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The function ¢(\)

Amdeberhan-Ono-Singh (2024):
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where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.



The function ¢(\)

Amdeberhan-Ono-Singh (2024):

n

— o TTL (M- DB
P(A) = (2n)! kH:lmk!< (2k)(2k)! > ’

where A = (1™ ... .n™) = n=>im; (\is a partition of n with
m; i's) and By is a Bernoulli number.

Express a certain theta function of
Ramanujan in terms of Eisenstein series (not explained here).



Euler numbers E,,

Not hard to see that

o(N) €Z, Y |6\ = Ezn,

AFn

an Euler number or secant number, defined by

secx = Z E2,, 2n)|

n>0

. Epp is equal to the number of alternating
permutations ajay - - ax, € Gy, i€,

ar > axy<az >ag<--->agy.



Euler numbers E,,

Not hard to see that

o(N) €Z, Y |6\ = Ezn,

AFn

an Euler number or secant number, defined by

secx = Z E2,, 2n)|

n>0

. Epp is equal to the number of alternating
permutations ajay - - ax, € Gy, i€,

ar > axy<az >ag<--->agy.

what does |¢())| count?
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A symmetric function

The general form ¢(\) = (2n)! ] m%!fkm" suggests defining a
symmetric function in the variables x = (xl,xz, )

n—A Z|¢ “PXs

AbFn

where p) is a power sum symmetric function.

Interesting expansions of Ap:

> Ap =, |0(N)] - pa (original problem)

> A, =D\, (x)h\ (complete symmetric function expansion)

> An =2 sc[n-1] (¥)Ls (fundamental quasisymmetric function
expansion)

> A, =>"\, (x)my (monomial symmetric function expansion)

> A, =>"\, (x)fox (forgotten symmetric function expansion:
foy 1= wmy)

> A, =D\, (%)sx (Schur function expansion)
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s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.
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Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in Ww.
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Record partitions

s, = {w € Sy, : w alternating}
Recall >\, [6(N)] = Eon = #2Asn.

Ifw=a1>a <-->a, €Ay, define w = ay,a3,...,a_1.
Write w = by, by, , ..., by.

record set rec(w): set of indices 1 < i < n for which b; is a
left-to-right maximum (or record) in Ww.

record partition rp(W): if rec(W) = {r, r,...,rj}<, then rp(W)
is the partition of n with parts o —ry,r3—r, 3 —r3,...,n+1—1r;
(in decreasing order)

w = 772757478737 10767975 € Qll()v W= 7757871079;

I’1:1, I’2:3, I’3:4, I’2—I’1:2, I’3—I’2:1,6—I’3:2,
rp(W) = (2,2,1)
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Combinatorial interpretation of ¢(\)

Theorem. |p(N)| = #{w € Az, : rp(W) = A}

Recall
n k k my
1 (454" —1)By
N=0@n) || — | —m 5
9(3) = (2n) Hmk! < (2k)(2k)! ’
where A = (1™ ... n™) > im;. To get combinatorics into the

picture, use

[B2x|
2k

Remainder of proof is a bijective argument.

Epi_1 = 4K(4k — 1)



Examples.

AL = p
Ay = 3pi+2p
As = 15p; +30pp1 + 16p3
Ay = 105p1* 4 420p,p7 + 140p3 + 448p3p1 + 272p,
Az:
w  w  rp(w)
2143 24 11
3142 34 11
3241 34 11
4132 43 2

4231 43 2



A generating function

An(x)t"
F(x,t) ::Z;J (2(n))|t



A generating function

An(x)t"
F(x,t):= Z(:) (én))f

Follows from

n

1 4k(4k 1 B, my
e = @I <W>

k=1
= n)! . - i Exk 1 Mk
- G kl;[l my! <(2k)! )

that

k
F(x,t) = exp (Z EzlEE;(I;;(t ) '

k>1



A “shifted” generating function

E x2 Epp_q1x?k—1
Z 2(1(2/<1 - /(zk: (2;k1— 1)! )dx

= /tan(x)dx

= log(sec(x))



Product formula
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Product formula

k
= F(x,t) = exp (Z Ez?;i[))!kt )

k>1

Eok—1xft*
- Hexp (; (2k)! )

— H exp(log sec(v/xit))
- Hsec(\/E)-

t) = H sec(v/xjt)

i>1
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Theorem. A,(x) is h-positive.



h-positivity

. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 — 7r2(24k7t2_1)2> implies:

k>1

Fix,t) = ]]] (1—;(#_1)&_1

i>1 k>1
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h-positivity

. An(x) is h-positive.

