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Abstract

A general theory is developed for the enumeration of order-
reversing maps of finite ordered sets P into chains. This
theory comprehends many apparently disparate topics in combi-
natorial theory, including (1) ordinary partitions, (2) ordered
partitions (compositions), (3) plane and multidimensional parti-
tions, with applications to Young tableaux, (4) the Eulerian num-
bers and their refinements, (5) the tangent and secant numbers
(or Euler numbers) and their refinements, (6) the indices of permu-
tations, (7) trees, (8) stacks, and (9) protruded partitions,
with applications to the Fibonacci numbers. The main tool used
is that of generating functions. In particular, we study how
the structure of P influences the form of the generating func-
tions under consideration. As an application, we derive new
combinatorial relationships between a finite ordered set P and

its distributive lattice of order ideals.
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generating function, reciprocity, extension to a total order,
distributive lattice, order polynomial, (P,w)-separator, index
éf a permutation, (P,w)-Eulerian number, plane partition, tree,
generalized hook length, oc-symmetric ordered set, stack, pro-

truded partition, Euler numbers, tangent and secant number.
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I. (P,w;m)-PARTITIONS

1. Introduction. Our basic object is to study order-

reversing maps o: P -~ EO of a finite (partially) ordered set

P into the non-negative integers EO’ and their connection with
partitions. A survey of the classical theory of partitions is
given by Hardy and Wright [19, Ch. XIX].

The basic concept of a labeled ordered set (P,w) 1s intro-

duced in the next section. Here ww 1s a bijection
w: P » {1,2,...,p} (where |P| = p) , and is called a labeling

of P . A (P,w)-partition is an order-reversing map o¢: P » N ,

with various stipulations determined by w as to when o(X) can

equal o(¥Y) , for X,Y € P . The general concept of (P,w)-

partition appears to be new, though several special cases have
been considered before.l
As 1in the ordinary theory of partitions, a basic tool which

- we will use is that of generating functions. In this chapter

(88§1-13), we will investigate the properties of some generating
functions associated with (P,w)-partitions. Highlights include
the theory of w-separators (§7), which allows the generating

functions to be expressed in a simple form, and the Reciprocity

Theorem (810), which connects a labeling @ with the complementary

labeling w defined by w(X) = p + 1 - w(X) .

In Chapter II (§§14-19) we consider the special case of

lAlthough the "syzygetic theory" of MacMahon (pronounced
mak'may-on) [23, Sect. VIII] implicitly includes (P,w)-partitions,
he is primarily interested in other applications.

1




RICHARD P. STANLEY

natural labelings, i.e., labelings w: P ~ {1,2,...,p}

order-preserving.
tions is closely related to the counting of chains of order ideals
of P . Using this relationship, we obtain new combinatorial infor-’

mation about the distributive lattice

We also show that the generating functions (when

satisfy certain functional equations if P

"chain conditions" (§18)

w

is

which are

In this case the form of the generating func-

J(P) of order ideals of P .}

natural)

satisfies appropriate

Chapter III is devoted to applications and shows how many

apparently disparate combinatorial topiecs are unified by the

theory of (P,w)-partitions. These topics include plane partitions,§

trees, stacks, protruded partitions, and counting permutations by

positions of "descents".

This latter topic includes the theory

of Eulerian numbers and the tangent and secant numbers.

2. Basic Definitions.

this paper is called a

labeled ordered set and m

(P,w;m)-partition,

where

(P,w)

is a non-negative integer.

The fundamental object of study in

is a

Before

defining these concepts, we first consider the case of ordinary

partitions.

Throughout this paper, we will use the notation

E

= {1,2,...,m}
= {0,1,...,m}
= {1,2,3,...}

= {0,1,2,...}

S

1o

t

e
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These sets will be considered as partially ordered sets with the
usual order relation < . Thus, for instance, m is an

m-element chain (also called a totally ordered sef or linearly

ordered set).

We also use the notation
S = {ml,mz,...,ms}<

to denote that S = {ml,mz,...,ms} with mpo<m, < ... <m .

If n is a non-negative integer, then a partition of n
into <p parts (or into p parts, allowing 0 as a part) can

be regarded as a sequence of integers Al,kz,...,kp satisfying
P
Al =2 A2 Z ... 2 A 0 (1)

Ay A, Ll F A = n . (2)

A classical result, known to Euler, states that if a, is the

number of partitions of n into <p parts, then

= 1/(1-%)(1-%2)...(1-%xP)

e~ 8
o
o]
kg
=]

=0

(ignoring inessential questions of convergence). Similarly a
partition of n into p distinct parts (allowing 0 ) is ob-

tained by replacing (1) with Al > Xz > ve. > Ap =20 . Such a

Partition is also called a strict partition. The corresponding
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generating function is

e~ 8
4
-

o]
n
-
N

~
”~~
H

'
]
s
~~
H

i
-

N

A
P
H

]
~

e

A, YAy Y a.. YA 20 (3)

where each "™ can be either ">" or """

Conditions (1) and (2) lead to the alternative definition of

a partition of n into p parts 20 as an order-reversing map

o of a p-element chain p into the non-negative integers EO )

such that

1 o(X) = n.
Similarly a strict partition into p parts 20 is a strict order=

reversing map o: p -~ EO , 1.e., a map satisfying X<Y = o(X)>o(Y

Our object in this paper is to study the generating function
obtained when p is replaced by an arbitrary finite ordered set
P and (3) is replaced by a suitable analogue. We also will brie
discuss the further extension to the case where P is infinite

(820). Until further notice, P 1is a finite ordered set of

cardinality P -

2.1. Definition. A labeling of P 1is a bijection w: P *

A labeling w is called‘avnatural labeling if it satisfies
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X<Y = X <,

while w 1is called a strict labeling if

X <Y = wlX 2wy .

An ordered set together with a labeling w 1is called a labeled

ordered set.
2.2. Definition. If ®w 1is a labeling of P , then a

(P,w)-partition of n is a map O: P+§0 satisfying the conditions

(i) X <Y in P=0X) 20(Y) , i.e., 0 is order-
reversing,
(ii) X <Y in P and w(X) > w(Y) = o(X) > o(Y) ,

(iii) ]} o(X) = n .
XEP

If w is a natural labeling, then 0 is called for short
a P-partition. If w 1is a strict labeling, then 0 is called

a strict P-partition.

Note that a P-partition is simply an order-reversing map

P ~ NO » while a strict P-partition i1s a strict order-reversing

map P+ EO .

If o0 is a (P,w)-partition, then the values Oo(X) , X €P ,
are called the parts 6f 0 . We frequently will consider (P,w)-
partitions with largest part <m , where m is some non-negative

integer. We therefore define a (P,w;m)-partition to be a (P,w)-

partition with largest part <m .
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The class of all (P,w)-partitions is denoted by C4L(P,w) ,

and the class of all (P,wj;m)-partitions by «&(P,w;m) , so

A (P,w;0) € AP,w31) € ... € APr,w .

Define two labelings ® and ' to be equivalent (denoted W =~ w')
if OL(P,w) = A(P,w') . (So also A(P,w;m) = Z(P,w';m) for
all m .) This defines an equivalence relation on the p! labeling

w . It is easily seen that w ™~ w' means
WX) < w(Y) # w'(X) < w' YY),

whenever Y covers X , 1i.e., whenever X <Y andno Z €P
satisfies X < Z <Y . Let <(w denote the equivalence class
(relative to ~ ) containing . One equivalence class consists
of all the natural labelings. The number of natural labelings is
denoted e(P) and will be considered in more detail later.
Similarly, the strict labelings form an equivalence class which
also contains e(P) elements.

Problems. A number of interesting combinatorial problems
are associated with the labeling of ordered sets, as follows:
(a) How many equivalence classes of labelings of a given ordered

set P are there? If P 1is a p-element chain p , then there

are 21:’_l classes, corresponding to the pP-1 ways of specifying
the inequalities in (3). More generally, there are ZP—l classes

whenever the Hasse diagram of P (considered as a graph) is a tree¥
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On the other hand, if P consists of p disjoint points then
there is only one class.l (b) Define a partial ordering Q@ on
the classes of labelings of P by the condition (w < (w') if
(L(P,w) € d(P,w') . Then Q has a 0 and 1 , but it need
not be a lattice (e.g., when P = 2 x 2 ). What is the structure
of Q ? (e¢) What is the most number of classes of labelings any
ordered set of cardinality p can have? (d) Given a labeled
ordered set (P,w) , how many labelings are equivalent to w ?
Remark. The reader may be wondering why we define a (P,w)-
partition to be order-reversing, rather than order-preserving.
It turns out that our definition conforms more closely with certain
conventions in lattice theory and the theory of partitions, which
we will not enter into here. Of course, one may obtain the order-

preserving case simply by dualizing P , so the theories are

equivalent.

3. Generating functions for (P,w;m)-partitions. Let the

elements of the labeled ordered set (P,w) Dbe given by

Xl’XZ""’Xp . If o €A (P,w) , we write o(i) for o(X;)

when no confusion will result. More generally, if f 1is any

function whose domain is P , we sometimes write f(i) for f(Xi) .

3.1. Definition. Let (P,w) be a labeled ordered set

with elements X,,...,X_. . Define the generating function
1 P
F(P,w;xl,...,xp) (denoted F(P,w) for short) in the variables

xl""’xp by

lIt can be shown that the number of equivalence classes 1is
(-l)Px(—l) , where ¥ 1is the chromatic polynomial of the Hasse
diagram of P (considered as a graph).
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x0(1)x0(2) x0(p)

F(P,w) = 1 2 e Xy

o€ (P, w)

Since the generating function F(P,w) explicitly lists all
(P,w)-partitions, the ordered set P can be uniquely recovered
from it. Namely, Xi < Xj in P if and only if the exponent
o(i) of X, is always greater than or equal to the exponent
0(j) of Xj in every term of F(P,w) . For reasons of simplicity
and applicability, it is more fruitful to consider generating
functions less discriminating than F(P,w)

3.2. Definition. Let (P,w) be a labeled ordered set with

elements X ,XP . Define the generating functions Um(P,w;x)

120

and U(P,w;x) (denoted Um(P,w) and U(P,w) for short) by

xc(l)+0(2)+...+c(p)

U _(P,w)
m 2 o€ ﬂ(g,m;m)

L +0(2)+. . . +a(p)
o€ A(P,w)

U(P,w)

Hence U(P,w) = 1lim Um(P,m) = F(P,w3X,X,...5%) . The

m-roo

coefficient of x" in Um(P,w) is equal to the number of

(P,w;m)-partitions of n , while the coefficient of x" in
U(P,w) 1is equal to the number of (P,w)-partitions of n . Note

that Um(P,m) is necessarily a polynomial in x .

If w is a natural labeling, the symbol « is omitted from
the notation. Hence if w is natural, we write F(P) for F(P,w)

U(P) for U(P,w) , etc. Similarly if w is strict we write

sl rumnd i -

H » = d

—t

e
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F(P) for F(P,w) , U(P) for U(P,u) , etc.

4. Distributive latfices. We will investigate the effect

of the structure of P on the generating functions defined above.
It turns'out that these generating functions reflect fundamental
properties of the distributive lattice J(P) of order ideals of
P, so first we will review some properties of the lattice J(P) .
Recall that an order ideal of an ordered set P is a subset I

of P satisfying
X€I and YSX = YE€TI,

The set of order ideals of P , ordered by inclusion, forms a
distributive lattice denoted J(P) . A fundamental structure
theorem of Birkhoff [4, p. 59, Thm. 3] states that if L 1is any |
finite distributive lattice, then there is a unique finite
ordered set P such that L = J(P) .

If P is finite of cardinality p , then J(P) has length
p . More generally, the rank (length from 0) v(I) of any
I € J(P) 1is equal to the cardinality of the order ideal I .
An alternative formulation of this statement is the following:
" The number of chains 0 < I <1 in J(P) such that Vv(I) = n
is equal to the number of (Pj2)-partitions of n . For
g: P+ {0,1} is a (P;2)-partition of n if and only if o-l(l)
is an order ideal of P of cardinality n .

The above paragraph provides the reader with a first glimpse

of a phenomenon which pervades our approach to (P,wj;m)-partitions,
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viz., the connection between (P,wj;m)-partitions and the counting
of chains in J(P) . We require one further connection for the
present.

4.1. Proposition. The number e(P) of order-preserving
bijections (or natural labelings) P » p 1is equal to the number

of maximal chains in J(P) .

Proof. Let 0: P > p be a natural labeling. Define

St

I, = o 1({1,2,...,i}) , i=0,1,...,p . Then ¢ =I CI, C...CI

P
= P is a maximal chain of order ideals of P . Conversely, given

such a maximal chain, the map o¢: P » p defined by _érewﬁ

o(i) € I, - I, is a natural labeling. O

i-1

If o(Xi ) = j , then we sometimes denote an order-pre-

3 I
serving bijection 0: P * p by the permutation X. ,X; ,...,X; a
’ 1 2 i)
m
of the elements of P . We also say that the permuation N
Xi 3 Xe seeasX. extends P +to a total order.
i i —_—— = =S =
1 2 P
The number e(P) goes under such names as "the number of i

extensions of P to a total order," "the number of ways of sorting &5
P topologically," "the number of order-compatible linearizations
of P ," etc. Many different combinatorial problems are equi-
valent to finding e(P) for an appropriate P ; for some ex-

amples see [33] or [361.

5. The form of the generating functions. ' We will now

establish some fundamental properties of the generating functions -

F(P,w) and U(P,w) . Deeper properties will be considered later.
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Let the elements of P be denoted Xl’XZ"'°’X and let

P b

c be any map P -+ EO . Then there is a uniquely defined chain

of subsets of P ,

¢ = P,CP, C...CP_ = P (u)

such that

(i) If X,Y € Pi - Pi-l for some i=1,2,..,k , then

o(X) = o(Y)

(ii) If X € Pi , Y €& Pi for some 1i=1,2,...,k, then

oY) < o(X) .
If o € A(P,w) gives rise to the chain (4), then each P, is
an order ideal of P (since 0 is order-reversing), and any
map T: P > N, giving rise to (4) lies in A (P,w) . We will
then call (4) an W-compatible chain of order ‘ideals.

Observe that a chain ¢ = I0 c I1 c... c Ik = P of order

ideals is w-compatible if and only if the restriction of ®w to
each Ii+l - Ii (considered as a sub-ordered set of P ) is
order-preserving. Thus, for instance, (a) if ® is natural,

then any chain of order ideals is w-compétible,_ (b) if w is

strict, only those chains such that each Ii+l - Ii is an anti-

chain are w-compatible, (e) the chain ¢ = I0 c I, =7° is

w-compatible if and only if w is natural, and (d) every

maximal chain of order ideals (i.e., each |Ii+1 - Iil = 1) is

w-compatible for any w .
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It is easily seen (by summing geometric series) that the
terms of the generating function TF(P,w) arising from those

g € A(P,n) which give the w-compatible chain (4) are given by
p(Pl)p(PZ)"'p(Pk-l)/(l_p(Pl))(l_p(PZ))‘"(l—p(Pk)) (5)

where

There follows:

5.1. Proposition. We have

P(PIP(PY) e (P 1)
(T-p(P 0. - (I-p(F,))

F(P,w) = ’ (6)
where the sum is over all w-compatible chains of order ideals
of P .

