Mathematical Games column in Scientific

American. Real popularity began. I



The primary recurrence
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‘““Iransparent” interpretations

3. Binary parenthesizations or bracketings of
a string of n + 1 letters
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‘““Iransparent” interpretations

3. Binary parenthesizations or bracketings of
a string of n + 1 letters

(z(zx))x)(z(z2)(22))
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Binary trees

4. Binary trees with n vertices

NS>
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Binary trees

4. Binary trees with n vertices

NS>
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Plane trees

Plane tree: subirees of a vertex are linearly
ordered

6. Plane trees with n + 1 vertices

L
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Plane tree recurrence




Plane tree recurrence




The *‘natural bijection”




Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0,0) to (2n,0) with steps (1,1) and (1, —1),
never falling below the z-axis
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Dyck paths

25. Dyck paths of length 2n, I.e., lattice paths
from (0,0) to (2n,0) with steps (1,1) and (1, —1),
never falling below the z-axis

Ao AN A
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312-avoiding permutations

116. Permutations ajas---a, of 1,2, ... n for
which there does not exist s < 7 < k£ and
a; < ap < a; (called 312-avoiding) permutations)

123 132 213 231 321
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312-avoiding permutations

116. Permutations ajas---a, of 1,2, ... n for
which there does not exist s < 7 < k£ and
a; < ap < a; (called 312-avoiding) permutations)

123 132 213 231 321
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Less transparent interpretations

159. Noncrossing partitions of 1,2, ... . n, i.e.,
partitions # = { By, ..., B.} € 11, such that if
a<b<c<danda,ce B;andb,d € B;, then

1=
123 12-3 13—2 23—-1 1-2-3

B



Bijection with plane trees



Bijection with plane trees

3 4 8 10 11 1-



Bijection with plane trees

3 4 8 10 11 1-

Children of nonleaf vertices:

{1,5,6}, {2},{3,4},{7,9},{8},{10,11,12}

B



Noncrossing partition recurrence

12 1

11e i
10 3



Noncrossing partition recurrence




321-avoiding permutations

115. Permutations ajas---a, of 1,2, ... n with
longest decreasing subsequence of length at
most two (i.e., there does not exist 1 < j < k,

a; > a; > ay), called 321-avoiding permutations

123 213 132 312 231

B



Bijection with Dyck paths

w = 412573968
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Bijection with Dyck paths
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Semiorders

(finite) semiorder or unit interval order: a finite
subset P of R with the partial order:

r<py<—zxr<py-—1

Equivalently, noinduced | (3+1)or [ [(2+2)
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Semiorders (cont.)

180. Nonisomorphic n-element posets with no
induced subposet isomorphicto2+2or 3+1

TV N }
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Semiorders and Dyck paths




Semiorders and Dyck paths
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Semiorders and Dyck paths
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Nonerossing matchings

61. Noncrossing (complete) matchings on 2n
vertices, i.e., ways of connecting 2n points in the
plane lying on a horizontal line by n
nonintersecting arcs, each arc connecting two of
the points and lying above the points

B a e e N T2 Y
SAAN TN
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Bijection to ballot sequences
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Bijection to ballot sequences

left endpoint: 1
right endpoint: —1



Inverse bijection




Inverse bijection

Scan ballot sequence from right-to-left. Connect
each 1 with leftmost available —1.
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Nonnesting matchings

64. Nonnesting matchings on [2n], i.e., ways of
connecting 2n points in the plane lying on a
horizontal line by n arcs, each arc connecting
two of the points and lying above the points, such
that no arc is contained entirely below another

F o & v & o & e ¢ ¢ o e &

¢ e e e e ¢ e e e
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Bijection to ballot sequences
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Bijection to ballot sequences

1 1 - - 1 1 - 1 —

left endpoint: 1
right endpoint: —1



Bijection to ballot sequences

1 1 - - 1 1 - 1 - -

left endpoint: 1
right endpoint: —1

Same rule as for noncrossing matchings

B
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Many interpretations

By changing the connection rule from the 1's to
—1’s, we get many combinatorial
interpretations of Catalan numbers in terms of
complete matchings. All have the same bijection
rule from the matchings to the ballot sequences!
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Unexpected interpretations

