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The diagrams Pib

Let i , b ≥ 2. Define the diagram (or poset) Pib by

• There is a unique maximal element 1̂

• Each element covers exactly i elements.

• The diagram is planar.

• Every extends to a 2b-gon (b edges on each side)
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Some results for any i , b

The rank of an element t ∈ Pib is the length of a chain from 1̂ to
t, so rank(1̂) = 0.

pib(n): number of elements of Pib of rank n

Elementary counting argument gives

pib(n) = ipib(n − 1)− (i − 1)pib(n − b).

Initial conditions: pib(n) = in, 0 ≤ n ≤ b − 1

⇒
∑

n≥0

pib(n)x
n =

1

1− ix + (i − 1)xb
.

Note. Thus pib(n) grows exponentially except for (i , b) = (2, 2).
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For t ∈ Pib, let e(t) be the number of paths (saturated chains)
from 1̂ to t. Equivalently, e(1̂) = 1 and for t < 1̂,

e(t) =
∑

s covers t

e(s).

Example. P22
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

0

1

2

3

4

Pascal’s triangle



A generating function for the e(t)’s

Fix i and b.

tnk : kth element from left in the nth row of Pib, beginning with
k = 0.
〈

n

k

〉

=

〈

n

k

〉

i ,b

= e(tnk)

qn: number of elements of Pib of rank n

rn =
qn − qn−1

i − 1
∈ P = {1, 2, . . . }



A generating function for the e(t)’s

Fix i and b.

tnk : kth element from left in the nth row of Pib, beginning with
k = 0.
〈

n

k

〉

=

〈

n

k

〉

i ,b

= e(tnk)

qn: number of elements of Pib of rank n

rn =
qn − qn−1

i − 1
∈ P = {1, 2, . . . }

Theorem.
∑

k

〈

n

k

〉

xk =

n
∏

j=1

(

1 + x rj + x2rj + · · ·+ x(i−1)rj
)

(analogue of binomial theorem, the case i = b = 2)
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Stability

Theorem (repeated).
∑

k

〈

n

k

〉

xk =
n
∏

j=1

(

1 + x rj + x2rj + · · ·+ x(i−1)rj
)

For all (i , b) 6= (2, 2), we have rn → ∞ as n → ∞.

⇒ For fixed k , e(t0k), e(t1k ), e(t2k ), . . . eventually becomes
constant, say ek . Then

∑

k≥0

ekx
k =

∞
∏

j=1

(

1 + x rj + x2rj + · · ·+ x(i−1)rj
)

.
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∑

k

(

n

k

)2

=

(

2n
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∑

n≥0

(

2n

n

)

xn =
1√

1− 4x
,

not a rational function (quotient of two polynomials)

∑

k

(

n

k

)3

=??

Even worse! Generating function is not algebraic.

Much of this behavior is atypical. Different for (i , b) 6= (2, 2).



The poset P32 (Stern poset)

1

111

1121211

112132313231211

Very different behavior from P22.
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Stern’s triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

...

Stern’s triangle



Some properties

• Number of entries in row n (beginning with row 0): 2n+1 − 1



Some properties

• Number of entries in row n (beginning with row 0): 2n+1 − 1

• Sum of entries in row n: 3n



Some properties

• Number of entries in row n (beginning with row 0): 2n+1 − 1

• Sum of entries in row n: 3n

• Largest entry in row n: Fn+1 (Fibonacci number)



Some properties

• Number of entries in row n (beginning with row 0): 2n+1 − 1

• Sum of entries in row n: 3n
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i
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The sequence (ē0, ē1, . . . ) is Stern’s diatomic sequence (Moritz
Abraham Stern, 1807–1894):

1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 . . . ,
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Stabilization

∑

k≥0

ekx
k =

∞
∏

i=0

(

1 + x2
i

+ x2·2
i
)

The sequence (ē0, ē1, . . . ) is Stern’s diatomic sequence (Moritz
Abraham Stern, 1807–1894):

1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 . . . ,

so ēk is the number of ways to write k as a sum of powers of 2,
where each power of 2 can occur at most twice.

Most amazing property: Every positive rational number occurs
exactly once among the numbers ēi/ēi−1, i ≥ 1.
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u2(n) :=
∑

k

〈

n

k

〉2

= 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n)− 2u2(n − 1), n ≥ 1

∑

n≥0

u2(n)x
n =

1− 2x

1− 5x + 2x2
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Simple combinatorial argument gives

u2(n + 1) = 3u2(n) + 2u1,1(n)

u1,1(n) = 2u2(n) + 2u1,1(n).

Define A :=

[

3 2
2 2

]

.

Then

A

[

u2(n)
u1,1(n)

]

=

[

u2(n + 1)
u1,1(n + 1)

]

.