From the preceding proposition there follows:

5.2. Corollary. F(P,w) is a rational function of

XyseeesX whose denominator can be taken as
(l—p(Il))(l—p(Iz))...(1-p(Ir)) s

where the Ij's are the non-void order ideals of P .

5.3. Corollary. We have

W(P,w;x)

U(P,w;x) = %
(1-%) (1-%x")...(1-%P)
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where W(P,w;x) 1is a polynomial in x .

Proof of 5.3. If each Xy is set equal to x in (8),

P P
2y (1-x X

P
then the denominator of (6) becomes (l-x 1y (1-x s
where p; = |Pi| . This denominator divides (l—x)(l-xz)...(l—xp) .
Hence, when each x. is set equal to x in F(P,w) , giving

U(P,w) , the sum in Proposition 5.1 can be put over a common

denominator (l—x)(l-x2)...(l-xp) . D
5.4. Corollary. With W(P,w;x) defined by Corollary 5.3,

5 we have
W(P,w3l) = e(P)

In particular, if a denotes the number of (P,w)-partitions

of n , then

e -1
— _ e(P)nP 1
&, pTe-DIT (1+0(3)) as n » =.

Proof. When each X = X in (6) and each term of (B) is

put over the denominator (l-x)(l—xz)...(l—xp) s the numerator

will have a factor of the form 1-xl and therefore vanish at
x =1, except for those terms where k = p . These terms with

k

p will arise if and only if (4) is a maximal chain of order
ideals of P , and conversely every maximal chain of order ideals
yields a term (5) with k = p . Each such term contributes 1 to

W(P,w;1) so W(P,w;l) equals the number of maximal chains of
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order ldeals of P . By Proposition 4.1, W(P,w;l) = e(P) .

The asymptotic formula for a, now follows from standard

techniques for estimating coefficients in the expansion of
rational functions. All the poles of U(P,w;x) 1lie on the unit
circle, and the pole with largest multiplicity is at x = 1 ,
with multiplicity p . The Laurent expansion of U(P,w,x) about

x = 1 Dbegins

UP,u3x) = —=B) 4 gx-1)1Py |
(l—x)Pp!
_ (=1)%e(P) ,-p _ e(®)nP?t
SO an = —T— (n)(l+0(l/l’l)) = P—IY—P—-TYT (l+0(l/1’1)) . D

6. The theory of w-separators. Proposition 5.1 may be used
to find some additional properties of the generating functions

F(P,w) , U(P,w) , and even Um(P,w) . It is advantageous, how-

ever, to introduce a new tool, which we call the w-separator of
(P,w) . The w-separator will enable us to analyze in considerable’
detail properties of our generating functions which seem difficult,
if not impossible, to determine directly from Proposition 5.1.
Recall the expression for F(P,w) in Proposition 5.1 was
obtained by summing over chains (4). Each such chain represents

a condition of the form
0(11) ~ 0(12) ~ . ™ 0(1p) ,

where "~" can be either "“>" or "=" . (Recall o(i) stands
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for o(Xi) .) We now consider the possibility of finding F(P,w)

by summing over conditions of the form
G(il) “’0(i2) ~ . ™ U(ip) , "~ either ">" or "2 | (7)

It is no longer apparent that the set QA(P,w) of all (P,w)~
partitions can be partitioned into disjoint classes each satisfy-
ing a -different condition of the form (7). We shall show, how-
ever, that such a construction is always possible, and in fact
é . can be explicitly described. The key result is the next rather
technical lemma.

6.1. Lemma. For each ¢ € A(P,w) , there is exactly one

extension Xi ,Xi ,...,Xi of P to a total order satisfying
1 2 o} :

(i) o(i) < o(i) = j >k, and

(1) wlig) > wlig, ) = oi) > olis,) .

Proof. Suppose o0 € (Q(P,w) . Define il’i2""’ip as

follows: For some jl’j2""’jr we have

(a) o(il) = o(iz) = s.. = o(ijl)
>o0(i, +1) = ... = o(i. ) > ... > o(i, )
1 J2 Jpo1*d
= se. = O(ijr) s
where j_=p , and
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. . < < P
(b) m(ll) < w(lz) - w<ljl) s R
w(i, ) < w(i. Y < ... < w(i, ) b
Iyt 3 *2 J2 ’
: X
w(i. ) < w(i. ) ) < .. < w(i. ) .
Jpog*l r-1*2 Ir
M
We first show X. ""’Xi extends P to a total order. o
i, b
If ij and ik , with j <k , are in the same row of (b), n
. X "
then since w(ik) > m(ij) and O(lj) = O(lk) , we cannot have

X. <X. by definition of a (P,w)-partition. If i, and i, N
o j a
with j <k , belong to distinct rows of (b), then by (a), ’ B

G(ij) > O(ik) . Since o is order-reversing, again we cannot

s

have X, < Xi . Thus X, ""’Xi extends P to a total order.
1 3 - 1 D ot

We now show that the extension Xi ,...,Xi satisfies (i)
1 2

and (ii). First (i) follows immediately from (a). To prove (ii),

assume m(ij) > m(ij+l) . Then m(ij) must be the last entry in |

. some row of (b) and w(ij+l) the first entry of the next row.

Thus by (a), O(ij) > o(i ) , as desired.

i+l
It remains to prove the uniqueness of the extension

X: 5¢..,X. , given o0 . Let X  3...,X% be another extension
i, 1p kq kp

satisfying (i) and (ii). By (i), for each t = 1,2,...,r , we

have that kt-l+l s k +2,...,k

-1 (ky=1) is a permutation of

t

jt-l+l s jt—l+2""’jt . Thus o takes the same value on these
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+2,...5k must

elements, so by (ii) the subscripts k _1+1 s k +

t t-1

be arranged so that w(kt—l+l) < w(kt-l+2) < .. < w(kt) . Hence

k. = j; for all i . O

Remark. A result equivalent to Lemma 6.1 was proved by
MacMahon [23, §5189-197] in the case when P is a disjoint union
of points, and extended by him to finite order ideals of N XN,
naturally labeled (the case of interest in the theory of plane
Eartitions; see §21). Knuth [22] extended MacMahon's result to
arbitrary finite ordered sets P , naturally labeled, and used
a special case to construct an algorithm for enumerating solid
partitions.

We now define the w-separator £(P,w) (denoted £ for
short) of a labeled ordered set (P,w) . £ is a set of permuta-

tions of 1,2,...,p, namely, those permutations of the form

w(Xil) s w(Xiz),...,w(Xip) s

where Xi 3X. 5...,X. , extends P to a total order. Hence

£ has cardinality e(P) .,

If (X, J,0X, J,...,0{X. ) is a permutation ¢ in an
iy i, i,

w-separator [ , we say that a (P,w)-partition ¢ is compatible
with the permutation ¢ if:

(@) o(x; ) = c(xi ) Z ... 2 0(X. ), and

1 2 lp

() U(Xi.) > 0(Xi ) if w(Xi.) > w(Xi. ) .

| j+1 ;| 1
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The following theorem is the basic result of this paper.
6.2. Theorem. Every (P,w)-partition o 1is compatible with
precisely one permutation in the w-separator L(P,w) . Con-

versely, any map J: P - EO compatible with some permutation in

L(P,w) is a (P,w)-partition.

Proof. The first statement is merely a rephrasing of
Lemma 6.1. To prove the second statement, suppose we have a map
o: P+ N compatible with some permutation = = (w(X. J),w(X. |
=0 ll 12),-..)»‘

in £(P,w) . Since X: »X; ,... extends P to a total order,
1 2

¢ is order-reversing. If Xi < X. in P , then Xi appears

]

to the left of Xj in w . If m(Xi) >N(Xj) » then somewhere be-’
tween w(X;) and w(Xj) there appears a descent in 7 . Hence
o(X;) > c(Xj) , so 0 is a (P,w)-partition. O

In writing specific examples of w-separators £ , we will

insert (for reasons of emphasis) a ">" sign between two con-

secutive terms w(Xi ) and m(Xi ) of a permutation ¢ € £ if -
3 j+l

w(Xi ) > m(Xi ) . Thus we write 4> 2>1 3 instead of 4 2 1 3,
j 3+1 "

Example. Let (P,w) be the labeled ordered set of Figure 1

Figure 1.
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Then e(P) = 5 and the w-separator £(P,w) is given by

4 > 2 > 1 3 (8)

It is convenient to introduce the following notation dealing

with permutations. If 1w = (il’i2""’ip) is any permutation

of (1,2,...,p) , define

Jm - Gligig,) .

Thus for the w-separator of (8), the sets _g(n) are given by

{2y , {2,3}, {1,2}, {1,3}, {3} . (In general, however, the
e(P) sets g(ﬂ) need not be distinect.)

Also define the index ind{(T) by

ind(m) = ) j .

jej(n)

The index of a permutation was first considered by MacMahon
[23, §510u4], who called it the "greater index."

Finally, define a descent (relative to 1w = (il’i2""’ip))

to be a pair ij,i. with i. > i We say that 7 has d

jtl 3 j*l ”

descents to the right of ik if
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|Gk <3 <p, 15 >1i

5 j+l}| = 4.

7. Generating functions ig terms of w-separators. Theorem 6.

allows us to find simpler expressions for the generating functions
we have been considering.
7.1. Proposition. Let (P,w) be a labeled ordered set of

cardinality p . Then

C C
Xil Xi2 ees X P
- 1 "2 j2)
F(Pow) = ] (1-%. x. e Xy )(l—xi Xy eeaXg )...(1l-x, ) °
11 12 D 1 12 p-1 1y

where the sum is over all permutations

T: w(X, J,wlX, J,...,0(X. )
i ? i, lP

in the w-separator £L£(P,w) , and where cj is the number of

descents occurring to the right of m(Xi ) in w ,
: J

Proof. Let T be a permutation in £(P,w) , with

3 (m) = {ml,...,ms}< . The generating function for those ¢ € Q!

compatible with this permutation is given by

IT e T
kp_0 kp-l_kp km +17Kn +2 km km +1 1 km +l—km +2
s S 1 1
o o © k., k K
) T o2 x P
k =k +l+l k2=k3 kl=k2 1 2 o)
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This is Jjust a nested sum of geometric series, summing to
C 02 C .
(X.l .5 oo % P)/(1-x, D(1-x, x. ) ... (=%, X, ... X, ) , with
i. 1 i i i "i i
1 72 P 1 172 172 )
c. as in the statement of the proposition. By Theorem 6.2, the
] .
sum of these generating functions over all permutations in £(P,w)

includes each ¢ € ((P,w) exactly once, and thus equals F(P,w) . O

By setting each =T R in Proposition 7.1 and observing
= + = 1 . =
that cl+c2+...+cP mytmyt. . tmg ind (™) > where 48<W)
{ml,m2,...,ms} , we obtain:

7.2. Corollary. Let (P,w) be a labeled ordered set of

cardinality p . Then

W(P,w0) = ) Xind('")
T
where the sum is over all permutations 7 in £(P,w) . a

For instance, if (P,w) 1is the labeled ordered set of
“Figure 1, then we immediately read off from (8) that

W(P,w) = x2 + 2x3 +xt e .

Note that Corollary 7.2 provides an alternative (and con-
siderably more transparent) proof of the relation W(P,w;l) = e(P)
(Corollary 5.4). This follows from Corollary 7.2 since £(P,w)
contains e(P) permutations = .

As an immediate consequence of Corollary 7.2, we obtain an

interesting fact which seems difficult to prove by other means.
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7.3. Corollary. The coefficients of W(P,w) are non-

negative.2 O
nu

8. The polynomials WS(P,m) . In this section we consider

the problem of obtaining expressions for the polynomials Um(P,w).%

First consider the classical case of ordinary partitions. Letting ;

an denote the number of partitions of n into p non-negative

parts with largest part < m , a well-known result of Euler

(cf. [19, Thm. 349]) states that It
? arl
- % n v [mtp) m ¥
I 2mdx = ] [ ] q 1
nZO ms0 ™ m=0 L\ P 2

1/(1-q) (1-qx) (1-gx?)...(1-qxP) ,  (9)

where [m;p] denotes the Gaussian coefficient (or generalized

binomial coefficient, since lim[;] = (;)) ’
x+] &<
[m+p] . -x™Py a-x™P-Ly ™
Lp ) (1-3P) (1-xP~1) L L (1-x0)

Unless otherwise stated, Gaussian coefficients are always under-
stood here to be in the variable x . If another variable y is

used, we denote this by [;]Y .

Zp similar device was used by Gordon [15] to prove the non-
negativity of certain coefficients arising in the theory of
multipartite partitions.
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A variation of (9) is obtained by letting bmn denote the

pumber of strict partitions of n into p non-negative parts

<m . Here

® ®)

b m.n _ 2 s [m+1] m
nZO mZO m? ¥ * mZg tpJ ¢
1 |
= P x ¢ /(1-)(1-qx)...(1-qxP) . (10)

It is formulas such as (9) and (10) which we now generalize to

arbitrary (P,w)-partitions.

Let w(X. J,0(X, J,...,0(X, ) be a permutation = in the
iq i, i

w-separator £(P,w) . If I = {ml,m2,...,ms}< and if ¢ 1is
a (P,w) partition of n with largest part < m compatible

with 7 , then define the map 71: P ~»> EG by
1(i.) = o(i.) - c. (11
1] 13 C.

where c5 is the number of descents appearing to the right of

m(Xi_) in m . Then T 1is a P-partition of n +fzcj = n +-Zmi
3

with largest part Sm-~- s . Conversely, given sucha T , we
can get o by (11). It follows from (9) that the contribution

from the permutation 7 to the generating function Um(P,w) is

. mtp~g |
Xlnd(ﬂ)[ P J (12)
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This leads us to define for each s € Ny, a polynomial

W (P,w) = W_(P,u3x) = ] xind(m (13)
™

where the sum is over all permutations 7 in £(P,w) satisfying
Iz(TUI = s .
Note the following elementary properties of WS(P,w) .

8.1. Proposition. WS(P,w) is a polynomial in x with

non-negative integer coefficients, satisfying

(i WS(P,w) =0 if s 2p , and

p=1 .
(11) ] W (P,w) = W(P,w) . O
s=0
We have immediately from (12):

8.2. Proposition. For all m > 0 .

P3 +m-
u (Pw) = ] [P g S] W (P,w) . O (14)

pt+s
[ ; JWm_S(P,w) . (15)

Using the identity given by the last equality of (9), toget

with (15), there follows:

8.3. Proposition. We have
p=1
- I W (P,w)q®
) Um(P,w)qm =0 .
m=0 (1-q) (1-gx)...(1-qxP)
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It is a simple matter to invert the relation (15) and express

the W_'s in terms of the Um's .

s
) 3 8.4. Proposition. We have
s ™
. _ m_ 27 (ptl
in W (P,w) = 50 (-1)"x [_m JUs_m(P,w) .