92. n-tuples (aq, as,...,a,) of integers a; > 2
such that in the sequence 1lajas- - - a,1, each q;
divides the sum of its two neighbors

14321 13521 13231 12531 12341
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Unexpected interpretations
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Unexpected interpretations

92. n-tuples (aq, as,...,a,) of integers a; > 2
such that in the sequence 1lajas- - - a,1, each q;
divides the sum of its two neighbors

14321 13521 13231 12531 12341

112 5341
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Unexpected interpretations

92. n-tuples (aq, as,...,a,) of integers a; > 2
such that in the sequence 1lajas- - - a,1, each q;
divides the sum of its two neighbors
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Unexpected interpretations

92. n-tuples (aq, as,...,a,) of integers a; > 2
such that in the sequence 1lajas- - - a,1, each q;
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Unexpected interpretations

92. n-tuples (aq, as,...,a,) of integers a; > 2
such that in the sequence 1lajas- - - a,1, each q;
divides the sum of its two neighbors

14321 13521 13231 12531 12341

12 5(3 4 1

12 53 4 1
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Cores

hook lengths of a partition A

(NN [O1T O | 0
N
=

p-core: a partition with no hook lengths equal to
(equivalently, divisible by) p

(p, q)-core: a partition that is simultaneously a
p-core and g-core I



(n, 1+ 1)-cores

112. Integer partitions that are both n-cores and
(n + 1)-cores

» 1 2 11 311



Constructing (5, 6)-cores




Constructing (5, 6)-cores
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19| 14| 9 4 | -1
13| 8 | 3 -2 -7
7 2 -3| -8| —13
1 -4 -9 -14 -1¢




Constructing (5, 6)-cores

-5 ~

19| 14| 9 4 | -1
13| 8| 3 =2 =7
I 2 | -3| —-8| —-13
1 -4 | -9| -14 -19




Constructing (5, 6)-cores

19

13

-13

-14

—19

1 23479
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Constructing (5, 6)-cores

13| 8| 3 =2 -7

R\
— N W
— Y
W = =
= Ot O



(4,3,1,1,1,1) is a (5, 6)-core

R (NN W | | N O




Inversions of permutations

inversion of a,ay - --a, € G,,: (a;,a;) such that
1< 7, a; > a;



Inversions of permutations

inversion of a,as - - a, € 6,,: (a;,a;) such that
1< 7, a; > a;

186. Sets S of n non-identity permutations in
S,,41 such that every pair (i, j) with1 <i < j <n
IS an inversion of exactly one permutation in S

(1243, 2134, 3412}, {1324, 2314, 4123}, {2134, 3124, 4123}
{1324, 1423, 2341}, {1243, 1342, 2341}
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Inversions of permutations

inversion of a,as - - a, € 6,,: (a;,a;) such that
1< 7, a; > a;

186. Sets S of n non-identity permutations in
S,,41 such that every pair (i, j) with1 <i < j <n
IS an inversion of exactly one permutation in S

(1243, 2134, 3412}, {1324, 2314, 4123}, {2134, 3124, 4123}

{1324, 1423, 2341}, {1243, 1342, 2341}

due to R. Dewiji, |. Dimitrov, A. McCabe, M. I
Roth, D. Wehlau, J. Wilson



A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of
all (n—1) x (n — 1) upper triangular matrices
over a field



A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of
all (n—1) x (n — 1) upper triangular matrices
over a field

* * %
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Quasisymmetric functions

Quasisymmetric function: a polynomial
f e Qlxy,...,z,] such thatif i; <--- <14, then



Quasisymmetric functions

Quasisymmetric function: a polynomial
f e Qlxy,...,z,] such thatifs; <--- <14, then

(k) Dimension (as a Q-vector space) of the ring

Qlzy, ..., x,]/Qn, where @Q,, denotes the ideal of
Q|z, ..., 2z, generated by all quasisymmetric
functions in the variables x4, ..., z, with O

constant term
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Quasisymmetric functions

Quasisymmetric function: a polynomial
f e Qlxy,...,z,] such thatifs; <--- <14, then

(k) Dimension (as a Q-vector space) of the ring

Qlzy, ..., x,]/Qn, where @Q,, denotes the ideal of
Q|z, ..., 2z, generated by all quasisymmetric
functions in the variables x4, ..., z, with O

constant term
Difficult proof by J.-C. Aval, F. Bergeron and N.