Proof. Weierstrass product formula

cos(t) =[] (1 - 7r2(24k7t2_1)2> implies:

k>1

Fed = T (1 e )

i>1k>1
4 n
= —— | t"h,
T3 ()
k>1 \ n>0

Very noncombinatorial formula for the coefficients!
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+ 640h3 hy + 39680hs.
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Some data

AL =h

Ay = h? + 4hy

As = h} 4 12hyhy + 48h3

Ay = h} 4 24hyh? + 256h3hy + 16h3 + 1088h,

As = h2 + 40hy h3 + 800h3h? + 80h3 hy + 9280hshy
+ 640h3 hy + 39680hs.

Sum of coefficients is E>,. What are the
coefficients themselves?

Coefficient of h, is nEx,—1, the number of “cyclically
alternating” permutations in Goj,.
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Chromatic symmetric functions

G: finite simple graph on vertex set V(G) = {vi,v2,...,vp}

XG(X) = Z Xis(v1) Xr(v2) """ Xie(vp)
k: V(G)—P
uweE(G)=r(u)#r(v)
X () = GatoatP=e

Xk,(x) = plep

XG(].,].,...,].,0,0,...) = X(.;(m),
N——
m1's

the chromatic polynomial of G.



Interval orders

T ={[a1, b1],---,[an, bn]}, a collection of closed intervals in R, so
a; < b;.

Gz: graph with vertex set Z, with [a;, b;] adjacent to [a;, bj] if

[ai, bi] N [aj, bj] # 0 (incomparability graph of the corresponding
interval order: [aj, bj] < [aj, bj] if bi < aj]).

M: a complete matching a1 by, axby, ..., a,b, on

[2n] :={1,2,...,2n}, with a; < b; (so {a1, b1,...,an, by} = [2n])

(M) :={[a1,b1],---,[an, bn]}



Interval orders

T ={[a1, b1],---,[an, bn]}, a collection of closed intervals in R, so
a; < b;.

Gz: graph with vertex set Z, with [a;, b;] adjacent to [a;, bj] if

[ai, bi] N [aj, bj] # 0 (incomparability graph of the corresponding
interval order: [aj, bj] < [aj, bj] if bi < aj]).

M: a complete matching a1 by, axby, ..., a,b, on

[2n] :={1,2,...,2n}, with a; < b; (so {a1, b1,...,an, by} = [2n])

Z(M) :={[a1, b1, - - ., [an, bn]}
wAp =3 mem, Xy where M, is the set of all

(2n — 1)1 complete matchings on [2n], and Xg,,,, is the
chromatic symmetric function of the graph Gz(y).
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The case n =2

matching M graph Gz XGI(M)
2

12, 34 ° ° e
13, 24 ———e 26
14, 23 ———e 2e)

OJAQ = ef + de
Equivalently, Ay = h? + 4h,.

Warning! The interval orders Z(M) need not be interval
orders, so XGI(M) need not be e-positive. Thus the theorem does
not give another proof that A, is h-positive. (By a recent result of
Tatsuyuki Hikita, X¢ is e-positive for incomparability graphs of
unit interval orders.)



Two problems

What can be said about the structure of the interval
orders Z(M) for M € M,?

How many are semiorders? (For 1 < n<4: 1,2,5,10.)

How many times does a given interval order occur (up to
isomorphism)? E.g., an antichain occurs n! times.



Two problems

What can be said about the structure of the interval
orders Z(M) for M € M,?

How many are semiorders? (For 1 < n<4: 1,2,5,10.)

How many times does a given interval order occur (up to
isomorphism)? E.g., an antichain occurs n! times.