Proof. By Proposition 8.3,

o P_l
(1-@)(1-gx)...(1-qxP) I U _(P,w)q" = "] WS(P,w)qS (16)
m=0 ) s=0 .

By a well-known identity of Euler [15, Thm. 3u8],

(1-Q)(1-qx)...(1-qxP) = [ (-1)% [p;l]qk

Expanding the left-hand side of (16) as a Cauchy product and

equating coefficients of qs gives the result, O

—

9. The numbers O(P,w;S) and B(P,w;8) . Let (P,w) be

a labeled ordered set of cardinality p , and let T be a
permutation in the w-separator £(P,w) . We seek a combinatorial
interpretation of the set xg(ﬂ) which does not involve £(P,w) .
To this end, let S Cp-1 and define a(P,w3;S) +to be the number

of W-compatible chains

= cI, C c -
¢ I, €1, C...C1_,, P an
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of order ideals of P .satisfying |Ii| = m, (i=1,2,...,8) ,
where S = {ml,m2,...,ms}< .

For instance,

1, if w is natural
alP,w3¢) = .
0 , otherwise

Moreover, since every maximal chain of order ideals is w-compatib

we have

a(P,w;p-1) = e(P) .

Recall that if w is natural (in which case we adhere to our
previous convention by writing o(P3;S) for a(P,w;S)) , then
every chain of order ideals (17) is w-compatible. Thus for

instance a(P3m) (short for a(P;{m})) is equal to the number of
order ideals of P of cardinality m .

Define numbers B(P,w;S) by
B(P,w3S) = J (-1)
Equivalently, by the Principle of Inclusion-Exclusion,

al(P,w;S) = T B(P,uw;T) .
TGS

9.1. Theorem. Let (P,w) be a labeled ordered set of
cardinality p , and let S Cp-1 . Then B(P,w;S) is equalt

the number of permutations m in £(P,w) satisfying zy(ﬁ) =3

“
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Proof. We introduce a new generating function G(P,w;xl...,xp)

defined as follows: the coefficient of Xy x22 .o xpP in G(P,w)

is 0 wunless a; > a, =z ... 2 a, - When a; = ... 2 a, > then

this coefficient is equal to the number of (P,w)-partitions with

parts al,az,...,aP . Thus G(P,w) can be obtained from F(P,w)

by relabeling the subscripts of each term of F(P,w) so that the

exponents appear in descending order. If T =

(ulX; ),w(Xi ),...,Lu(Xi )) is a permutation in £(P,w) with
1

2 P

Q(ﬂ) = {ml,...,ms}< , then it is easily seen that the contribu-

tion to G(P,w) from T is

(xlxz...xm )(xlxz...xm .. (xox X )

1 5 172

(l-xl)(l-xlxz)...(l-xlxz...xP5

Hence

Y Y(P,w3S)(XqXneeoX. Juewol(XqXneooX, )
SCp-1 2 172 m1 172 mg

G(P,w) = s (18)

(1—xl)(l—xlx2)...(l-xlxz...xp5
where Y(P,w;S) 1is the number of permutations 7 in £(P,w)
satisfying ;g(ﬂ) = S8 . On the other hand, we also have (e.g.,

from Proposition 5.1)

(X XpeooeX, J(XiXnewoX JeealXiXneooX )
) 172 VT2 v, 172 k-1
2
(l-xlxz...xvl)...(l-xlxz...ka)

G(P,w) = (19)
where the sum is over all w-compatible chains ¢ =

I.C1. C...C1 = ; i Co= 1. .
0 1 Ik P of order ideals, with vy |Il|
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When the expression (19) for G(P,w) is given a common

denominator (1'X1)(1'X1X2)'"(1'X1X2"'Xp) » the typical term

in the numerator has the form

pe e Xy )...(xlxz...xv )

(—l)J(xlx
1 2 k-1

PRRRES )(xlx

. (xlx ee.X )(X1X2"'X

2 M )...(xlxz...x ),

u

U2 j

where {ul’“2""’uj} <€ p-1 - {vl,vz,...,vk_l} . Relabeling the

numbers vl,v seeesHs @S my,m

preeeaVily 5 Hisly 3 seeol

2 s
(s=k+j~-1) , it follows that the coefficient of

(XlXZ"'Xml)(XlXZ"'XmZ) .o (XlXZ"'XmS) in the numerator of

G(P,w) 1is given by

|s-T|
Tés (-1) a(P,w;T) = B(P,w;S) .
Comparing with (18), we get Y(P,w;S) = B(P,w;S) . |

Theorem 9.1 can also be given a purely lattice-theoretic
proof (not involving generating functions). Such a proof appears
in Stanley [35], in a more general lattice-theoretic context.

Theorem 9.1 allows us to deduce many interesting properties

of the numerical invariants B(P,w;S) of (P,w) . For instance{
B(P,w3S) = 0 (20)

for all S £ p-1 . In Chapter II, we will investigate how
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Ppoperties of the numbers B(P;S) are related to the structure
of. P (where w is natural). Note also that the polynomials

wS(P,w) may be expressed in terms of the B8(P,w;S)'s by

ml+...+m
WS(P,m) = ¥ B(P,w;S)x s,
S

where the sum is over all subsets S = {ml,...,ms} of p-1

of cardinality s .

10. The reciprocity theorem. If w 1is a labeling of an

ordered set P of cardinality p , define the complementary

labeling w by

D) = p 1o X)) .

For instance, if w is natural then w is strict. The next
result shows the relationship between the generating functions
F(P,w) and F(P,uw) .

10.1. The Reciprocity Theorem. We have

(xlxz...xp)F(P,E;xl,xz,...,XP)

= (-1>PF(P,w;§1—,XL,...,§1~).

172 P

Proof. Let Xi 2 X

P & be an extension of P to a
1771 i

2 P

total order, thus inducing a permutation 7w in £(P,0) and T
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in £(P,w) . Now (X, ) > w(X. ) if and only if
lj lj+l

E(Xi ) < E!'(Xi ) . Hence if c5 denotes the number of descents
] jtl

appearing after w(Xi ) in T , and if Ej denotes the number

J
appearing after E(Xi ) in T , we have e + Ej =p -3 .
]
Hence, by Proposition 7.1,
(X1X2°"Xp)F(P’w5X1’X2""’Xp)
Sy*tl o, tl c +1
X; X Ceee Xy
z 1 2 D
(l—xi X, eooX. )(i—xi X. «.eX, Yoo (1-%. )
1 12 o 112 1p-1 1
p-c¢q p—-l—c2 l—cp
X. X. ees X
-3 i) i, i
(1-%. X. eeeX: Jeo.(l-x, )
i,74, i i,
= (-1DPrpw;E, L, .., 1. O
X, ’% X
1 72 D

By setting each X, =% in Theorem 10.1, we get a reciproc

theorem for U(P,w) and W(P,w) .

10.2. Corollarx. We have

<PUP,T3x) = <-1)Pu<p,w;§>

and

_ €Y 1
WP,w3x) = x © W(P,w033) . O
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As an immediate application of Corollary 10.2, we have:

10.3. Corollary. The degree of W(P,w) is equal to
(g)_no , where n, is the smallest integer n for which there

exists a (P,@)-partition of n . Moreover, W(P,w) is always
a>E§EiS polynomial. a
Corollary 10.3 provides a simple method for determining
deg W(P,w) , since ng is easy to compute. Further results
along these lines, in the case of natural labelings, will be

discussed in Chapter II.

To obtain a reciprocity theorem for the Ws's , it is

simplest to use the definition (13) of WS(P,m) .

10.3. Proposition. We have

1
WS(P,m;x) = x °W _l_s(P,w;;)

Proof. Let 7 be a permutation in £(P,w) and 7 the

corresponding permutation in £(P,%) . Then J(m) F\,J(F) = ¢

and .X(H) L’.y(?) = p-1 . Hence if 7T contributes a term Xk
_ ®r-x

to WS(P,w) (via (13)), then T contributes x to

Wp_l_s(P,m) » and the proof follows. . O

For instance, if P = p and ® is natural, then

/1, if s =0
W (P,w) = (21)
0 , otherwise .

Here Propositions 8.2 and 8.3 reduce to (9). By Proposition 10.3,
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X , 1f s = p-1

0 , otherwise .

So in this case Propositions 8.2 and 8.3 reduce to (10).

Note that the expression (1) for Um(P,w) is defined when.

m 1is negative. We can ask whether there is some interpretation

of U_m(P,w) , m>0 . The key to this result is Proposition 10.3.

10.4. Proposition. U_l(P,w) = 0 , and for any integer m ,

(P,E;%)

prm(P,w;x) = (-1)Pu_(m+2)

Procf. The result U_l(P,w)-= 0 follows immediately from

setting m = -1 in (14), since then each Gaussian coefficient

vanishes.

p
()

ey ~. 1
By Proposition 10.3, WS(P,w;x) = x wp—l-s(P’M;E) . Sub-
stituting this into (14), we get
p
p-1 _ () _
U (P,wyx) = [p+m SJX 27y (P,w;l)
m L P p-1l-s X
s=0 it
(B p-1
= x 2 7 [m+5+1] W_(P,5;3)
s=0 P s X
The following identity is easily verified:
_(b+l)
3] = 1P x 2 b-a-1
\b b .
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Hence
+1
®) p-1 -®7H
2 2 -(m+2)~s ~
U (Prusx) = X SZO (-1)Px [P ; J W (P,T35)
- - 1/x
- p,-P -1 .
= (-1)x U_(m+2)(P,m,;)
and the proof follows. ]

We conclude this section with a reciprocity result between

g(P,w3;S) and B(P,w;S) 3 its proof is immediate from Theorem 9.1.

10.5. Proposition. Let (P,w) be a labeled ordered set

of cardinality p . Then

B(P,w3;S) = B(P,w;p-1 - S) . D

11. An application to r-dimensional partitions. Let P

be a finite order ideal of NY = N. X N, X ..., X

Ny = N, Ny (r times) .

We denote elements of Hg as

'&10‘ = {(ml,...,mr)lmi > 0 for i=1""9r} *

Let S = {il’i2”"’it} Cr , and for each integer n =0 , con-

sider maps T of P into the positive integers N with the

following properties:
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(i) t(ml,...;mr) > T(ml’mZ""’mi+l""’mr)’ forall 1€

(ii) 'r(ml,...,mr) > r(ml,mz,...,mi+l,...,mr) , if 1 €3

(iii)  § X =n .
XeP

Then 1 is called an r-dimensional partition of n of shape

P strict in directions il’i2""’it . Let a, be the number of

such 1's (as a function of n , with » , P, and S fixed)
and let

Alx) = g anxn .

Also, let b =~ be the number of r-dimensional partitions of n
of shape P strict in directions jl""’jp-t s, where

{jl,...,jp_t} = r - S . Define
(-]
B(x) = [ b x".

11.1 Proposition. A(x) and B(x) are rational functions

of x related by
B(x) = (-1)PxPacd)

where |P| =P .
Proof. One can easily choose a labeling ®w of P which

is decreasing in directions il,i2,...,i and increasing in the

t
other directions (jl""’jp-t) . Then

the
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A(x)

XPU(P,w;x)

B(x) *PU(P,@3x) .

By the Reciprocity Theorem for U(P,w) (Corollary 10.2), we have
*PU(P,W3x) = (—l)PU(P,w;%) s from which the proof follows. O

We remark that Proposition 11.1 was proved in the case r = 3
by B. Gordon [16] using ad hoc techniques. There is considerable
interest in the problem of determining A(x) explicitly. The
case r = 2 has a well-developed theory--here 2-dimensional
partitions are known as plane partitions. See §21 and the survey
article by Stanley [34] for results on plane partitions. For
r 2 3 almost nothing is known, and Proposition 11l.1 casts only

a faint glimmer of light on a vast darkness.

12. Operations on ordered sets. We will consider various

~ " operations which can be formed on ordered sets, and their effect

on the generating functions U(P,w) (or W(P,w)) and Um(P,w)

(or WS(P,w)) .

We will discuss three operations:
(i) the dual P* of P
(ii) the disjoint union P + Q
(iii) +the ordinal sum P @ Q .
The definitions and basic properties of these operations can be
found, e.g., in Birkhoff [u].
One operation is conspicuously absent from the above three--

the direct (or cartesian) product PXQ . It would be very desirable
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C;—\/
)

to have a formula (call it

of the WP(P)'S and WP(Q)'S (valid for

(recall from 83 that WS(P) is short for

natural). Unfortunately, no such formula

this, let P and Q be the ordered sets

labeled). Then WS(P) = WS(Q) for all , viz.,
WU(P) = WD(Q) = 1
WP) = W Q) = wraxleoxtex’
W2(P) = W2(Q)- = x4+x5+x6
W (P) = W.(Q = 0, s>3.

Hence the expression for W2(ng) obtained from Sr) would have:

to agree with the expression for W2(Qx3)

would have

e(Px2) = } W (Px2;1)
s
=} WS(sz;l)
s
= e(Qx2) .
P

Figure 2.

expressing W_(PxQ)

.

in terms
all finite P and Q

wS(P,w) when w is

37’ exists.

of Figure 2 (naturally

To see

. In particular, we
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This contradicts the fact that e(Px2) = 2100 and e(Qx2) = 2160

We first consider the formula for WS(P*,w) .

12.1. Proposition. Let (P,w) Dbe a finite labeled ordered
set of cardinality p , and let w* be the labeling of P¥

defined by

W X) = pt1l- X
Then for all s 20 , we have

X % 1
WS(P LW 3x) = xPSWS(P,w;i)

In particular, since w® is a natural labeling of P* if

and only if w is a natural labeling of P ,
* - ps L1
WS(P 3X) = X WS(P,X)

Proof. Let 7 = (w(X, J,w(X. J),...,0(X, )) be a permutation
—_— i, i, i,

in L(P,w) , so there is a corresponding permutation

™ = (X ),...,00X. ),0(X, )) in L(P¥,0*) . Now
lP 12 ll

w(X; ) > w(X; ) if and only if w*(X, ) > w*(xi ) . It
J i+l j+l 3 :

follows that if z?(n) = {m .,ms} s then _.8 (™)

127"

= {p-ml,...,p—ms} . The proof now follows from the definition
(13) of W_(P,u) . D

We next consider the problem of computing WS(P ® Q,w) .

12.2. Proposition. Let (P,wl) and (Q,wz) be finite
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labeled ordered sets of cardinalities p and q , respectively.