⇒ An

[

u2(1)
u1,1(1)

]

=

[

u2(n)
u1,1(n)

]
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Idea of proof (concluded)

Characteristic (or minimum) polynomial of A: x2 − 5x + 2

(A2 − 5A+ 2I )An−1 = 02×2

⇒ u2(n + 1) = 5u2(n)− 2u2(n − 1)

Also u1,1(n + 1) = 5u1,1(n)− 2u1,1(n − 1).



Sums of cubes

u3(n) :=
∑

k

〈

n

k

〉3

= 1, 3, 21, 147, 1029, 7203, . . .



Sums of cubes

u3(n) :=
∑

k

〈

n

k

〉3

= 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 · 7n−1, n ≥ 1



Sums of cubes

u3(n) :=
∑

k

〈

n

k

〉3

= 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 · 7n−1, n ≥ 1

Equivalently, if

n−1
∏

i=0

(

1 + x2
i

+ x2·2
i
)

=
∑

ajx
j , then

∑

a3j = 3 · 7n−1.
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Why so simple?

Same method gives the matrix

[

3 6
2 4

]

.

Characteristic polynomial: x(x − 7) (zero eigenvalue!)

Thus u3(n + 1) = 7u3(n), n ≥ 1 (not n ≥ 0).

Much nicer than
∑

k

(

n
k

)3
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What about ur(n) for general r ≥ 1?

By the same technique, can show that

∑

n≥0

ur (n)x
n

is rational.

Example.
∑

n≥0

u4(n)x
n =

1− 7x − 2x2

1− 10x − 9x2 + 2x3

Much more can be said!

RS, Amer. Math. Monthly 127 (2020), 99-111
RS, Europ. J. Combinatorics 119 (2023), 113359
A. L. B. Yang, arXiv:2006.00400
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Basic properties

qn (number of elements of rank n): Fn+2 − 1, where
F1 = F2 = 1,Fn+1 = Fn + Fn−1

∑

k

〈

n

k

〉

xk =

n
∏

i=1

(

1 + xFi+1

)

:= In(x)

I4(x) = (1 + x)(1 + x2)(1 + x3)(1 + x5)

= 1 + x + x2 + 2x3 + x4 + 2x5 + 2x6 + x7 + 2x8 + x9 + x10 + x11
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v2(n) :=
∑

k

〈

n

k

〉2

Can obtain a system of recurrences analogous to

v2(n + 1) = 3v2(n) + 2v1,1(n)

v1,1(n + 1) = 2v2(n) + 2v1,1(n)

for Stern’s triangle.

Quite a bit more complicated (automated by D. Zeilberger).

Theorem.
∑

n≥0

v2(n)x
n =

1− 2x2

1− 2x − 2x2 + 2x3

Reminder: v2(n) =
∑

a2i , where

n
∏

i=1

(

1 + xFi+1

)

=
∑

i

aix
i .
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Higher powers

vr (n): sum of r th powers of coefficients of In(x)

Vr (x) :=
∑

n≥0

vr (n)x
n

Vr (x) is a rational function.



Vr(x) for r ≤ 6

Theorem. V1(x) =
1

1− 2x
(clear)

V2(x) =
1− 2x2

1− 2x − 2x2 + 2x3

V3(x) =
1− 4x2

1− 2x − 4x2 + 2x3
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V5(x) =
1− 11x2 − 20x4
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Vr(x) for r ≤ 6

Theorem. V1(x) =
1

1− 2x
(clear)

V2(x) =
1− 2x2

1− 2x − 2x2 + 2x3

V3(x) =
1− 4x2

1− 2x − 4x2 + 2x3

V4(x) =
1− 7x2 − 2x4

1− 2x − 7x2 − 2x4 + 2x5

V5(x) =
1− 11x2 − 20x4

1− 2x − 11x2 − 8x3 − 20x4 + 10x5

V6(x) =
1− 17x2 − 88x4 − 4x6

1− 2x − 17x2 − 28x3 − 88x4 + 26x5 − 4x6 + 4x7

Note. Numerator is “even part” of denominator (I. Bogdanov
MO457900, 2023)
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Strings of size two and three

1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

What is the sequence of string sizes on each level? E.g., on level 5,
the sequence 2, 3, 2, 3, 3, 2, 3, 2.
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As n → ∞, we get a “limiting sequence”

2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, . . . .

Let φ = (1 +
√
5)/2, the golden mean.

Theorem. The limiting sequence (c1, c2, . . . ) is given by

cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋.
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Two properties of cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋

2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, . . . .

γ = (c2, c3, . . . ) characterized by invariance under 2 → 3,
3 → 32 (Fibonacci word in the letters 2,3).

• γ = z1z2 . . . (concatenation), where z1 = 3, z2 = 23,
zk = zk−2zk−1

3 · 23 · 323 · 23323 · 32323323 · · ·

Further work by Teresa Xueshan Li.
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)
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Example. Coefficient of x8 in
(1 + x)(1 + x2)(1 + x3)(1 + x5)(1 + x8) is 3:

8 = 5 + 3 = 5 + 2 + 1.