Are there other "nice” examples of sums (or linear
combinations) of X¢'s being e-positive?



Monomial symmetric functions

Example. Coefficient of m311 in Asg is the number of
w = ai,...,ain € Gp satisfying

a1 > ax<az >ag<as >ag ay > ag ag > aig -
—_—— N——
length 6=2)\; 2=2X\> 2=2)3



Monomial symmetric functions

Example. Coefficient of m311 in Asg is the number of
w = ai,...,ain € Gp satisfying

a1 > ax<az >ag<as >ag ay > ag ag > aig -
—— ——

length 6=2X\; 2=2)X> 2=2)3

Proof sketch. Expand

3~ e = sty = T (S 625

2n
Ay (x) = Eoy B, -+ -
[maJAn(x) <2)\1,2)\2,...) 22 F2%

etc.



Fundamental quasisymmetric expansion

(for quasisymmetric aficiandos). Can easily deduce the
expansion of A, in terms of fundamental quasisymmetric functions
Ls, S C [n— 1], from the monomial expansion. Details omitted.



Schur function expansion

To get the coefficient of ss311 in A1p(x), take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape ps311:

Row lengths are the parts of .
Each row begins one square to the left of the row above.




Schur function expansion

To get the coefficient of ss311 in A1p(x), take the
conjugate partition 42211 and double each part: p = 84422. Form
the skew shape ps311:

Row lengths are the parts of .
Each row begins one square to the left of the row above.

For general A\ = n, the coefficient of sy in A, is the
number of standard Young tableaux of (skew) shape p.
(Well-known determinantal formula.)
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First generalization

-1
Note sect = (Z(l)" (;;) :

n>0

Recall F(x,t) = Z 2:))|t Hsec xit)

n>0

Let d > 1. Define

A t"
Fa(x,t) = Z na(x)
n>0 ’

—1)nxn¢n -
= H(Z( (c)fn);t) |




p-expansion of A, 4

Recall for d = 2:

Ap=Ap2 = Z#{W € Aoy tp(W) = A}pa,
AFn

where 205, = {w € &3, : w alternating} and
W= ai,as,...,dn1.



p-expansion of A, 4

Recall for d = 2:

Ap=Ap2 = Z#{W € Aoy tp(W) = A}pa,
AFn

where 205, = {w € &3, : w alternating} and
W= ai,as,...,dn1.

For A, 4, replace 24, with
{w=a1--agy, € Ggp : Asc(w) ={d,2d,...,(n—1)d}.

Replace w with a1, 3441, a2d+1, - - - » a(n—1)d+1-



h-expansion of A, 4

For d > 3 we don't know the complex zeros of

Ga(t) == (zj,),).t "

n>0

explicitly as we do for cos v/t = 37 - - 1,),;tn
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o
j>1 J



h-expansion of A, 4

For d > 3 we don't know the complex zeros of
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. Qj
Jjz1

An 4 is h-positive.



h-expansion of A, 4

For d > 3 we don't know the complex zeros of

Ga(t) = ;) (z;))f

( l)ntn

explicitly as we do for cos v/t = Dm0 T

However, G4(t) is a special case of a Mittag-Leffler function. It
is known that that there are real numbers 0 < a7 < ap < --- such

that
co-T1(-2)

j>1
An 4 is h-positive.

Can also be proved using the theory of total positivity
(Edrei-Thoma theorem).



Monomial expansion of A, 4

Coefficient of m3711 in Ag is the number of
w = ai,...,ain € Gp satisfying

a1 > ax<az >ag<as >ag ay > ag ag > aio -
~ S—— ——
length 6=2)\; 2=2)\; 2=2)3

Coefficient of my; in As 3 is the number of w € Gg
satisfying

d) > adx >az < aq >as > aeg ayr > ag > dg .

length 6=3X\; 3=3X\2



Monomial expansion of A, 4

Coefficient of m3711 in Ag is the number of
w = ai,...,ain € Gp satisfying

a1 > ax<az >ag<as >ag ay > ag ag > aio -
~ S—— ——
length 6=2)\; 2=2)\; 2=2)3

Coefficient of my; in As 3 is the number of w € Gg
satisfying

d) > adx >az < aq >as > aeg ayr > ag > dg .

length 6=3X\; 3=3X\2

Also nice Schur function expansion.
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Second generalization

Replace n! in the denominator with n!k.