Let w = w) ® w, be the labeling of P @ Q defined by

2

wl(X) , if X €P
w(X) =~
w2(X) +p, if X €qQ.
Then for all s =0 , we have
s Kp '
W (P ®Q,0) = E xPW__, (P30)W, (Q,u,) .

k=0

In particular, since w is natural if and only if wy and w,

are natural,

5
® = kp
W, (P ®Q) 2 xPu__ (PIW, Q) .
k=0
Proof. Every permutation T in L((p @ Q,ml @ mz) is
of the form
T = (il’i2""’ip’jl’jQ""’jq)

where m, = (il’iz""’ip) is in £(P,wl) and W, = (jl,j2,..-z

. » £ - =

is in (P,wz) . Thus if {?(ﬂl) {ml,...,ms} and j?(ﬂz)

= {nl,...,nt} , then cg(ﬂ) = {ml,...,ms,nl+p,...,nt+p} . The
proof follows from the definitions (13) of W (P,w) . O

12.3. Corollary. In the notation of the previous Propositi!
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we have
W(PAQ,w) = W(P,w) ngPwS<Q,m2) .

Proof. Sum on s the expression for WS(P@Q,w) of the

previous proposition, and interchange the order of summation.
The proof now follows from ) W, (P,w) = W(P,w) (Proposition

8.1(ii)). o

Two simple special cases of Proposition 12.2 occur when

either P or Q 1s a chain. Here WS(E,w) ='xddst for the

appropriate values of d and t (§_, is the Kronecker delta).

In particular, WS(E) = Spg - We explicitly state the resulting'

formulas when « 1is a natural labeling.

12.4, Corollary. We have

(1) W (P ®p) = W_(P)

(1) W (r ® P) = x “W_(P) . |

We now turn to consideration of the disjoint union P + Q .

If (P,wl) and (Q,wz) are labeled ordered sets, then let

w = + be any labeling of P + Q satisfying

©a
ml(x) < ml(Y) = u{X) < w(¥) , and

(22)
mz(X) < wz(Y) = X)) < w(Yy) .

There are many such labelings, e.g., the labeling w of

Proposition 12.1, and all are equivalent.
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The formula relating WS(P+Q,w) to the wi(P,ml)'s and

wj(Q’w2)'S has a fairly simple form due to what appears to be a

"fluke," viz., the existence of a combinatorial identity given by
the next lemma. It would be interesting to find a proof of
Proposition 12.6 which bypasses Lemma 12.5. Among other things,
such a proof would give a new proof of Lemma 12.5.

12.5. Lemma. The following identities are valid for non-

negative integers o,B
. p+a q+g)
(i) [ p [ q

_ p+q+iJX(d—i)(B-i)[q+B—a
: -1

—

(ii) XGB[P"“‘B} [q"B'GJ
8

1
L i ? (et (prad arsei)
1=0 1 P q

Procf. (i) is an identity kindly proved by H. Gould [17]
upon request from this writer. Subsequently I was informed by
George Andrews that (i) is equivalent to an identity of E.M.
Wright [401].

(ii) is simply the inverse form of (i), as may be seen by
introducing a new variable k and putting k-o for o and

k-8 for B8 in (i). This puts (i) in the form

Ao = 1 [P+§+l]3k-i .
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Arguing as in the proof of Proposition 8.4,

i 2 (prgn1
B, = I (-1)7x [P q JA.
i>0 L 1 J 1
Restoring k-a to o and k-8B to B gives (ii). N

12.6. Proposition. Let (P,wl) ) (Q,wz) , and (P+Q,w)

satisfy (22). Then

(1) Um(P+Q,w) = Um(P,wl)Um(Q,wz) )

(ii)
wS(P+Q,w)
p=-1 g-1

= ] ] x{sTR(es 3)[P+3 1][ ]w (P, w )W, (Qy0,)
i20 j=0 L 1L z

Procf. (i) Obvious.

(ii) Substituting (i) into the expression for WS(P+Q,w)

given by Proposition 8.4, we get

(G0
W_(P+Q,0) = m§0 (-1)"x 2 [p+%+1JUS_m(P,w1)US_m(Q,w2) (23)
Hence, by (15),
s M s-m
Wo(P+Q,) = ) (=1 7 [P+Q+1J[ ) [P;k]ws o (P )]
m=0 Z2 k=0 =¥ 2
S=m
qtk
[kZO [ q ] S-=m- k(Q v )]

The coefficient of Wi(P,wl)Wj(Q,w2) in this expansion is
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q

(?) +q+1| (p+ i + i
Fo(-1)™x [p q ] P s-m-l] q s-m—]]
m>0 A e K

By Lemma 12.5, this latter sum is equal to

MERESNCE ])[p+] i [ ]

and the proof follows. O
A particularly simple case occurs when w is natural and
Q 1is a chain.

12.7. Corollary. We have

_ e s(s-1) [p-i] [q+1i
WS(P+Q) = Z X [s-i [ ]Wi(P) . O

When in addition P is a chain, we obtain a formula for

W_(p*tq) which will be used in §23 in the discussion of "stacks."

|

2
12.8. Corollary. Ws(E+9) = x° [

P||9
sj s

]] o

A result equivalent to Corollary 12.8 was obtained by

MacMahon [23, vol. 2, §460], using the notation PFS(pq;W) for
our WS(EfQ) . It is not difficult to see that Corollary 12.8,

together with (23), is equivalent to the special case o = B of

Lemma 12.5(¢ii).

Finally, we note that by letting m + « 1in Proposition 12.6¢

we get
U(P+Q,w) = U(P,wl)U(P,wQ) .

From this it follows that



ORDERED STRUCTURES AND PARTITIONS 43

W(P+Q,0) = [P;q]W(P,wl)W(Q,wz) . (24)

In particular, e(P+Q) = (P;q)e(P)e(Q) , a faet which can

easily be proved directly.

13. The order polynomial and (P,w)-Eulerian numbers.

setting x = 1 1in the polynomials' Um(P,w) and WS(P,w) gives
‘certain basic numerical invariants of the ordered set P . An
inkling of this fact is Corollary 5.4, viz., W(P,w;1) = e(P) .
We will obtain a (P,w)-generalization of the classical Eulerian
numbers and an interesting polynomial Q(P,w;m) assoclated with
P .

First consider the numbers WS(P,m;l) > 8=0,1,...,p~1 .

" .These are denoted by
WS(P,w) = WS(P,w;l) 5

or more simply by W when no confusion will result. Observe

that
wa tw, o+ oL, 4 Wp- = e(P) . (25)

It follows from the definition (13) of WS(P,w) that W

is equal to the number of permutations il’iZ""’ip in £(pP,w)

with exactly s descents. The classical Eulerian numbers AP s+1
H

are defined combinatorially to be the total number of permutations
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il’iZ""’ip of the integers 1,2,...,p with exactly s
descents (see, e.g., [27, pages 38 and 2151). Hence w_ = A

when P is a disjoint union 1+ 1+ ... + 1 =pl of p points.

This justifies calling w, @ (P,w)-Eulerian number.

By setting P = pl in many of the following formulas,
we obtain known results about ordinary Eulerian numbers and
Eulerian polynomials (ef. [5]1, [6]1, [111, {271). In particular,
in 5] Carlitz defines "g-Eulerian numbers" A . (@) 5, which
in our notation are given by

Ams(q) = wm_s(ml,q) .

Carlitz gives their combinatorial interpretation (due to Riordan)
in Section 13 of [5]. This interpretation is immediate from our

definition (13) of W (Pw) .

As a further example, suppose P is a disjoint union of
chains, naturally labeled. Then the (P,y)-Eulerian numbers
arising in this case have been considered by MacMahon [23,
§5178-1811, though of course from a different point of view.

Specifically, let A be a partition of p with parts

Al’AZ""’Xt . Let P be the ordered set il + iZ + ...t ii >

naturally labeled. Then MacMahon's invariant NS is equal in ’~
k]

our terminology to Wo_q - These numbers have also been investi

gated by Carlitz, Roselle, and Scoville [8].

We now introduce some new numbers closely related to the
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(P,w)-Eulerian numbers. Define Q(P,w;m) to be the number of

(p,w3;m-1) partitions, i.e.,
Q(P,usm) = U, (P,u3l) = |a(P,wsm-1)| .

We call R(P,w;m) the (P,w)-order polynomial. Define moreover

es(P,w) to be the number of surjective (P,w)-partitions P * s
(denoted e_ for short). Also define ES(P,w) = eS(P,U) (denoted
Eg for short).

13.1. Proposition. We have e_ = 0 unless 1<s <p
(except that ej =1 if P is void), ep ° e(P) , and Q(P,w;m)

is a polynomial in m of degree p and leading coefficient

e(P)/p! , viz.,
P m
QP,w3m) = ) e.(7) . (26)

Proof. The statements about e, are clear from its defini-

tion. Now §(FP,w;m) is the number of (P,w)-partitions

g: P+ m-1, . If the range of ¢ has 1 elements, then there

—=0

" are precisely e; (P,w)-partitions T: P + m-1l, with the same

—=0
range. Summing over all 1 gives (26)., From (26) the assertions
about Q(P,w;m) are immediate. o

In the language of the calculus of finite differences, e,

is the i-th difference at 0 of Q(P,w;m) , i.e.,
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e. = ATQ(P,w;0) .

The reciprocity result of Proposition 10.4% allows us to

connect Q(P,w) with §(P,w) and the e;'s with the Ei's .

13.2. Proposition. Let (P,w) be a labeled ordered set

of cardinality p . Then

(1) ®,o;m) = (-1)PaP,w;-m)
(ii) & = (-1)P E (-te, (31
s g2 B i‘s-1" °
i=1
Proof. (i) follows from putting x = 1 in Proposition
10.4. Using Proposition 13.1, (i) takes the form
p —
e; (M = P ] .M. (27)

1 11 i1 1 1

1 e~1rg

i

(ii) is now a simple consequence of (27) and the identity

(ef. [27, Ex. 16, p. u431)

() = D

A8

We omit the details.: O

We now consider the relation of the (P,w)-Eulerian numbers

w_ to the order polynomial Q(P,w) .

13.3. Proposition. We have

p=1 -1-
(1) QPyusm) = § (PYI=Sy,
s=0 p s
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© P_l
(ii) 7 aP,w;mq™ = [ ) wsqS+1]/(l—q)P+l .

m=0 s=0
p=-1
. as - p~k-1
(iii) e kgo wk( -5 ).
Gv) W= (DS J cn¥ e (PR
v s - k' p-1-s” °

k=1

Proof. (i) Substitute x = 1 in Proposition 8.2 and use

Um_l(P,w;l) = QP,w;m) .

(ii) Substitute =x = 1 in Proposition 8.3.
(iii) Although an algebraic proof of (iii) can be given
using (i) or (ii), a combinatorial proof seems more appropriate.

We count how many surjective (P,w)-partitions o: P - s-lU

are compatible with a given permutation 7 in the w-separator

L(P,w) , and sum over all T to get e, . If |£(ﬂ)]> s

then there are no such o ., If |J¥(n)| =k <s-1, then T has

p-1-k p-1-k
BT = B

kX descents and p-1l-k ascents. There are
ways of choosing s-1-k of the ascents giving a total of s-1
descents plus chosen ascents. Once these s-1-k ascents have

been chosen, there is precisely one ©O: P = s—l0 compatible

with 7m such that c(Xi ) > o(X. ) whenever w(X. ) < w(X. )
j 341 '3 ek
(P17

is a chosen ascent. Thus there are p-s

o's compatible
with 7 ., Since w, is the number of permutations in £(P,w)

satisfying |£ (m)| = kx , the result follows.
(iv) This follows from (ii) using standard inverse rela-

~tions (e.g., see [28, Table 2.1, nos. 2 and 31). O
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p-1
The polynomial Z wsqS which appears in Proposition
s=0

13.1(ii) (multiplied by q ) can be regarded as a (P,w)-Euleri
polynomial. When P = pl it reduces to the classical Eulerian

p

polynomial Ep(q) . Since Q(pl,w;m) = m (every labeling

pl is natural), Proposition 13.3(ii) becomes
mPq™ = qEP(q)/(l-q)P+l .

a standard result on the Eulerian polynomials (see [27, pp. 38-3



ITI. NATURAL LABELINGS

In this chapter we will consider more closely the various gener-
ating functions and aumerical invariants previously discussed, in the

case where w 1s a. natural labeling. Though most of our results on

natural labelings can be generalized to arbitrary labelings, they are

not so simple nor elegant in their full generality.

Now when - is natural, o(P3;S) counts the total number of

chains ¢ = I0 c I1 c... ¢ IS+1 = P of order ideals of P such

that |I.,] = m, , where S = {m;,...,m_} . Hence by studying

|s-T|

the numbers B(P;S) = g (-1 a(P3;T) we gain considerable
TS

insight into the relationship between a finite ordered set P and
_ its distributive lattice J(P) of order ideals. An investigation
of the properties of the numbers B(P;S) will occupy a major
portion of this chapter.

We assume throughout this chapter that all labelings are
natural. We will call an w-separator simply a separator, and we
write U(P) for U(P,w) , etec. We will also adopt the convention

of denoting the elements of P by Xl’XZ""’Xp s Wwhere m(Xi) = 1.

4. A Mobius-theoretic interpretation of B(S) . Recall

- that every finite ordered set P has associated with it a Mdbius
function p (see Rota [30]). The theory of M8bius functions has
been extensively developed, but we require only a fundamental

theorem of Philip Hall [18]. Namely, if P is a finite ordered

Set with 0 and 1 and Mdbius function u , then

L9
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neo,1) = J -D¥e
k

o (28)

i i = < < < =
where ¢ 1is the number of chains 0 X0 Xl ces Xk 1

of P of length k (so cq = 0 wunless |P| =1.

Let P be a finite ordered set of cardinality p , so J(P)}.
has length p (see §4). If S8 Cp-1 , define the ordered set
J(P,S3) to be the sub-ordered set of J(P) consisting of the @
and 1 of J(P) , together with all elements I whose ranks
|II| are in S . Thus for instance J(P,$) = 2 and J(P,p-1)
= J(P) . We now conclude from the definition of a(P3;S) (§9) ~
and Hall's theorem (28) the following result.

14.1. Proposition. Let Hg denote the Mobius function of."

J(P,S) , and let s = |S]| . Then
ug(0,1) = (-1)%p(P;S) . . 0

Since every segment of J(P,S) is of the form J(P',S')
for an appropriate P' and S8' , the fact that B(P;S) =0
(eqn. (20)) 1is translated into the following result.

14.2. Proposition. The MSbius function of J(P,S)
alternates in sign; i.e., if [X,Y] is a segment of J(P,S)

of length k , then
k >
(-1 uS(X,Y) Z 0. O

Thus we have the first known example of a general class of:
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ordered sets which are not lattices but whose Mdbius functions
alternate in sign. A more extensive class of such ordered sets,
obtained by generalizing'Proposition 14.2, appears in [35].

Recall that the MSbius function 1y of a distributive lattice

L = J(P) 1is given by [30]

(-1 , if I[X,Y] is a boolean

n(X,Y) = algebra of rank r
, =

0 , otherwise .
Thus by Proposition 14.1,

1, if P has no chains of length =1
g(P;3;p-1) =

0 , otherwise .