Coefficients of In(x)

In(x) =

n
∏

i=1

(

1 + xFi+1

)

Coefficient of xm: number of ways to write m as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.

Example. Coefficient of x8 in
(1 + x)(1 + x2)(1 + x3)(1 + x5)(1 + x8) is 3:

8 = 5 + 3 = 5 + 2 + 1.

Can we see these sums from F? Each path from the top to a point
t ∈ F should correspond to a sum.



An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2, 0,F2k+2, . . . from left to right.



An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2, 0,F2k+2, . . . from left to right.

The edges between ranks 2k − 1 and 2k are labelled alternately
F2k+1, 0,F2k+1, 0, . . . from left to right.



Diagram of the edge labeling

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).

If rank(t) = n, this gives all ways to write σ(t) as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

2 + 3 = F3 + F4



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

5 = F5



An ordering of N

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3

7 2   10 5   0    8 3   11 6  1    9 4

In the limit as rank → ∞, get an interesting dense linear ordering
≺ of N.



Special case of ≺

Every nonnegative integer has a unique representation as a sum of
nonconsecutive Fibonacci numbers, where a summand equal to 1 is
always taken to be F2 (Zeckendorf’s theorem).

n = Fj1 + · · ·+ Fjs , j1 < · · · < js



Special case of ≺

Every nonnegative integer has a unique representation as a sum of
nonconsecutive Fibonacci numbers, where a summand equal to 1 is
always taken to be F2 (Zeckendorf’s theorem).

n = Fj1 + · · ·+ Fjs , j1 < · · · < js

Then n ≺ 0 if and only if j1 is odd.



Congruence properties

hm,a(n): number of coefficients of In(x) that are ≡ a (modm).

Hm,a(x) :=
∑

n≥0

hm,a(n)x
n.



Congruence properties

hm,a(n): number of coefficients of In(x) that are ≡ a (modm).

Hm,a(x) :=
∑

n≥0

hm,a(n)x
n.

Can show that Hm,a(x) is a rational function.



n = 2, 3

H2,0(x) =
x3(1− 2x2)

(1− x)(1− x − x2)(1− 2x + 2x2 − 2x3)

H2,1(x) =
1 + 2x2

1− 2x + 2x2 − 2x3

H3,0(x) =
2x5(1− 2x2)

(1− x)(1− x − x2)(1− 2x + 2x2 − 3x3 + 4x4 − 4x5)

H3,1(x) =
1− 2x + 4x2 − 6x3 + 8x4 − 10x5 + 8x6 − 6x7

(1− x)(1− x + x2)(1− 2x + 2x2 − 3x3 + 4x4 − 4x5)

H3,2(x) =
x3(1 + 2x4)

(1− x)(1− x + x2)(1− 2x + 2x2 − 3x3 + 4x4 − 4x5)



n = 4

H4,0(x) =
x6(1− 2x2)(1− 3x2 + 4x3 − 4x4)

(1− x)(1− x − x2)(1− x2 + 2x4)(1 − 2x + 2x2 − 2x3)2

H4,1(x) =
1− 2x + 5x2 − 8x3 + 10x4 − 12x5 + 8x6 − 6x7

(1− x)(1− 2x + 2x2 − 2x3)(1 − x + 2x2 − 2x3 + 2x4)

H4,2(x) =
x3(1 + x2)(1 − 2x2)

(1− x2 + 2x4)(1 − 2x + 2x2 − 2x3)2

H4,3(x) =
2x5(1 + x2)

(1− x)(1− 2x + 2x2 − 2x3)(1 − x + 2x2 − 2x3 + 2x4)



n = 4

H4,0(x) =
x6(1− 2x2)(1− 3x2 + 4x3 − 4x4)

(1− x)(1− x − x2)(1− x2 + 2x4)(1 − 2x + 2x2 − 2x3)2

H4,1(x) =
1− 2x + 5x2 − 8x3 + 10x4 − 12x5 + 8x6 − 6x7

(1− x)(1− 2x + 2x2 − 2x3)(1 − x + 2x2 − 2x3 + 2x4)

H4,2(x) =
x3(1 + x2)(1 − 2x2)

(1− x2 + 2x4)(1 − 2x + 2x2 − 2x3)2

H4,3(x) =
2x5(1 + x2)

(1− x)(1− 2x + 2x2 − 2x3)(1 − x + 2x2 − 2x3 + 2x4)

Why the factorization of the denominators?

Why so many numerators with two terms?



References

The Stern triangle: RS, Amer. Math. Monthly 127 (2020),
99–111; arXiv:1901.04647

The Stern triangle: D. Speyer, arXiv:1901:06301

The Fibonacci triangle (and more): RS, arXiv:2101.02131



The final slide



The final slide


