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SUBDIVISIONS AND LOCAL A-VECTORS

RICHARD P. STANLEY

PART 1. SIMPLICIAL COMPLEXES

1. INTRODUCTION

Let A be an (abstract) simplicial complex of dimension d — 1 with f, i-
dimensional faces (or i-faces, for short). (For undefined terminology, see, €.g.,
[Stag].) Throughout this paper, all simplicial complexes will be finite. The f-
vector of A is given by f(A) = (f, ..., f;_,), with the understanding that
f_; =1 unless A = @. We will be concerned here with properties of the f-
vector of subdivisions of A. It is often more convenient to deal not with the
f-vector, but rather the h-vector h(A) = (h, ... , h;), defined by

d o d ‘
(1) S =T =S R
i=0 i=0

For instance, if A is a Cohen-Macaulay complex [ Sta,; Stag, Chapter I1.3],
then A, > 0 (and in fact A(A) can be completely characterized in an elegant
way). We often deal not with the h-vector h(A) = (hy, h,, ... , h;) per se, but
rather with the A-polynomial

h(A, x) = hy +hyx + -+ hyx”.

Sections 2-5 deal with combinatorial properties of simplicial subdivisions
(or triangulations) A’ of a simplicial complex A. The basic combinatorics of
subdivisions depends in a subtle way on the precise notion of the term “subdi-
vision.” We will be concerned primarily with four types of subdivisions:

(a) General (or topological) subdivisions. Here we only require that (infor-
mally speaking) each simplex 2F of the simplicial complex A is subdivided
into a ball whose boundary is a subdivision of the boundary of 2.
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(b) Geometric subdivisions. Here we want A and A’ to have geometric
realizations (each face realized as a Euclidean simplex) such that A and A’
have the same underlying set, and such that every face of A’ is contained in
a face of A. This is the usual notion of subdivision used by topologists, e.g.,
[Mu, p. 83; Sp, p. 121].

(c) Quasi-geometric subdivisions. These subdivisions are topological subdivi-
sions with one extra combinatorial condition; namely, no face of the subdivision
A’ can have all its vertices on a face of A of smaller dimension. Clearly geomet-
ric subdivisions have this property, but quasi-geometric subdivisions are more
general. As shown by Corollary 4.4, the defining property of quasi-geometric
subdivisions is precisely what is needed to obtain the essential positivity result
of Corollary 4.7. (See property (L3) of local h-vectors below.)

(d) Regular subdivisions. Loosely speaking, these are projections of a strictly
convex polyhedral surface. They are an extensively studied subclass of the geo-
metric subdivisions whose main significance for us is that we can apply the hard
Lefschetz theorem for the decomposition theorem of intersection homology to
obtain the unimodality result given by Theorem 5.2. (See property (L4) of local
h-vectors below.)

The original motivation for §§2-5 is the following question of Kalai and
this author: If A’ is a (simplicial) subdivision of the Cohen-Macaulay com-
plex A, then is h(A) < h(A')? This question is answered affirmatively for
quasi-geometric subdivisions, and remains open for topological subdivisions.
The hypothesis that A is Cohen-Macaulay may even be relaxed somewhat; see
Theorem 4.10. The key concept for the proof is that of the “local A-vector”
£,(1) = (4, ... , £;) or “local h-polynomial” £, (I, x) = £+ £,x +--- +£,x*
of a subdivision I of a (d — 1)-simplex with vertex set V. The vector £,(I)
has the following properties:

(L1) ¢, =¢,_; forall i.

(L2) For any pure simplicial complex A and any subdivision A’ of A, we
have

) h(A, x) =S 0.(Ap, X)h(Kk,F, x),
FeA

where (i) A'F denotes the restriction of A’ to the face F of A, and (i) lk,F
denotes the link of F in A.

(L3) For any quasi-geometric subdivision I of a simplex 2", £,(I>0.

(L4) If T is combinatorially equivalent to a regular subdivision of 2" (as
defined in Definition 5.1), then £, (T") is unimodal.

Of these properties, (L1) and (L2) have elementary proofs, (L3) uses ma-
chinery from commutative and homological algebra, while (L4) relies on deep
results in intersection homology theory. Equation (2) shows exactly how the A-
polynomial (or A-vector) of A" depends on the properties of A alone (viz.,
the terms A(lk,F, x)) and on how each face F of A is subdivided (viz.,
Ly (A;r , X)). It explains the terminology “local A-vector,” since the local behav-



SUBDIVISIONS AND LOCAL h-VECTORS 807

iorof A at F determines A(lk,F, x), and thus ¢ F(A'F , X) is the contribution
to h(A', x) of the subdivision A} itself “at F.”