This illustrates how the length of chains in P influences the
behavior of the function Rg(P3;S) . A much more general result

of this nature will be given in §16.

15. Some properties of B(P;S) . We know from (20) that

B(P;S) = 0 (29)

for all S £ p-1 . We will determine various conditions as to
- when B(P3;S) = 0 or B(P3;S) >0 . TFirst we give a necessary

and sufficient condition for strict inequality to hold in (29).
15.1. Theorem. Let P be an ordered set of cardinality

P, and let S S p-1. Suppose

p-1-8S = {nl,nz,...,nt}< .
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Then B(P3S) > 0 if and only if there exists a chain

¢ = I,CcI;C...CI CI, = P (30
of order ideals of P such that
(1) |Ii| =n;, , for i=1,2,...,t, and
.. _ <i< . .
(ii) Each subset Ii+l Ii of P (0O i t) 1is an anti
of P .

(In other words, B(P,S) > 0 if and only if a(P,w;p=1 - S)
where ® 1is a strict labeling of P .)

Proof. Suppose B(P3;S) > 0 . Let 7 = (il’i2""’ip) be 2

permutation in the separator £(P) with _;X(n) = S . Such a per
tion 7 exists by Theorem 9.1. Then for 0 < j <t , we have
i > 1 > w0 > 1 (with the convention n, = 0

. .+ . o1
n]+l n] 2 n]+l 0 t+1

It is easily seen that this means that the set Tj

= {Xi |nj+l‘< k < n.,.} is an antichain of P . (Recall our cod

X 1*1
tion w(Xi) = i .) Hence the required chain of order ideals 1is

by defining
I. = T, UT, U... UT. .

Conversely, suppose we have a chain (30) of order ideals.

w be any labeling of P with the property that w(Ii)

= {1,2,...,ni} , for 0<i<t+ 1. Any such labeling w i
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patural since each Ii+1 - Ii is an antichain. Then one of the

permutations 7 in L(P) is the following:

T nl > nl—l > n1-2 > eee > 1
- +
n2 > n2 l> ... > nl 1
- .+
nj+l > nj+1 1> ... > nJ 1
Niyq > nt+1-1 > dee > nt+l .

(For this permutation m we have xy(n) = p-1 - {nl,nz,...,nt} , and

. the proof follows. O
15.2. Corollary. If Bg(P3S) >0 and T C S, then B(P;T) > 0 .

Proof. Any refinement

- I'cI1tc c 1t ci1! =
¢. = I0 Il e Ir Ir+l P

of the chain (30) retains the property that each subset Ii+1 - Ii
is an antichain of P (since any subset of an antichain is an anti-
chain). The probf now follows immediately from Theorem 15.1. O

Observe that Corollary 15.2 is false whenever w is not natural,
-for then B(P,w;¢) = 0 .

A special case of Theorem 15.1 is of some interest. We omit the
relatively straightforward proof.

15.3. Corollary. Let P be an ordered setkof cardinality p ,

and let m € p-1 . The following conditions are equivalent:
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(1) Bg(P3;m) 0.

0 whenever m € S

(ii) g(P33)
(iii) P has a unique order ideal of cardinality m .

(iv) P can be written as an ordinal sum Pl ® P2 , where

[Py | = m. 0

A further property of the numbers g(P3;3) , the proof of which
becomes trivial when separators are invoked, is the following.

15.4. Proposition. Let P and Q be partial orders on the
same set of cardinality p , such that Q 1is an extension of the
ordering of P 3 i.e., if X <Y in P , then X <Y in Q.
g(P;S) > g(Q;8) for all S ¢ p-1 .

Proof. Let w Be a natural labeling of Q . Since Q extem‘
P, w 1is also a natural labeling of P , so every permutation in .
£(Q) 'is also in £L(P) . The proof follows from Theorem $.1. o.

Finally, we mention a "reconstruction" problem.

Problem. If P and Q are ordered sets of the same cardina
P such that B8(P;3;S) = g(Q;3S) for all S C p-1 , then are P an
isomorphic? We conjecture that the answer is no, although we have

verified that the answer is yes if p < 6 . An equivalent formula

of the problem is the following: If for every sequence agsdyser
non-negative integers summing to p , we have that the number of
P-partitions with a; parts equal to i 1is the same as the numbe
of Q-partitions with a; parts equal to i, then are P and Q
isomorphic?

16. The extreme-value theorem. In this section, we investif

more closely the relationship between the combinatorial propertie$
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p and the behavior of the function

In what follows, we.assume P

55

B(P,+) . We require a fair

is a finite

ordered set of cardinality p , with longest chain of length £

:(or cardinality £+1 ) .
“(a) If X € P, define
v(X) = length of longest chain of P with top X .
8(X) = length of longest chain of P with bottom X .
(b) Define vk(resp. Gk) to be the number of elements X € P
‘gatisfying v(X) = k(resp. 6(X) = k) . Thus v + vyt o... v,
60 + 61 + ... 62 = p . Also define
Ar = &+ 6r+1 + ...+ 62 s, 0Spr<g+1
Fr = v, + vy + ... 4+ Vo1 DSr<g¢+1,
o
p = AO > Al > he. > A2+l = 0
i 0 = Ty <Ty<...<Tp. = p.
(?) Define finite sequences ao,al,...,ap_2_1 and
bosbys-eesby_ g 1 BY
§A=1 §~-1 S§a—-1 §,-1
0
Cagsagsevesay o 0T = (1,00 ), % ),...,(52_1),< ﬁ ),
1Y Sl Bahy (Gt
2 Trreroigo-17en 1 Tt g o
1
§,-1 §,-1
R OC IS ORI LR
2-1 62—1
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] vo—l vo-l vo—l vl—l

[b b b = [l,( 1 ),( 2 ):'0-:(\)0__1):( 1 )i

0°°1°°**>Pp-g-1

vl-l vl—l vz-l v2—l
(% 2aeen (a0 0505 ),
v2-l vz—l

sl G

)1,
vz-l

(d) If n is a non-negative integer and 0 <k < n , defi
L(n,k) to be the lattice of all k-subsets of n , ordered as

follows: If T, = {ml,...,mk}< and T, = {nl;...,nk}< are subsef

of n , then define T, < T

1 in L(n,k) if and only if m; <1

2
for i=1,2,...,k .
L(n,k) 1is easily seen to be a distributive lattice of cardi

ity () and height k(n-k) . In fact, L(n,k) = J(k x n-k) ,

fact for which we have no need.

16.1. Theorem. Let P be a finite ordered set of cardinal
P , with longest chain of length & . Let S C p~1 . If
|S] > p-2-1 , then B(P;S) = 0 .

Proof. Suppose

¢ = I;CI, C...CI CI = P

is a chain of order ideals such that each subset Ii+l - Ii (0 <
is an antichain of P . Now P contains a chain of length £
each of the &+1 elements of this chain must belong to a differéiy

antichain Ii+1 - I. . Hence t=22 . It follows from Theor‘enfI

1

that if B(P;S) # 0 , then |[S| < p-2-1 .
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It is not hard to see that the following converse to Theorem

.1 is true: There is some S € p-1 of cardinality p-g2-1 such
hat B(P3S) > 0 . We can prove, however, a much stronger result.

16.2. The extreme value theorem. Let P Dbe a finite ordered

et of cardinality p , with longest chain of length £ . Let

‘ g s < p-2-1 . Then using the notation (a)-(d) above, we have:
(i) The set A of elements S of L(p-1l,s) for which

(P3S) > 0 has a unique maximal element M(P,s) , and a unique

minimal element m(P,s) (where A is considered as a sub-ordered

et of the lattice L(p-1,s)) .

We denote M(P,p-2-1) and m(P,p-2-1) by M(P) and m(P) ,

respectively.

(i1) M(P,s) consists of the largest s elements of M(P) ,

and m(P,s) consists of the smallest s elements of m(P) .

(iii) M(P) = p-1 -~ {Al’A2""’A!L} .
] m(P) = p-1 - {rl,rz,...,rl} .
(iv) B(P;M(P,s)) = ag
B(P;m(P,s)) = b_ . ’

Proof. We only give proofs of the statements involving M(P,s) ;
those involving m(P,s) are done by a dual argument. Define M'(P,s)
'19 be the set whose elements are the largest elements of the set

' -
M'(P) = p-1- {Al,Az,...,Al}

Suppose B(P;S) > 0 . Then by Theorem 15.1, there exists a chain
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= C C C C =
$ IpCI, €... €I, CI,,, P
of order ideals of P such that each Ii+l - Ii is an antichai
P , and such that lIil =n;, , where p-1 - S = {nl,nz,...,nt}

Thus for each k = 0,1,...,t*+l the subset P - Ik contains no

of P of length greater than t-k . Hence P - Ik contains on

elements X € P satisfying 6(X) < t-k , so |P-I < p-A

k| t-k+1

= |1 A . It follows that if S = {ml,mz,...,ms}< ,

| =
k k t-k+1

m, is less than or equal to the k-th largest element of
p-1 - {Al’AZ""’Al} , i.e., S <M'(P,s) in the lattice L(p-

To complete the proof of the theorem, it remains only to pre

(iv). Let us call a permutation 7 in the separator <£(P) an

treme permutation if .S(n) = M'(P,s) . Thus (iv) is equivalent:

the statement that there are exactly ag extreme permutations

satisfying |Jg(ﬂ)| = s .

Suppose a, has the form ( ?c ) in accordance with the de

tion (e¢) of ag . Thus

(50—1) + (Gl-l) + ...t (Gr_l) < s
< (50—1) + (51—1) + ...+ (Gr—l) s

and

(50-1) + (51-1) + ...t (Gr
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Let ™ be an extreme permutation in £(P) satisfying ',g(ﬂ)l = s .

since QX(H) = M'(P,s) , the "tail" of 7 has the form

ee. < iA +1 > iA +2 > .. > iA
r r r-1
< i > i > eee > 1
+ +

Ar-l 1 Ar-l 2 Ar—2

< 1 > 1 > .. > 1 .
+ +
Al 1 Ay 2 bg

N

Hence for 0 < j r-1 , the subset Tj = {Xi |A.

an antichain of P . Thus Tj consists of those elements X of P

satisfying 6(X) j , 0<3<np-1. Hence the section of 7 dis-
played above is uhiquely determined.

We have accounted for

(§5-1) + (§4=1) + ... + (6__;

of the s descents in 7 . The remaining k descents must occur

A -k and iA , in order that Jg(ﬂ) = M'(P,s) . Thus
r r

between i
the set T = {Xi |Ar—k<a<ar} is a subset of the antichain
a

A= {X|8(X)=r} . Moreover, the labels of the elements of T must
be arranged in & in descending order, while the labels of all the
Mnaccounted for elements of P must be arranged in ascending order

iotherwise _j(n) # M'(P,s)) . Thus in order for there not to be a
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descent preceding we must have that i K is the large

lAr-k ’ Ap-
label of any element in the antichain A . The remaining k

of T may be chosen arbitrarily from the remaining Gr—l

of A . Hence there are ( K ) = ag possible permutations

the proof is complete.
An alternative method for proving the above theorem appears i
[35, Thm. 10.3] in a more general lattice-theoretic context.
Example. This example illustrates the ease in applying Theo
16.2 to a specific ordered set. Let P be the labeled ordered-
of Figure 3. This labeling is natural. The appropriate numerol

for P 1is

p = 8, & = 3

§g = 2, & = 4, &, = 1, & = 1

AO = 8, Al = 6 A2 = 2, A3 = 1

[ao,al,az,as,au] = [1,1,3,3,1] .

Thus
M(P) = M(P,4) = {3,4,5,7} , g(3,4,5,7) = 1

M(P,3) = {4,5,7} , @(4,5,7) = 3
M(P,2) = {5,7} , B(5,7) = 3
M(P,1) = {7} , B(7) = 1
M(P,0) = ¢ , B(®) = 1.
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fThe extreme rows are given as follows:

1 2 3 4 6>5
s = 2: 1 2 3 5 6>4

i1 2 4 5 6>3

1 2 3 6>5>14
s = 3: 1 2 4 6>5>3

1 2 5 6>4>3

s = 4: 1 2 6>5>4>3

Dually we have Vg = 2, v, = 2, vy = 3,

0,

b, ,b

2’

b3,b“] =[1,1,1,2,11 , so m(P) =

8
Y15 6

7 2

3 1

Figure 3

8>7

8>7
8> 7

8>7

8> 7
8> 7
8>7

8 >7

{1,3,5,6}

etc.
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We give an interesting simple corollary to Theorem 16.2(iii
Further results of this nature will be given in §19.
16.3. Corollary. Let P be a finite ordered set with lon
chain of length 2 . Then m(P) = M(P) if and only if every el
of P 1is contained in a chain of length & .
Proof. By Theorem 16.2(iii), m(P) = M(P) if and only if

{Al’AZ""’AQ} = {Pl’r2""’rz} . This holds if and only if

=8, » = 8,1 seees vy = 84 Since v(X)+§(X) 1is equa

the length of the longest chain containing X , the result fol

17. Numerology of WS(P) and Um(P) . We now discuss sol

special properties of the polynomials WS(P,w) and Um(P,w) W

w 1is a natural labeling. A (P;m)-partition of n is simply

order-reversing map o: P » m satisfying

0

The set of all such ¢ , ordered by defining o < 1t if and on

o(X) < 1(X) for all X € P , is simply the distributive latti

m+lP (using the notation of [4,Ch.III,§1]). The height of a-

m+lP is n . Now by the laws of cardinal arithmetic for order

sets [ibid.], we have

P m\P _ mxP
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There follows:
17.1. Proposition. Let P Dbe a finite ordered set. The

coefficient of X' in Um(P) is equal to the number of order

ideals of mxP of cardinality n . O

As a special case of Proposition 17.1, the coefficient of x"

in Ul(P) = Wl(P) + (1+x+...+xP) is the number of order ideals of
. P of cardinality n . In other words, Ul(P) is the "rank gener-

ating function" for J(P) . This fact can be easily seen in many

different ways.
17.2. Corollary. Let P be a finite ordered set, and let k

and m be non-negative integers. Then

Um(PX§) = Uk(PXE) .

Proof. Follows from Proposition 17.1, since the coefficient

of %" in both Um(PXE) and Uk(PxE) is equal to the number of

order ideals of Pxkxm of cardinality n . O
In particular, if Bn = z? is the booclean algebra with n
- . Bn+1 Bn .
Aatoms, then U (B _,;) = Uy(B ) . The identity 2 = 3 is

' given by N.M. Riviere (in a different form) in his paper [29] on
free distributive lattices with n generators.

We now give some "numerology" of the polynomials WS(P) .« The
notation is from 8§16, definitions (a)-(d).

17.3. Proposition. Let P be a finite ordered set of

-Cardinality p and longest chain of length & . Then:
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(1 WS(P) =0 if s >p - & -1.