Bergeron, 2004. I



Diagonal harmonics

(1) Let the symmetric group &,, act on the
polynomial ring A = Clzy, ..., 20, Y1, ..., ys| DY
w- f(T1, . T Yty Yn) =

f(ﬂj’w(l), oy Ty(n)s Yw(l)s - - - ayw(n)) forall w € G,,.
Let I be the ideal generated by all invariants of
positive degree, I.e.,

I=(feA:wf=fforallwes,, and f(0) =0).

B



Diagonal harmonics (cont.)

Then (), is the dimension of the subspace of A/I
affording the sign representation, i.e.,

Cp,=dim{f e A/l :w-f =(sgnw)f forallw e G,}.

B



Diagonal harmonics (cont.)

Then (), is the dimension of the subspace of A/I
affording the sign representation, i.e.,

Cp,=dim{f e A/l :w-f =(sgnw)f forallw e G,}.
Very deep proof by M. Haiman, 1994.

B



Generalizations & refinements

A12. k-triangulation of n-gon: maximal
collections of diagonals such that no k£ + 1 of
them pairwise intersect in their interiors

k = 1. an ordinary triangulation

superfluous edge: an edge between vertices at
most k steps apart (along the boundary of the
n-gon). They appear in all £-triangulations and

are irrelevant.



An example

Example. 2-triangulations of a hexagon
(superfluous edges omitted):

N AL L
N/

B



Some theorems

Theorem (Nakamigawa,
Dress-Koolen-Moulton). All k-triangulations of

an n-gon have k(n — 2k — 1) nonsuperfluous
edges.



Some theorems

Theorem (Nakamigawa,
Dress-Koolen-Moulton). All k-triangulations of

an n-gon have k(n — 2k — 1) nonsuperfluous
edges.

Theorem (Jonsson, Serrano-Stump). 7The

number Ti.(n) of k-triangulations of an n-gon is
given by

Tk (TL) det [On_i_j]k

1,)=1

o s I
1<i<j<n—2k v+ —1




Representation theory?

Note. The number T (n) is the dimension of an
irreducible representation of the symplectic
group Sp(2n — 4).



Representation theory?

Note. The number T (n) is the dimension of an
irreducible representation of the symplectic

group Sp(2n — 4).

Is there a direct connection?



Number theory

A61. Let b(n) denote the number of 1’s in the
binary expansion of n. Using Kummer's theorem
on binomial coefficients modulo a prime power,
show that the exponent of the largest power of 2
dividing C,, is equal to b(n + 1) — 1.

B



Sums of three squares

Let f(n) denote the number of integers
1 < k < nsuchthat & is the sum of three squares
(of nonnegative integers). Well-known:



Sums of three squares

Let f(n) denote the number of integers
1 < k < nsuchthat & is the sum of three squares
(of nonnegative integers). Well-known:

Let g(n) denote the number of integers
1 < k < nsuch that C; I1s the sum of three

squares. Then
jim 9 7 I
n—o0 T



Sums of three squares

Let f(n) denote the number of integers
1 < k < nsuchthat & is the sum of three squares

(of nonnegative integers). Well-known:

A63. Let g(n) denote the number of integers
1 < k < nsuch that C; I1s the sum of three

squares. Then
lim 2 _ 7 I
n—oo M X



Analysis

A65.(b)



Analysis

A65.(b)







Why?

A65.(a)
(x+8) 24z sin”! (34/)
;C 4—:13)2 (4 —x)52

Consequence of




Why?

A65.(a)
(x+8) 24z sin”! (34/)
;C 4—:13)2 (4 —x)52

Consequence of

2 (sin_1 §)2 — Z nf(%) .




An outlier

Euler (1737):

Convergents: 1,3, 2, 22, I



A curious generating function

a,. humerator of the nth convergent

ar =1, ao =3, a3 =19, as = 193



A curious generating function

a,. humerator of the nth convergent

ar =1, ao =3, a3 =19, as = 193

1+ Z @”Z_T — exp Z C gt

n>1 ‘ m>0
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