If in (2) A is a Cohen-Macaulay simplicial complex and A" is a quasi-
geometric subdivision of A, then every term on the right-hand side is non-
negative. Moreover, when F = @ the corresponding term is A(A, x). Hence
h(A, x) < h(A', x), thus proving the above-mentioned conjecture of Kalai and
this author in the quasi-geometric case.

Similarly, suppose we know that A is Cohen-Macaulay, and that for ev-
ery F € A the h-vector h(lk F) satisfies h, = h,_, and hy < h < ... <
hLm L where m = #F . (This is the case for the boundary complex of a
simplicial d-polytope [Sta;].) Let g = h; — h;_,, and define the g-vector
8(A) = (8 & -+ » 8ajy) - Let A’ be a subdivision of A such that, for all

F € A, the subdivision A} of F (or, more precisely, of the simplex 2F ) is
combinatorially equivalent to a regular subdivision. Then it is easy to deduce
from (2) and (L4) that g(A) < g(A'). In other words, g-vectors (and not just
h-vectors) of suitable simplicial complexes increase under regular subdivision.
It is not known whether this fact remains true for more general subdivisions,
such as geometric, quasi-geometric, or even topological.

A number of applications and examples related to our results on local A-
vectors are presented in §§2-5. For instance, in Proposition 3.4 we prove
a conjecture of M. Kapranov concerning certain triangulations of simplices.
In Problem 4.13-Example 4.17, we investigate the question of when local A-
polynomials are 0 and relate it to the topic of “minimal triangulations.” Propo-
sition 4.20 deals with the interaction between the action of the symmetric group
<, on the first barycentric subdivision I" of a (d — 1)-dimensional simplex 2r
(so T is essentially the Coxeter complex of %) and the local A-vector £,,(T).

In §§6-9 we extend the results of §§2-5 to more general situations. For
instance, we consider polyhedral subdivisions of polyhedral complexes. The
h-vector is replaced with the “generalized h-vector” of [ Sta,,]. Properties (L1)
and (L2) of the local A-vector carry over without difficulty, but we can only
prove (L3) (as well as (L4)) in the special case when we can interpret the gen-
eralized A-vector in terms of the intersection homology of toric varieties.

Here is a brief description of some of the highlights of §§6-9. In §6 we
give a broad formal generalization, valid for any locally finite graded poset P,
of the theory developed in §§2-5 (the case where P is a boolean algebra). For
instance, Example 6.9 shows that Kazhdan-Lusztig polynomials can be incorpo-
rated within our theory (though we obtain no new results about these remarkable
polynomials). In §7 we specialize the previous section to Eulerian posets, which
have many special properties. In particular, in Definition 7.4 we give a vast
formal generalization of the concept of subdivision of a simplicial complex. In
Example 7.13 we discuss the connection between our methods and the theory
of Ehrhart polynomials. In particular, an earlier result of Betke and McMullen
[B-M, Theorem 1] is an Ehrhart polynomial analogue of (2) and provided some
of the motivation for this paper. Section 8 is devoted to the effect on our theory
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of dualizing the poset P. As a consequence of our results we give (Corollary

8.8) a simple, conceptual proof of a conjecture of G. Kalai, originally proved

independently by Kalai and by A. Klapper. Finally in §9 we consider the pos-

sibility of a “ g-analogue” of our theory of Eulerian posets. Unfortunately we

show (Proposition 9.1) that a completely satisfactory g-analogue does not exist.
Throughout this paper we employ the following notation:

N={0,1,2,...},
P={1,2,3,...},
[dl={1,2,...,d}, ifde P.

2. THE LOCAL A-VECTOR OF A SUBDIVISION OF A SIMPLEX

Let V be a d-element vertex set, and let 2" denote the simplex with vertex
set V. (Thus 2V s simply the set of all subsets of V'.) Let I' denote a
(finite) simplicial subdivision (or topological subdivision) of 2" . Formally,
this means that I' is a simplicial complex and that we have a “subdivision
map” o: I — 2¥ satisfying: (a) For every W C V, T}, := a_l(ZW) is a
subcomplex of I' whose geometric realization |a_1(2W)| is homeomorphic to
a ball of dimension (#W) — 1; and (b) a_l(W) consists of the interior faces
of the ball 0_1(2W) . (Hence o is surjective.) We call the subcomplex I'j, the
restriction of T' to W (or to 2W). If F eT,, then we say that F lieson W .