(ii) If 0 <s<p-4& -1, then

deg W_(P) = i

where the sum is over all 1i € M(P,s) .

(iii) The leading coefficient of wS(P) is ag .

i d

(iv) The exponent of the largest power of x dividing WS(£

is }i , where the sum is over all i € m(P,s) .
(v) The coefficient of the non-zero term of WS(P) of lea

degree 1is bS .

Proof. (i) is an immediate corocllary of Theorem 16.1, whileﬁ
(ii)~(v) follow from Theorem 16.2. o j
In particular, we have, as a restatement of Corollary 10.3 fo

the case of natural labelings, that

deg W(P) = (B) - T &),

where §(X) 1is the length of the longest chain in P with bott

18. Chain conditions. The Reciprocity Theorem of §10 give

a connection between generating functions for P-partitions and t
for strict P-partitions. When P satisfies certain "chain cond
we can moreover construct direct combinatorial correspondences D
these two types of partitions. These two kinds of connections
lead to certain functional identities satisfied by the generatin

functions. There are four types of chain conditions which will
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pelevant to us.

(a) A finite ordered set P is said to satisfy the strong
chain condition if every maximal chain of P has the same length.
chaln conclrzion

(b) P is said to satisfy the v-chain condition if every sub-

set of P of the form ({X[X <X, for some fixed X, € P} satisfies

0

the strong chain condition.

(c¢) Dually to (b), P is said to satisfy the §-chain condition

if every subset of P of the form {X|X > X for some fixed X0 € P}

0
satisfies the strong chain condition.

(d) P is said to satisfy the A-chain condition if every element

of P 1is contained in a chain of length & , where & is the length
of the longest chain of P .

It is easily seen that the following relations hold among the
above four chain conditions, and that no other relations hold not

a consequence of these:

strong = 6 , v , and A
6§ and A = strong
v and A = strong .
For instance, there are five non-isomorphic ordered sets of cardinal-
ity six satisfying A but neither v nor & , and none of smaller
cardinality. If P has a 0 and 1 , then the v , & , and strong

chain conditions are equivalent. If P has a 0 , then & = strong ;

while if P has a 1 , then v = strong .
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We remind the reader of the notation (from §16) ,

§(X) length of longest chain of P with bottom X

v(X)

length of longest chain of P with top X .

It is easy for us to see the effect of the A-chain condition o

the WS(P)'S .
18.1. Proposition. Let P be a finite ordered set of cardina

ity p , with longest chain of length & . Then WP_Z_l(P;l) =1
if and only if P satisfies the A-chain condition.
Proof. Follows from Corollary 16.3. : |
To study the remaining three chain conditions, we need to
analyze a certain correspondence ¢ =+ o' between P-partitions

o € (W(P) and strict P-partitions o' € OP) . This corresponden

is defined by
o'(X) = o(X) +8(X) , XE€P.

It is easily seen that if ¢ is a P-partition of n , then o'

a strict P-partition of n + A(P) = n + ) §(X) . If the largest
XEP

part of ¢ is m , then the largest part of o¢' is <m + & ,
2 1is the length of the longest chain of P . Clearly the corre-
spondence ¢ + ¢g' is injective. V

18.2. Lemma. The injection o »+ o' is a bijection from QA
to @(P) if and only if P satisfies the §-chain condition.

Thus if a(k) is the number of P-partitions of k and b(k)
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the number of strict P-partitions of k , then a(n) < b(n+A(P))

for all n , with equality holding for all n if and only if P

satisfies the 6-chain condition.

Proof. The only statement which is not obvious is that if P
does not satisfy the §-chain condition, then there is a T € CL(P)
such that T-6 € CL(P) . Assume that P does not satisfy the §-chain

condition. Then there exist two elements X0 . YO of P such that

Y, covers X, and G(XO) > G(YO) + 1 . Define Y by

§ (XD , if X = XO and X # Y0

T(X) =
§(X)+1 , if X P X, or X = Y, .

It is easily seen that 1 € (P) , but

T(Xg) - §(X5) =0 < 1= 1(Yy - 8(¥y) .

Since x0<Y0,T-5€Za(P). : O

18.3. Lemma. Let P be a finite ordered set with longest
chain of length 2 . The injections o + o' between A(P;0) and
C(P3;%) and between (A(P;1) and &(P;2+1) are both bijections
if and only if P satisfies the strong chain condition.

Procf. The "if" part is clear. To prove the "only if" part,
assume that P fails to satisfy the strong chain condition. If in
addition P fails to satisfy the A—chéin condition, then define the
map 1 of P into N by

-0

T(X) = 2 - vX) .
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Then T and § are easily seen to be distinct elements of & (P;y
Since |CA(P;0)| = 1 , the correspondence o + o' is not a biject
between cl(P3;0) and CK(P3;L) .

Hence we may assume P satisfies the )-chain condition. Let

X0 < Xl < vee < Xm be a maximal chain of P with m < & . Let

k be the greatest integer, 0 <k <m , such that G(Xk) >m -k
Since P satisfies the A-chain condition and X0 is a minimal ele
of P, G(XO) = £ >m, so k always exists. Furthermore k #n

since Xk is a maximal element of P . Define a map T: P —+ 2+D

as follows:

§(X) s Aif X K X4

T(X) =

max{(§(X) , 6(Xk+l) + A(X,X )y + 1), if X <X

k+1l k+1

where \A(Y,Z) denotes the length of the longest chain in the

segment [Y,Z] . It is not hard to see that t € QA(P3;2+1) . Mo
over,

(X)) - G(Xk) = 0, TXp,) - 6(Xk+l) = 1,
so T -8 & OL(P) . Hence the correspondence O * G' Dbetween o

and TC(P;2+1) is not a bijection, and the proof is complete. O
18.4, Proposition. Let P be a finite ordered set of card?

ity p , with elements Xl,...,Xp . The following conditions a¥f

equivalent:
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. 1 1, _,..%1 %p
(i F(P;;I,...,g—) = t(x ...xp )F(P;xl,...,xp) )

p

for some integers 815855+ 0058 -

P
1+8(1 1+8(p)
(i1) rcp;%,...,;}; = (1P 3 (1) x1¥d(p F(P3Xp5en e,

(where as usual 8(i) means G(Xi)) .

(g)-A(P) 1
(iii) x W(P;;) = W(Pix) ,

where A(P) = ] 8(X) .
Xép

(iv) P satisfies the §-chain condition.

Proof. Suppose (i) holds. By the Reciprocity Theorem (§10),

there follows

(-1)pxlx

a a
bl - P
2...XPF(P) = EX{TX, ...xp F(P) . (32)

Clearly the signs on both sides agree. Then (32) says that the corre-
.spondence ¢ + ¢" defined by o¢"(i) = g(i) + a; -1 is a bijection

between P-partitions ¢ of n and strict P-partitions o' of

n + Z(ai—l) . Thus we must have a; - 1 = §(i) , so (ii) holds.
Set each X, = X in (ii) to obtain U(P;%) = (-1)pxp+AU(P;x)

By definition,

W(P3x) = U(P;x)(l—x)(l-x2)...(1—xp) .

and (iii) follows immediately.

Assume (iii) holds. Then by Corollary 10.2,
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gy = Xbue .

Hence for all n , the number of P-partitions of n equals the nt
ber of strict P-partitions of n+A . By Lemma 18.2, P satisfies
the 6-chain condition.
Finally, if (iv) holds, then (ii) (so a fortiori (i)) is an
immediate consequence of Lemma 18.2. ' O
If we dualize Proposition 18.4%, we get a result on the v-chain
condition. There does not appear to be a simple way to express
F(P*) in terms of F(P) . However, we at least know from Propos"j
12.1 that ‘
W(P*;x) = ZXPSWS(P;%{-) .
s
There follows:

18.5. Proposition. Let P be a finite ordered set of cardin

ity P . The following conditions are equivalent:
E)-re ps be 1
(i) x T x W (P3x) = Y x W, (P52
S _ S
where T(P) = J v(X) .
XeP
(ii) P satisfies the v-chain condition. O

Finally, we come to the strong chain condition.
18.6. Proposition. Let P be a finite ordered set of card
ity p , with longest chain of length & . The following condit
are equivalgnt:

(i) P satisfies the strong chain condition.
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(ii) TFor all s = 0,1,...,p-2-1 , we have

(5)-a(P) 1
WS(P;X) = X wp—z-s—l(P;i) s
:where ACP) = ] 8(X) .
XeP
(11i) W, (P31 = 1 and W (P31) = W, ,(P31) .

Proof. (i) = (ii). Suppose P satisfies the strong chain condi-

" tion. Then o is a P-partition of n with largest part <m if
- and only if o+§ 1is a strict P-partition of n+A(P) with largest

(P) = .
part < m+% . Hence XA Um(P) = Um+£(P) , So by Proposition 8.3,

P-1 p-1

LEGE Ty g = Ty W .
s=0 s=0
5 1

_But by Proposition 10.3, Wg(P;x) = x wp—l—s(Psi) , SO
P-1 €9 p-1

o ACP) 32 s _ ' 1, s

X q SZO W (Psx)q = x ° SEO wp-l-s(P’x)q
“Equating coefficients of qk gives (ii).
(ii) = (iii) Trivial: set x=1 and s=0,i in (ii).

(iii) = (i). Combining Propositions 8.2 and 10.3, we get

_ p-1 ()
T (Psx) = ) [P+m's]x 2y (P3d)
o s=0 p X

In the special cases x=1 , m=f or 2+1 , we get
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UQ(P;I)

wp-z-l(P;l)

Tppy (P31 (P*LIW_, 1 (P51) + W) ,(P31)

L

since by Proposition 17.3(i), W _l_S(P) =0 if 0 <s <}y .

P
By assumption, wp-z-l(P;l) =1, so
UQ(P;l) = 1 (33)
U2+1(P;l) = p+14# WP_2_2(P;1)
But by Proposition 8.2,
Ul(P;l) = p+ 1+ wl(P;l)

Hence, by the assumption Wl(P;l) = W _2(P;l) , wWe get

p-4L

Uy, (P317 = U (P31) (314

Thus by (33) and (3u4), [ZT(P3;8)| = |AA(P30)| and [&(P;2+1)]|

= | (P3;1)]| . It follows from Lemma 18.3 that P satisfies the 3

strong chain condition. 0 3

Propositions 18.1, 18.W4, i8.5, and 18.6 establish the ratheri
remarkable fact that from the polynomials WS(P) it can be 4
determined which of the strong, 6 , v , or A-chain conditionség

are satisfied by P .
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19. Properties of Q(m) . When w is a natural labeling, the

order polynomial Q(m) = Q(P,w;m) has a number of interesting
Properties. Here Q(m) is simply the number of order-reversing

(or order-preserving) maps P - m . Some of the properties of Q(m)
are summarized in [321] and [37]. A polynomial related to q(m) has
been studied by K. Johnson [20]. In general, our proofs are obtained
by setting x=1 in the appropriate result concerning Um(P) , since

Q(Pym) = Um_l(P;l)

19.1. Proposition. Let P be a finite ordered set of cardinal-
ity p », with longest chain of length & . Then we have:
(i) Q(P3;m+l) is the number of order ideals of Pxm , m=10 .
In particular, Q(P;2) 1is the number of order ideals of P

(i1) Qa(pP;1)

1

(iii) q(P;0) Q(P3-1) = ... = Q(p3=-2) =0

(iv) -DPa(-g-m) 2 am) >0, m=1
(v) Q(Pxm3n+l) = Q(Pxn;m*+l) .

Proof. (i) follows from Proposition 17.1. (ii) follows, e.g.,
from (i). (iii) follows from Proposition 13.2(i). (iv) follows from
Proposition 13.2(i) and the fact that the map o + o' of §18 is an
injection from @A(P;m) to <CU(P;m+2) . (v) follows from Corollary
17.2. ]

19.2. Proposition. P satisfies the )-chain condition if and
only if Q(P;-2-1) = (-1)P .

Proof. Follows from Proposition 18.1. o

18.3. Proposition. The following conditions are equivalent:

(i) P satisfies the strong chain condition.
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(ii) (-1)Pa(P;-12-2) < Q(P3;2) .

(iii) QPym) = (-1)PQ(P;-2-m) for all m .

(iv) ey =

I B~

- 2
. e, () 5 0SsSp

i
Proof. The equivalence of (i), (ii), (iii) is a consequence
Proposition 18.6. The equivalence of (iii) and (iv) involves son
elementary manipulations of binomial coefficients, which we omit.
The above Proposition leads to some curious results which se
difficult to prove by purely combinatorial reasoning.
19.4, Corollary. Let P be a finite ordered set of card

P , With every maximal chain of length & . Then

(1) 2e ) = (pr2-D)e(P)
(iid 2€f—l = (p-2-1le(P) .
P
(iii) § e, = 2" ¥ T_.
s=1 s1 S
(iv) The coefficient of mP™1 in Q(P3;m) is Le(P)/2(p-i
. P m
Proof. (i) Since Q(P;m) = 7} e (J) , there follows
s=1
e (p-1)e_-2e
P = P P _ P p—l P-l
Q(Psm) p! m 2(p-1O1 m e (

On the other hand, by Proposition 19.3 Q(P3;m) = (-1)PQ(P;-g2-m)

Equating coefficients of P~ in these two expressions for Q(E
yields (i).

(ii) Putting s = p-1 1in Proposition 19.3(iv) gives
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e = + fe = e

p-1 p-1 b p-1 + 2e(P) ,

so (ii) follows by substituting this into (i).

(iii) Sum Proposition 19.3(iv) on s

(iv) Follows from (i) and (35). O
19.5. Corollary. Let P be a finite ordered set of cardinality
p » with every maximal chain of length & . Then either p+g-1 1is
even, or e(P) is even.
Proof. Follows from Corollary 18.u4(i). O
A result similar to Corollary 19.5 follows from Proposition 18.4.
It can be shown that this result implies Corollary 139.5 directly.

We simply state it without proof.

19.6. Corollary. Suppose P satisfies the §-chain condition

and (g) - ] 8(X) is odd. Then W(P;-1) = 0 and e(P) is even. DO
XEP

19.7. Corollary. Let P be a finite ordered set of cardinality
P s such that every maximal chain has length p-4 . Let Jj(P) denote

the number of order ideals of P . Then
e(P) = 20(3(P)-p)

Proof. Since Q(P;m) is of degree p , we have

P
e = I (M)1PT ari-pratm) (36)
m=0

By Propositions 19.1(i)(ii) and 19.3, 3(P) = (-1)Pa(-p+2) = q(2)

and 1 = (-l)PQ(-p+3) = Q(1) . By Proposition 19.1(iii) ,
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0 = Q(-p+3) = Q(-p+4) = ... = Q(0) . Substituting into (36) provei
the corollary. a

An interesting problem (though probably intractable) is to
determine for which P and Q we have Q(P) = Q(Q) . A number of}§
such P and Q can be obtained from the easily verified relatiom
Q(P+Q) = Q(P)a(Q) , a(P) = Q(P*) , and Q(PEQ) =Q(QEP) . There
can, however, be other pairs, such as P = 22 and Q = 1¢Bl . Of
the 63 ordered sets P of cardinality 5 , there are exactly 30i

distinct order polynomials §(P) .