Let kK > 1. Define

Gilx, ) = 3 Bnkbe

nlk
n>0

—1)xnen
- H Z( ,)ﬂklt

i n>0

-1



Second generalization

Replace n! in the denominator with n!k.

Let kK > 1. Define

Gi(x,t) = Z M

nlk
n>0
-1
(_1)nxintn
= 12—
i \n>0 '
(Carlitz-Scoville-Vaughan 1974, RS 1976). Let

fk(n) = #{(Ul, ey Uk) € Gﬁ : D(Ul) n---N D(Uk) = @}

n n -1
Then 300 fi(M) & = (S pso(-1)"27)



p-expansion of By, (x)

Recall for denominator (2n)! (the original problem):

An=Anz =Y #{w €Ay : 1p(W) = A}py,
AFn

where 205, = {w € &3, : w alternating} and
w = a1,4d3,...,d2p—1-



p-expansion of By, (x)

Recall for denominator (2n)! (the original problem):

An=Anz =Y #{w €Ay : 1p(W) = A}py,
AFn

where 205, = {w € &3, : w alternating} and
w = a1,4d3,...,d2p—1-

For B, k, replace 2>, with
{(u1,...,ux) € Gﬁ - D(up) N ---N D(ug) = 0}.

Replace rp(W) with rp(u;), for any fixed 1 </ < k.



h-expansion of B, k

One can show from the theory of hypergeometric series that there
are real numbers 0 < 31 < 3o < --- such that

S0 5)

n>0 ji>1
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h-expansion of B, k

One can show from the theory of hypergeometric series that there
are real numbers 0 < 31 < 3o < --- such that

Bk is h-positive.

Schur function expansion: in progress
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Can turn each r! into its g-analogue

(N'=@)Q)---(n),

where (i) =1+ q+ g? +---+ q'~* (work in progress). Here we
discuss only the simplest case.



g-analogues

Can turn each r! into its g-analogue

(N'=@)Q)---(n),

where (i) =1+ q+ g? +---+ q'~* (work in progress). Here we
discuss only the simplest case.

Recall

Fd(x, t) = Z M

= (dn)!
_ e\
N H ; (dn)!

Put d = 1.
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Fi(x,t) = exp(t(x1+x2x+---))
= Ani(x) = pf=h.
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A triviality and its g-analogue

Fi(x,t) = exp(t(x1+x2x+---))
= Ani(x) = pf=h.

Utterly trivial, but what about the g-analogue?

-1
A =[St
= (n)!
[TA() = ZG,,(X)(':—;!

i>1 n>0



Schur expansion of G,(x)

Theorem. Gp( Zf)‘ q)sa(x), where
AFn
f)\(q) — Z qmaj(T)
SYT T
shape(T)=\
= 1-9)(1-¢°) - (1-¢"s\(l,q, 4% ..)
_ g=UD ()
[Tuex(hl(u))”

where hl(u) is the hook length at u.



(h, r)-positivity

Ga(x) = h? + (g — 1)ha, so not (h, q)-positive. But let r = g — 1.
Then Ga(x) = h? + rhy. Similarly,

Gs(x) = B+ (3r+r?)hyhy + (2r* 4 r)hs
Ga(x) = hi+ (6r+4r* +r¥)mph? +--.
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(h, r)-positivity

Ga(x) = h? + (g — 1)ha, so not (h, q)-positive. But let r = g — 1.
Then Ga(x) = h? + rhy. Similarly,

Gs(x) = B+ (3r+r?)hyhy + (2r* 4 r)hs
Ga(x) = hi+ (6r+4r* +r¥)mph? +--.
Gn(x) is (h, r)-positive. Moreover, a messy

combinatorial interpretation of the coefficients is known.

Much more is known, and even more to be donel.
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