Hence for any F € I', we have that g(F) is the unique smallest face of 2" on
which F lies. We call this face a(F) the carrier of F . Thus we always have
dim F < dimo(F).

For any simplicial complex A let A(A, x) denote its A-polynomial; i.e.,

d )
h(A, x) = Zhix' ,
i=0

where h(A) = (h, ... , h;). The fundamental definition of this section is the
following.

2.1. Definition. Let #} = d . For any subdivision I' of a simplex 27 , define
a polynomial £, (", x) =4, + £, x +--- + ded by

(3) AT, x)= > Ty, x).

wcv

We call ¢,(T", x) the local h-polynomial of T' (with respect to 2" orto V),

and we call £,(I') := (¢, ... , £;) the local h-vector of T" (with respect to 2Y
orto V).
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Note. Since equation (3) must be valid for all subdivisions of all simplices, in
particular it holds with I" replaced by I'y,, . Thus by the Principle of Inclusion-
Exclusion (e.g., [ Sta,, , Chapter 2.1]) we can invert (3) to obtain

(4) 6, T, x) =Y )"""nr,, x).
wCv

Thus Definition 2.1 does indeed define ¢, (I, x). We could of course have
made (4) the definition of £, (T", x), but we will see (following Corollary 7.7)
that equation (3) generalizes more naturally than (4).

There is an alternative expression for £,(I', x) which is sometimes useful.
Given G €T, define the excess e¢(G) of G by the formula

e(G) = #0(G) — #G = dimo(G) — dim G.
2.2. Proposition. We have
(5) £,(T, x) = Y () x4 D - 1)@,
Ger

Proof. For any (d — 1)-dimensional simplicial complex A, it follows from (1)
by substituting 1/x for x and multiplying by x? that

(6) ha, x) =3 M-

FeA
Hence by (4),

r X) Z( ld —#W z #G(l_x)#W-—#G

wcv Ger'y,
d _#G —#G #W
=2 DT -0T 30 (x- 1)
Gerl’ W2a(G)

1)#a(G)xd—#a(G)

By the binomial theorem, the inner sum is equal to (x — , and

the proof follows. O

2.3. Example. (a) 66(2'3 , x) =1, where @ denotes the empty set.

I T= 27 (the trivial subdivision) where # =d > 0, then éV(2V , X) =
0. This follows immediately from (3) and the fact that h(2V ,x) =1 for all
V' (including V = @).

(c)If #V' =2 (so dimI'= 1) and T has ¢ interior vertices (so ¢t + 2 vertices
in all), then £, (", x) = tx.

(d) If #V =3 and A(T, x) = hy + h;x + h2x2 -l-h3x3 (so hy = 1 and
hy = 0), then

2,(T, x) = hyx + hyx’.
Moreover (see (f) below), &, is equal to the number of interior vertices of T".

(e) From the above examples it follows that £, (I', x) depends only on I' as
an abstract simplicial complex (in fact, only on A(I", x)) when #J” < 3. This
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fact is no longer true for #V > 4. For instance, let #V = 4. Let [, be the

stellar subdivision of 2" obtained by adding a vertex to the center of a 2-face
and 3-face. (Of course the only 3-face is V itself.) Similarly obtain I', by
adding a vertex to the center of a 1-face and 3-face. Then I', and I, are
isomorphic as abstract simplicial complexes (with A(T";, x) = hT,,x) =1+
2x+2x2+x3), but £, (I, x) =x+x"+x° and £,(I,, x) =x+2x"+x°.