ITTI. APPLICATIONS

20. Some remarks on infinite P . For some of the applications

which follow, we will need to consider infinite ordered sets P .

Most of the preceding theory can be directly carried over to a class
of infinite ordered sets satisfying appropriate finiteness conditions.
Tor the sake of simplicity, we will consider here only the case of
natural labelings, though certain other labelings are permissible.

We would like to extend the notion of a P-partition o: P ~» EO in

such a way that the following finiteness conditions hold:

(A) TFor every element X of P , there is some P-partition
g such that o(X) > 0 .

(B) There exist only finitely many P-partitions of any given
integer n .

Consideration of these properties leads us to defining a
W-ordered set P to be an ordered set P satisfying:

(i) Every X € P is contained in a finite order ideal, and
(ii) TFor every integer n = 0 , there exist only finitely
many order ideals of P of cardinality n .

We then define a P-partition ¢ of a W-ordered set P to be

an order-reversing map o: P » EO such that all but finitely many

~values of ¢ are 0 . The separator £(P) is defined as before,
except that each permutation

T o= (WX, Jw{X, J,y...)
i i

1 2
must come from a locally finite extension Xi ,Xi se.. 0of P to

1 2
17
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a total order, with only finitely many descents in = . This latte
condition is equivalent to requiring w(Xi ) = 3 for all but

3
finitely many Jj . For any finite S C N , we define a(P;S) angh

B(P;S) as before, with respect to the lattice Jf(P) of finite
order ideals of P .

We then have that the various generating functions defined f
finite ordered sets can be extended to W-ordered sets. These ge
ating functions can be computed from £(P) or from the numbers
B(P3S) as usual. Of course, the functions WS(P) , Um(P) , ete.
will no longer be polynomials; in general, they are power series
with finite coefficients.

Two previous results that no longer make sense are the Reci-
procity Theorem (§10) (since the concept of a complementary labeli
is no longer defined), and that half of the Extreme Value Theorem

(§16) dealing with M(P) , a; » A etc. (since the numbers

k bl
are no longer defined). However, the half of the Extreme Value

Theorem dealing with m(P) , bi , I, , etc. is still valid.

k
particular, Proposition 17.3(iv-v) still holds.

In a certain trivial sense, the generating functions conne¢
with W-ordered sets are just limits of those connected with fini
ordered sets. If P 4is a W-ordered set with a natural labelingi

define for each p > 0 the subset (actually an order ideal) PP

by Pp = {X|w(X)<p} . It is then easy to see that

lim F(Pp) = F(P)

pe
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(and similarly for the other generating functions), in the sense that
the coefficient of a given term of F(PP) equals the coefficient of
the corresponding term of F(P) for all sufficiently large p .

For instance, if P = N , then a P-partition of n is just an

an ordinary unrestricted partition of n , and Pp = p . Since

u(p) = l/(l—x)(l-xz)...(l—xp) , letting p =+ = we get
_ 2 3
UN) = 1/@1-x)(1-x")(1-x")... ,
which of course is a classical result of Euler.

21. Plane partitions. Let A be a partition of p , with

parts Ay 2 X, & ... 2 >0 . Define the order ideal P(}) of

N2z {(i,5)]i,3€N} by the condition (i,j) € P(A) if 1<i<r and

1<3 <1} - Thus [P(X)| = p . A P())-partition with positive

parts is known as a plane partition of shape A . More generally,

suppose W 1is another partition, with parts Uy = oy 2 ... 2 e =0,
such that s €< r and Uy < Ay for i=1,2,...,s . Hence P(u)

€ P(\) . We denote the difference P(A) - P(u) by P{A/u) . A
P(A/u)-partition with positive parts is called a skew plane partition

of shape A/ .

Given P(A/u) , let w be a column-strict labeling, i.e., a

labeling satisfying

w(i+l,3) > w(i,j) , if (i+l1,j) and (i,j) are in P(A/u)

w(i,j+1) < w(i,j> , if (i,3j*+1) and (i,j) are in PO/ .
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Let A be a partition with parts A, Z A, 2 ... =X _ >0 ,

Let the parts of the conjugate partition A' [19, p. 274] be

A{ Ay > ... >, >0 . Define the hook lengths hjs of X by

h = At x]! -i- il QSIS 1S5))

i3

We denote the hook lengths more simply by h1 ’ h2 3 ees 3  h

P
(in some order). Similarly define the contents cij of X by
iy T j -1 (l<i<®,l<j<ki) .
We denote the contents by Cl 5 Cp 5 oee cé (in some order).

The labeled ordered sets (P(A/u),w) have a number of remark
able properties associated with the concepts we have been considef
We will merely state two such results here. For further aspects off
the theory, together with proofs, see [33] and [34]. We shall use

the notation

so that

—
3
1
12

m|!({n-mi!

Define a finite labeled ordered set (P,w) of cardinality
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to be g-symmetric if for all S = {ml""’ms}< C p-1 , the number

a(P,w3;S) depends only on the set of differences (including multi-~
Plicities) my 5 My-My , Ma-My 5 ... , P-M_ . Thus, e.g., if

(P,w) 1is a-symmetric, then a(P,w3;S) = a(P,w;T) if (S| = |T| = p-2 .
It is easily seen that a-symmetry is equivalent to the following condi-

tion: If o € Cl(P,m) , define the (formal) monomial
r
M(g) = =x

where T, parts of ¢ are equal to i . Define also the (formal)

power series

{P,w} = M(o) .

o€ a%P sw)
Then (P,w) is a-symmetric if and only if {P,w} is a symmetric

function of the xi's .

21.1. Proposition. Let w be a column-strict labeling of
P(A/u) . Then (P(A/u),w) is a-symmetric. O
When P(y) = ¢ , the resulting symmetric function {P(}),w}l is

known as a Schur function [34], and is usually denoted {Al or e, -

Similarly {P(A/p),w} is denoted {A/u} or (34, §l2].

eA/u
Conjecture. Every finite o-symmetric labeled ordered set
(P,w) 1is isomorphic to a labeled ordered set of the form (P(A/u),w) ,
where ® is a column-strict labeling.
The second remarkable property of plane partitions which we will

State gives a simple determinant for the generating function
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Um(P(A/u),w) . This determinant can be obtained, e.g., from a genes

result of Aitken (see [34, Prop. 12.2]). When uy = ¢ , the detek@
ant can be explicitly evaluated [34, Thm. 15.3].
21.2. Proposition. Let w be a column-strict labeling of

P(A/u) . Then

t

Um(P(A/u),w)

[m+ks-u +s—t]

where the parts of ) are Al = A, Z ... 2 Xx_>0 and the parts ¢

uoare uy = Mo Z ...2p. =20. 0
21.3. Proposition. Let ® be a column-strict labeling of
P(X) . Then

’ mteo., +1 m+c C +1
U (PO, = XN (mey*1) (meeytl).. % ) ,

(hy) (hg) ... (n

As Al

i . i
where k = Z[ 2] = Z(l-l)ki = Zhi - 2[2 ] - p , and where the ¢
are the contents and the hi's the hook lengths of A . o

As immediate corollaries, we see that

UG, = Y () (hy) -

(37

and

e(P(X)) = p!/hlh2...hp . (38
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Equation (38) is a well-known result of Frame, Robinson, and Thrall [13].
Proposition 21.3 leads to several interesting consequences, dis-
cussed in {33] and [34]. One of these is that the number of order

jdeals of r x s x t is

e

Though this result is implicit in the literature, it doesn't seem

[t+r] [t+r+1\ . [t+r+s-1]

to have been stated explicitly before. The much easier determination
of |J(rxs)| appears, e.g., in [4, p. 66, ex. 8]. Nothing significant
seems to be known in general about [J(r x s x t x u)| . It follows
from Proposition 19.1(i) that the number of order ideals of

X Ny X ... X Dy is a polynomial in each n; when all the other

nj's are held fixed, but this observation does not appear to be of
~much value.

22, Trees. A tree is a finite ordered set with 0 whose Hasse
diagram contains no cycles. A dual tree is the dual of a tree.

22.1. Proposition. Let P be a dual tree (naturally labeled).
Then

ue) = IT (o), (39)
where h(X) is the number of elements Y € P satisfying Y < X .

Proof. Perhaps the most straightforward proof is by induction

on |P| . The proposition is immediate if |P| = 1 ; clearly then
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up) = (1)7' . If P is a dual tree of cardinality p > 1 , then

P has the form (Pl+P +...Pk) ®1, where P, , P, , ... , P

2 1 2

[q+l)-lU(Q)

finite ordered set Q of cardinality q , U{Q®l)

Since U(Q1+Q2) = U(Ql)U(QZ) , there follows

Uy = (p) U U ..U .

But p = h(l) , where 1 denotes the top element of P , and th
proof follows by induction. g--
As a corollary, we see that if P 1is a tree or dual tree of

cardinality p , then

e(P) = p!/ h(X) ,
XEP
as was observed by Knuth [21, 5.2.u4].
Consideration of (37) and (38) leads us to ask what finite
labeled ordered sets (P,w) have the property that for each X €F

there is a number h(X) "naturally associated" with X such that

UP,w) = xX 1T ()™t
XEP

for an appropriate k . We call the numbers h(X) the generaliz

hook lengths of (P,w) . Of course this concept is somewhat vagu

since we have not defined precisely the meaning of a "natural as$
tion" between X and h(X) . Note that if (P,w) possesses genéj

ized hook lengths h(X) , then by Corollary 10.2 so does (P,w) -
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with a few "sporadic" exceptions, we know basically of two
éand probably a third) classes of connected orderea sets possessing
generalized hook lengths:

(a) dual trees, naturally or strictly labeled,

{(b) (P(M),w) , for appropriate labelings w .

The third possible class is:

(c) duals of finite order ideals of J(2 x N) , appropriately

labeled.

There are strong reasons for believing that the ordered sets of

(¢) possess generalized hook lengths (ef. [21, 5.2.4, Ex. 211), but

we do not elaborate on this here.

23. Stacks and V-partitions. An n-stack, as defined by E.M.

Wright [38], [39], and considered previously by F.C. Auluck [3], is
a finite sequence of positive integers whose sum is n , which first
increases to its largest term and then decreases to the last term.
For instance, (1122) , (2211) , (1221) are 6-stacks while (1212) ,
(2121) , (2112) are not. We consider a slight modification of
stacks which, from the standpoint of P-partitions, appears to be a
more natural concept. A V-partition of n is an n-stack which is
"rooted" at one of its terms of largest size. For instance, the stack
(1221) can be rooted in one of two ways, viz., (1221) or (1221) .
A V-partition of n 1is immediately seen to be equivalent to a
P-partition of n , where P = 1 ® 2N (whence the terminology
"V-partition"). Thus a V-partition may also be regarded as a finite
order ideal of the ordered set (1 ® 2N) x N .

We first establish a relationship between stacks and V-partitions
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which enables all our results on V-partitions to be interpreted in

terms of stacks.

23.1. ProEosition. Let S, be the number of n-stacks and v

the number of V-partitions of n (with sy = 0, vy=1 ) .
Z (s tv )x = T GJ .
n=0 i=1

Proof. The coefficient of x" in the right-hand side of (40

is the number of 2N-partitions of n , i.e., the number of pairs

P > p Z ... =
of sequences Al = A2 ce. 2 Aj > 0 and My = u, . P > 8

My
satisfying Zli + Zui = n . For each such 2N-partition, we associ

either an n-stack or a V-partition of n , as follows:

(a) Associate the n-stack

(Aj,kj_l,...,Al,ul,uz,...,uk)

(b) Associate the V-partition of n

(xj’xj-l""’Al’Ei’UZ""’uk)

(rooted at Yy if A, <

| 1
It is easily seen that in this correspondence, each n-stack

each V-partition of n will occur exactly once as we range over

2N-partitions of n . From this the proof follows. g
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We begin our study of the generating function for V-partitions

by first obtaining expressions for the generating functions arising
from a more general situation. Though direct combinatorial proofs
can be given of many of the results below, we can save considerable

effort by appealing to some of our previous results.

23.2. Proposition. Let

Then

Proof. Since Um(g) = 1/[m)! , we have by Proposition 12.6(i)

that Um(nﬁ) = l/[m)!n . The proof now follows from Proposition 8.4
(letting p + = ) . O
The next corollary gives some information about the functions

(x) .

v
sn

23.3. Corollary. If n 2> 2 , then vsn(x) is an integral

polynomial in x with the following properties:

. _ s+l
(1) deg vsn(x) = n(7, )-s

(ii) the leading coefficient of Vsn(X) is  (-1)5"

(iii) the largest power of x dividing Vsn(X) is

S .
cori-1 _ s+l 1 S s 42
j__z_:]_ (l+[H——1]) = ( 2 ) +7((28+1—n)[ﬁ]—(n—1)[5_—1-] )

(brackets denote the integer part),
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(iv) the coefficient of the power of x in (iii) is

n-1

S
(n-l) {nTl}

(braces denote the fractional part),

(v) wv__ (1) =1.
sn

Proof. That vén(x) is an integral polynomial is immediate

from Proposition 23.2.

(i) The degree of the i-th term of the sum in Propositiom

23.2 1is

n(¢S3hy - STIhy)y -5,
When n =2 2 , this is a strictly increasing function of i
0 €1<s , so its maximum in this range occurs at 1 = s .
(ii) By Proposition 23.2, the coefficient of the leading
power of x in the i = s term is (-l)s(-l)S(n-l) = (=150,
(iii) By Proposition‘l7.3(iv), the largest power of =x divi

W_(nN) is Ji , where the sum is over all i € m(nN,s) . Now fO

the ordered set nN , vj =n for j 2 0 . Thus, by the Extreme

Value Theorem (Theorem 16.2), m(nN,s) consists of the smallest
elements of the set N-{n,2n,3n,...} . A straightforward computd
now proves (iii),

(iv) Again by the Extreme Value Theorem, the coefficient
question is bs (as defined in §16). This is easily seen to equf

the expression given in the statement of (iv).
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(v) Immediate from Proposition 23.2. 0
Corollary 23.3(1ii) and (iv) illustrates the power of the Ex-
treme Value Theorem. It appears to be difficult to prove these results
directly from the definition of vsn(x) given in Proposition 23.2

(but see the remark following the proof of Proposition 23.7).
23.4. Corollary. We have
o © . o .
(1) ] v (x9%/(s)1" = TT (L-qx")( ] q]/[jl!n) .
s=0 i=0 j=0 -

(ii) Uz ®nN) = —2— 7 xF5/(s)1”
(r-1)! s=0 =<
= —1 E v (x)x"%/ (s)17
(1)(2)... sf0 °" =

Proof. (i) is a straightforward consequence of the definition

of vsn(x) and the identity

<o

1T (1-qx™) = ] 13x 2 g3/
1= :]: -

(ii) By Corollary 12.u4(ii),

e~ 8

rs
X Ws(nﬂ)

0
Lg 2)...

U(r ® nN) = 2

The proof now follows from (i) and Proposition 23.2. O
When n = 2 , the expression for vsn(x) becomes particularly

simple and leads to further consequences.