(f) Since h,(A) = 0 for any triangulation A of a (d — 1)-ball, the only
term on the right-hand side of (4) for which the coefficient of x?7! can be
nonzero is given by W = V. Moreover, the coefficient of x? s always 0
unless ' = 2° = {@}. Hence if ¢,(T, x) = Eg £;x', then ¢, = 0 unless
d=0,and £, | = h, (). Let us note that, e.g., from [ Ma, , Proposition
1.1, Sta,, (1.1)] we have that &, (') is the number of interior vertices of I'
(i.e., the number of vertices whose carrier is V). From Theorem 3.3 below we
also see that ¢, = h,_ (I') and £, =0 unless d = 0. (It is also not difficult to
obtain the values of £, and ¢, directly from (3) or (4).) Thus ¢, ¢,, £, ,,and
¢, depend only on A(I'), while (e) above shows that ¢, cannot be computed
from just the structure of I' as an abstract simplicial complex. It is easy to
extend this example to show that any ¢, with 2 < i < d —2 does not depend
only on I' as an abstract simplicial complex.

(g) Assume V # & and consider Proposition 2.2. No faces G € I' satisfy
e(G) = d, while ¢(G) = d — 1 if and only if G is an interior vertex of I.
Taking the coefficient of x yields that ¢, is the number of interior vertices, as
obtained in (f) above. Similarly, e(G) = d — 2 if and only if either (i) G is an
interior edge, or (ii) G is a vertex whose carrier is a (d — 2)-face of 2" . Let
/f denote the number of interior i-faces of I', and let fo be the number of

vertices v of I' for which #¢(v) = d — 1. Then taking the coefficient of x>
in (5) yields

L=—d-1)f, +f - f

By Theorem 3.3, this is also the value of £,_, . Of course similar formulas hold
for any ¢,, but in general they seem too complex to afford much insight.

(h) (C. Chan) Let V = {1, 2,3, 4}. Let T be the subdivision of 2" ob-
tained by adding a vertex 5 inside face 123, and letting the facets of I" be
1234 and 1235. (Note that the interior of a “curved triangle” 123 has been
inserted into the interior of the simplex 1234.) Then ¢(T", x) = —x*. In 84 we
will see what bad property of I' causes the local A-vector to have a negative
entry.

(i) Let #V =d . A natural subdivision of 2" is the (first) barycentric sub-
division I' = sd(2V) . I' may also be regarded as the Coxeter complex of the
symmetric group ;. It is well known that

d—1

AT, x)= ZAd,ini,
i=0
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where 4, ., denotes the Eulerian number [C, Chapter 6.5, Sta,,, p. 22].
(Thus xh(T, x) is the Eulerian polynomial A,(x).) The Eulerian numbers
have the following combinatorial interpretation (among others) [ Sta,, , Propo-
sition 1.3.12]:

(7) AT, x)= Y x*,

weS
where ex(w) denotes the number of excedances of w , defined by
ex(w) =#{i: w(i)>i}.
We now give a similar interpretation of £, (T", x).

2.4. Proposition. With notation as above, we have

£, x)= 3 x™,
weY,

where D, denotes the set of all derangements (i.e., w(i) # i forall i)in .

Proof. Let us write W (x) for h(T', x) and ¢/ (x) for £,(T", x) when #Y =j
and I' = sd(2Y) . Since for any W C V' we have I'),, = sd(2W) , and since V
has (‘f) faces of cardinality i, it follows from (3) that

B (x) = Zdj(‘f)e"(x).

i=0

Hence by (7) we need to show

(8) Z K@) _ Xd:((lf) Z )

weES, i=0 VEY,

But if w € %, has a given set S of d —i fixed points, then the remaining
set T =[d]—S of i elements which w permutes can form any derangement
of T, while relabeling the elements of 7" by 1, ..., i in increasing order
preserves the number of excedances. Since there are ( d‘i ;)= (‘f ) choices for

S, (8) follows. O

For further information about excedances, see [Br,]. For a refinement of
Proposition 2.4, see Proposition 4.20 below.

3. ELEMENTARY PROPERTIES OF LOCAL /-VECTORS

We now come to the basic properties of local A-vectors. We have four results
in all (Theorem 3.2, Theorem 3.3, Corollary 4.7, and Theorem 5.2). The first
of these results clarifies the terminology “local A-vector.”
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3.1. Lemma. Let T be a pure (d — 1)-dimensional simplicial complex. (“Pure”
means that all maximal faces have d elements.) Then

S DT RO, x) = —(x - 1) (D),
Fel
where ¥(I') = —1+ fy— f, + -, the reduced Euler characteristic of T.

Proof. Since I' is pure we have dim(lk . F) =d —#F — 1 forall F € I'. Thus
by (6) we have

Z( )d #Fh(lk F, x Z(_l)d—#F Z x#(G—F)(l_x)d—#G

Fer Fer FCGer

_ Z(_l)dx#G(l _ X)d_#G Z (_x)—#F

Ger FCG

#G

_ l)dx#G(l )d—#G |- 1

IC (1-%)
=(x- 1" (-n*

GeT

= —(x-1zD). O

3.2. Theorem. Let A be a pure (d — 1)-dimensional simplicial complex, and let
A" be a simplicial subdivision of A. Then

9) h(A', x) =Y £, (A, X)h(k,F , x).
FeA

Proof. Let R denote the right-hand side of (9). By (4) and the previous lemma,
we have

R=Y" [Z D" Dnay, x)] h(Ik,F , x)

FeA-GCF
=S h(ay, x) [Z D"k, F, x)]
GeA FOG
= =3 hAy, x)(1 - x)* 31k, G).
GeA

Now using (6) we get

x#H #(G H) (1 —x)d_#G)Z(lk G)
A

GeA HeA
#H d—#H ~
==Y x"(1-x) > 7k,G).
HeA' G2a(H)

Let P be the poset of faces of A (ordered by inclusion), with a maximal
element 1 adjoined. Let u denote the Mobius function of P [Sta,, , Chapter
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3.7]. By [Sta,,, Proposition 3.8.8] we have
(K, G) = (G, 1),
Hence by the fundamental recurrence [ Sta,, , Chapter 3.7, (14)] for x4, we have

> ak,G)=—pd, 1) =-1

GDo(H)
Therefore
R=Yx"(1-x)™ = p@', x),
HeA'
by (6). O

For a generalization of Theorem 3.2, see Theorem 7.8 (for which we give a
slicker but somewhat less elementary proof).

Our second main result on local A-vectors is a “self-duality” theorem analo-
gous to the Dehn-Sommerville equations.

3.3. Theorem. Let T" be a (finite) simplicial subdivision of the simplex 2Y,
where #V =d . Then

d
x £, (T, 1/x)=£,(T, x).
Equivalently, ¢, =¢,_; forall i.
Proof. A more general result will be proved later (Corollary 7.7). O

As an application of Theorem 3.3, we give a proof of an unpublished conjec-
ture of M. Kapranov related to the work of [G-Z-K].

3.4. Proposition. Let I" be a simplicial subdivision (or triangulation) of the sim-
plex 2V (where #V = d ) such that every vertex v of I' has excess (as defined
in §2) e(v) = 0 or 1. It is then easily seen that every face G € T satisfies
e(G) < #G. Let o) be the number of faces G of T satisfying e(G) = #G
(including G = @, for which e(2) = 0 = #@). Then o) = f, ('), the
number of facets of T".

Proof. Let @ # W C V', with #W = s. According to Proposition 2.2, we have

Ty, x) = 3 (1) x4 - )9,
Gerl,

If #G = r then as mentioned above e(G) < r, while since G € I', with
I'y, = s we have e(G) < s —r. Hence 2¢(G) < s. Suppose s is odd, say
s=2t+1. Then s—e(G)>t+1,s0 £,(C, ,x) is divisible by x"*'. Since
Ty, x) =x£,(T, , 1/x) by Theorem 3.3, it follows that £,,(T,,, x) =0.
Now suppose s is even, say s = 2¢. We then get s —e(G) > t,s0 £,(I'},, x)
is divisible by x'. Again by Theorem 3.3 we have ¢,,(T,,, x) = c,,x' for some
integer ¢y, . To obtain the value of ¢, , note that from the above expression
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for ¢,,(I',, x) we have that the coefficient of x’ in £, (I'y,, x) is given by

—#G G
=3 (=D
GeTy
e(G)=t
The only way we can have G € ', and e(G) =t isfor #G =t and o(G) = W .
Hence ¢y, is just the number of faces G of I',, for which ¢(G) = W and
e(G) = #G. Setting x =1 in (3) yields that A(I", 1) is the number of faces G
of T' for which e(G) =#G. Since A(T', 1) = f,_,(I'), the proof follows. O

4. NONNEGATIVITY OF LOCAL A-VECTORS

Our aim in this section is to establish nonnegativity of the local A-vector
£, (I') for certain subdivisions I" of 27 we begin by defining the subdivisions
of interest to us. First define a geometric simplex to be the convex hull of a set
of affinely independent points in R” .