23.5. Proposition. We have vs2(x) = x>
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First Proof. Substitute n = 2 into Corollary 23.3(i) and

(iii). We find deg Vs2(X) = largest power of x dividing

2 , - =
Vs2(X) = s . By Corollary 23.3(v), VSZ(l) =1, so VSZ(X) = x

Second Proof. Let p + « and q » « in Corollary 12.8.

It is surprising that not only can VsZ(X) be given explicitly,

but also PR(2N;S) for any finite set S C N . This can be used to
give a third proof of Proposition 3.4, but we will omit this proof
here. We first give the easy computation of a(nN;S) for any n

(whose proof is left to the reader).

23.6. Lemma. Let S = {ml,mz,...,ms}< C N . Then
m,+n-1 m,-m,+n-1 m _-m +n-1
. - 1 2 71 s s-1
a(nN3;s) = ( -1 )( ol ) I ¢ el ) . 0

To evaluate B(2N;S) , consider the following general situati
Let £f(m,n) be any function of two variables, and for any finite

sequence Mg ,My,...,M define

F(m,,m ,...,m_ )} = § f(m ,m, )f(m, ,m, )...f(m, ,M. ), (415
0’1 s 0 i) 1,71, 11 1t

where the sum is over all sequences 1 < i <i, <. <i <5,
with a term 1 included when t = 0 . Thus F(mo) =1, F(mo,m
=1 + f(mo,ml) , etec.

Separating the different values of il = k from (41), we obtd
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s
F(mo,...,ms) = 1+ kzl f(mo,mk)F(mk,mk+l,...,mS)

"

f(mo,ml)F(ml,mz,...,ms) + F(mo,mz,...,ms) . (42)
23.7. Proposition. Let S = {ml’mZ""’ms}< C N . Then
g(2N3S) = ml(mz-ml—l)(m3-m2—l)...(ms—ms_l-l)

Proof. By definition of g8 (§9) and Lemma 23.6,

] D% RN (s=ls|, =T
TCS

8(2N;S)

I D Fm +D(m, -m +#D) ... (m -mg 41D,
1 1 11 t Tt-1

where the latter sum is over all sequences 1 < i1 < ... <1 <s.

.,ms) of (41), where

Thus (—l)SB(Zﬂ;S) has the form F(mo,ml,..

-(n-mtl1l) . Now by (42),

m, = 0 and f(m,n)
F(mo,ml,...,ms) = —(ml-m0+l)F(ml,m2,...,ms) + F(mo,mz,...,ms) .

This recursion, together with the initial condition F(mo) =1,
uniquely determines F(mo,ml,...,ms) . A simple calculation‘shows

that the function

s
(-1) (ml-mo)(mz—ml-l)...{ms—ms_l—l)

Satisfies the same recursion, and the proof follows after setting
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It appears unlikely that g(nN;S) can be given as explicitl
as in Proposition 23.7 when n > 2 . Similarly, the expression f

vsn(x) does not seem to simplify when n > 2 . George Andrews ]

conjectured that there is an alternative expression for vsn(x)

which reduces to Proposition 23.5 when n = 2 , and which makes™
Corollary 23.3 evident for all n .

23.8. Corollary. We have

Xs(s+r)

0 (s)!z

W(r ® 2N) = )
s=

Proof. 1Immediate from Corollary 23.4 and Proposition 23.5.

Auluck [3] shows that if Sn is the number of n-stacks, th

Proposition 23.1 shows that an analogous result holds for t
generating function U(l ® 2N) , i.e., that there is a simple e

pression for U(lL ® 2&)[1)2[2)2... . We in fact state such a re

for U(r ® 2&)[1}2(2]2... (for any r € N ) . For a proof (in¢

a purely combinatorial argument in the case r = 1 ) , see

[33, Ch. Vv, §3].
. (it
23.8. Proposition. Let T(x) = § (~-1)*x 2 . Then,
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pr(x)T(x)—qr(x)

2 -
(2) - —

ly
for where P, (x) , q_(x) are polynomials, both satisfying the recursion
hag
Sr(X) = QSr_l(x) - EF—2lsr_2(x) (r > 2)
(s=p or s=q) , with the initial conditions
pl(x) = 1 ql(x) = 0
p2(x) = 2 q2(x) = 1. O
g The polynomial pr(x) has been studied by Goldman and Rota
2n [14] in another context, viz., pr(q) is the total number of sub-
spaces of a vector space of dimension r-1 over the field GF(q)
24. Protruded Partitions. We define a protruded partition
1e of n to be a decreasing sequence of positive integers
=
sult A1>A2>...>Ar>0,
Luding
, ‘together with a sequence. My 5 Mg s see s Wy of non-negative
integers satisfying
T
0 <y; <Ay, i71,2,...50 (43)
such that ZAi + Zui =n . (The p; are protrusions of the ordinary
)




94 RICHARD P. STANLEY

partition A = ... = Ap - ) Hence a protruded partition of n

simply a K-partition of n , where K 1is the ordered set of
Figure 4,

Some of the combinatorial properties of the ordered set K
and the distributive lattice Jf(K) are considered in [36]. We
shall content ourselves here with the determination of the gener

functions WS(K) and Um(K) .

24.1. Proposition. We have

. S 1

WSKK) = XS(S+1)/£§2! .)] (l-x—xl+l) .
i=1
Proof. Clearly X =1 ® (1+K) . By Corollary 12.4(ii),
W (L ® (1+K)) = xPW_(1+K) .
By Corollary 12.7 (letting p + « ) ,
W0 = (w0 + [ w o

s = 1-x""s-1 1 s :

\

Figure 4
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x25 s|s+l
WS(K) = ('i—_—x)ws_l(K) + x [ 1 ]WS(K) 9
. L2
S0
X250 (0
W (K) = - .
+
s (1-x°%) (1-x-%° l)
From this recursion and the initial condition WG(K) = 1 we get
the desired formula for W_(K) . 0
A virtually identical argument yields an expression for WS(Kn) ’
where Kn is the ordered set satisfying Kn =n @ (l+Kn) . Similarly,

one can obtain recursions for WS(P) when P satisfies such relations

as P=1®(2®P) or P=1®2P . In these cases, however, it

seems difficult to solve these recurrence relations for WS(P) .

24.2. Corollary. We have

E Q™ ( ) E xS(S+l)q?

U (X)q = P(q,x
m=0 ™ s=0 [s)!(l—x—x2)(l—x—x3)...(l—x—xS+l)
where P(q,x) = 1/(1-q)(1-gx)(l-gx2)... .

- Proof. Immediate from Proposition 8.3. (]

On the other hand, it is easy to give an explicit expression

for U (X) .
m

24.3. Proposition. We have

m . . . .
u 0 = ] (1-xI-x3FL3%2_ 23,1 (u1)
j=1
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Proof. A term x]+k in the expansion of the product in (44

(L<jJ<m, 0<k<3j) corresponds to the pair j = A. , k=

in (43). 0
Substituting the result of Proposition 24.3 into Proposition
24.2, we get an interesting combinatorial identity. It is possibé
to give a purely algebraic proof of this identity, but we do not;g
so here. :
Note that as a special case of Proposition 24.3 we have
Ul(K) = l/(l-x—xz) , the generating function for the Fibonaceci .
numbers. It follows (from Proposition 17.1) that the number of--
order ideals of K of cardinality n 1is the n-th Fibonacci nu

ber. Some simpler proofs of this result are given in [361].

25. Permutations. Let M be a finite multiset of positive

integers, say with Ai copies of i , with Zki =p. A probl?

.
or ij < ij+l (for each j=1,2,...,p-1) . Of particular intere

is the case when M is a set, i.e., when each Ai =0 or 1.

natural setting for this problem is that of (P,w)-partitions W

P =, + Ag ¥ ... and w is natural. The permutations

T = (w(Xi ),w(Xi ),...,w(Xi )) in the separator £L(P) correspf
1 2 P

the entry w(Xi_) of L(P) by the symbol k , where Xi
J ]
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. . . .t .
In this correspondence, w(Xij) > w(Xij+l) if and only if lj > 1j+l

In particular, the index ind(mw) (defined at the end of §6) is
jdentical to the "greater index" (as defined by MacMahon [23, s1i0uD)
ind(n') of the permutation ' of M . Now by iterating the

pelation (24), we get

WA, +tA,t..0) = S
172 [Xl]![XQ]!"'

Hence

podndlr) (p)

T [xl]x x2]1...

where the sum is over all permutations =' of the multiset M

> (45)

This remarkable formula was first proved by MacMahon [24]. Similarly,
when ¢ is a strict labeling, the number ind(T) equals the sum of
MacMahon's greater and equal indices. Thus the formula of [23, §108]
may be regarded as a special case of Corollary 10.2.

Later MacMahon [25] showed that the coefficient of x" in (45)
is also the number of permutations ' of M with n inversions,

i.e., with n pairs (i,j) such that i >j and i appears before

'3 in 7 ., This result was rediscovered by Carlitz [7] and by

Knuth [21, vol. III, §5.2.2, ex. 16]. A further proof was given by
Abramson [1]. A combinatorial correspondence between permutations
of M with n inversions and those with (greater) index n was
given by Foata [101].

We have already mentioned in 6§13 how the P-Eulerian numbers
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wS(Al + Az + ...) are equivalent to MacMahon's invariants N,

reduce to the classical Eulerian numbers when each Ai =1 .

binatorially, the numbers WS(A + ...) count the number of

permutations (il’iz""’ip) of M with exactly s descents

ij > ij+l . We can ask more specifically for the number of permu
tions of M with descents precisely after 1_ ,i_ ,...,1 .

m, *Tm, m
this number is B(Al Ayt el S) , where S = {ml,mz,...}.

MacMahon [23, §§178-181] was the first person to study these numbeé
His notation was as follows: Let A be the partition of p intd

parts Al,xz,..., and let pu be an ordered partition (compositio

+ - (o s . .

Hq + ... Moty p . Then MacMahon's invariant N(“)A is our

B()\1 + Xz + ... 3S), where S = {ul,ul+u2,...,ul+u2+...+us}
The special case where each )\, = 1 (so P=pl) is related

1

the theory of compositions (or ordered partitions), since a pl-
partition is just a composition into p non-negative parts. Ma

Mahon [23, vol. I, p. 190] showed that

stl
g(pl;sS) = p!|l/(mj-mi_l)!|l s
where S = {ml,...,ms}< C p-1 , with the usual conventions
m, =0, m =p, 0!=1, 1/(-k)! =0 if k > 0 . If thi

determinant for 8(pl;S) is expanded, it simply takes the for

) (—l)lS'T|a(pl;T) , using the obvious fact that o(pl;T) 1
TCS -
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the multinomial coefficient p!/nl!(nz—nl)!(n3—n2)1...(p—nt)! s
where T = {nl""’nt}< . MacMahon's result was rediscovered (in

a slightly different form) by Niven [26] and further studied by

pe Bruijn [9]. In general, the numbers a(A1+A2+...;S) are the

multiset analogues of the multinomial coefficients. No simple

formula for them is known (though there are some recurrence relations

and some "messy" formulas), and no formula for B(A1+A2+...;S) is
known analogous to MacMahon's formula (46) for g(pl;S)
Let us now consider the numbers g(pl;S) in more detail. If

g = {23+1|1 < 23+1 < p-1} , +then the number tp = B(pl;S) counts
the number of "alternating permutations” of p , i.e., permutations

isigse

.,ip satisfying il > i2 < i3 > iu < ... . The numbers

t are known as the Euler numbers (not to be confused with the

Eulerian numbers of §13). André [2] derived the generating function
Z —R—T— = tan x + sec x .
p=0 P’
For this reason one also calls t,. a tangent number and t,.
21+1 21

da secant number. For further properties of these numbers, see

Foata-Schutzenberger [11] and the references quoted there.
Foata and Schiitzenberger have elsewhere [12] considered the

problem of "refining" the numbers tp , 1.e., of expressing tp

as the sum of combinatorially significant numbers. We will give a

refinement of the numbers B(pl;S) for any S C p-1 . This
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refinement differs from that of Foata-Schiitzenberger in the case
S = {1,3,5,...} .

Given any permutation 7w = (il’iZ"“’ip) of (1,2,...,p)
define Z(T) to be ordered set with elements Xl’XZ""’Xp geng

ated by the relations
(3=1,2,...,p-1)

"j.e., a tree w

Hence the Hasse diagram of Z(x) is a "zig-zag,
only two end-points. Note that o: Z(w) + p 1is an order-presery

bijection if and only if the permutation w' = (O(Xl),O(XZ),...,Q

has its descents in exactly the same places as does w , 1i.e.,
s?(n') = .ﬂ(n) . From this we get the following result.

25.1. Proposition. Let T C p-1 , and let w be any pe
tion of 1,2,...,p satisfying L) = T . Let N(T) be the to
number of permutations #' of 1,2,...,p satisfying Aﬁ(n') =

Then N(T) = B(pl;T) = e(Z{(w)) .

Hence, if w 1is any labeling of Z{(w) , then the (Z(w),

Eulerian numbers w, (defined in §13) give a refinement of N(

ie, wg tw * ... 0% Wiy T N(T) (see (25)). A more discrim

refinement is given by the coefficients of the polynomials WS(&”

or even the numbers RB(Z(w),w;S) .
Two labelings w of possible special interest are (a) nat!

labelings, and (b) the labeling m(Xi) = i . Let us call this.
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1abe1ing w the linear labeling of Z(m) . It is easy to see that

the labeled ordered set (Z(m),w) (where w is linear) is a special
case of the ordered sets (P(A/u), ) considered in §21. From this
follows several interesting properties of (Z(m),w) . TFor instance,
from Proposition 21.1 we have that (Z(m),w) 1is a-symmetric. More-

over, from Proposition 21.2 there follows

s+l

U (Z(m),w) = (47)
m

[m+mj—mi_11

m

211
where x?(ﬂ) = {ml,mQ,...,ms}< (with my =0 , m_; =P ) . Equa-

tion (47) is a generalization of MacMahon's formula (46) for e(Z(m))
Indeed, if in (47) we let m + « , multiply by (RJI , and set
x =1, we get (L46).

Actually, the entire theory of (Z(7m),w)-partitions (where w is
linear) was anticipated by MacMahon in his study of compositions. For
instance, the theorem of Aitken from which Proposition 21.2 follows is
given in the special case P(A/u) = Z(m) by MacMahon in [23, §1681].
Moreover, MacMahon's "zig-zag graphs" [23, 129] are simply a way of
representing Z(T) . TFor a connection between these considerations

and the representation theory of the symmetric group, see Solomon

[31, s61.
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