4.1. Definition. (a) A simplicial subdivision A" of a simplicial complex A is
quasi-geometric if for every face F of A, there does not exist a face W of
A such that (i) dim W < dim F, and (ii) for every vertex v of F, v lies on
some subset Y (depending on v) of W . Equivalently, no face of A’ has all
its vertices on the closure of a face of A of lower dimension.

(b) A simplicial subdivision I" of a simplex 2" is geometric if it can be real-
ized in R” as a subdivision of a geometric simplex into geometric simplices. 0O

Clearly every geometric subdivision I" of 2" is quasi-geometric. Example
2.3(h) gives a subdivision I" of 2Y for vV = {1, 2, 3, 4} which is not quasi-
geometric. A similar example can be given for V = {1, 2, 3}; viz., add a
vertex 4 inside the face 12 of 2V, and let the facets of I" be 123 and 124.
On the other hand, it is known that there exist quasi-geometric subdivisions of
simplices which are not geometric. For instance, take a non-PL 5-sphere I'"
(existence guaranteed by work of Edwards; see [Dav]), and remove any facet
V = {x;,...,xs} “away from” vertices whose links are not spheres. The
remaining complex I'=I" — {V'} is a quasi-geometric but nongeometric subdi-
vision of the simplex 2" . There also exist PL examples, e.g., quasi-geometric
subdivisions of a 3-simplex for which the boundary of some 2-face is knotted.

The proofs of Theorem 3.2 and 3.3 (the latter yet to be given) are purely
formal, but for our next result we do not see how to avoid introducing machinery
from commutative and homological algebra. Given a simplicial subdivision I’
of 2V, where V' = {x, ..., x;}, let K[I'] denote the face ring (or Stanley-
Reisner ring) of T over the field K, as defined e.g. in [ Stag, p. 62].

4.2. Definition. A homogeneous system of parameters (h.s.o.p.) 6,,..., 0,
of degree one of K[I'] is called special if each 6, is a linear combination of

vertices x of I' which do not lie on the closure 2"~} of the face ¥ — {x;}
of 2. o
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We want to show that a special h.s.o.p. always exists when I' is quasi-
geometric (and when K is “large”). To do this we use the criterion [ Stag,
Remark on p. 150; Bi, p. 66] for the existence of an h.s.0.p. of degree one.
Since this result is stated in [Stay; Bi] without proof and is only stated and
proved implicitly in [K-K], for the sake of completeness we will sketch a proof.

4.3. Proposition. Let A be a (d — 1)-dimensional simplicial complex. Let
0,,...,60,; € K[A], (the space of elements of K[A] which are homogeneous
of degree one). Then 0., ... , 0, isan h.s.o.p. if and only if for every face F of
A (or just for every maximal face), if we set in 0, ..., 0, each vertex x; ¢ F
equal to zero (in other words, if we restrict each 0, to F), then 0, ... ,6,
span the vector space with basis F .

Proof (sketch). The “only if” part is easy. To prove the “if” part, let R =
K[A)/(0,, ... , 6,). Assuming the conditions on the 6’s given in the statement
of the proposition, we want to show dim, R < co. Let R =R oeR,®--- . If
F is a maximal face of A, then one easily sees that R , annihilates in R the

monomial x© := [Iicrx . Thus dimg R < co if and only if

dim, R/(xF : F is a maximal face of A) < oco.

Now repeat the argument for A" = A — {maximal faces of A}, etc., until we
reach R/ (xF : F is any face of A) = 0, which is clearly finite-dimensional
over K. O

4.4. Corollary. Let T be a simplicial subdivision of 2", where #V = d, and
let K be an infinite field. Then there exists a special h.s.op. 6, ..., 0, for
KT ifand only if T is quasi-geometric.

Proof. Assume T is quasi-geometric. Choose 0,,...,0, € K[I'], as “generi-
cally” as possible subject to satisfying the condition for being special, so 0, isa
“generic” linear combination of vertices x of I" which do not lie on the closure
of the face V — {x;} of 2" . Let F = {r»...»y,} beafacet of I'. By the
previous proposition, we need to show that, when 6,,..., 06, are restricted to
F , they remain linearly independent. Since I' is quasi-geometric, we can as-
sume by a simple application of the Marriage Theorem that the y;’s are labelled
so that y; does not lie on the closure of the face V' — {x;}. Thus the coeffi-
cient of y; in 6, is nonzero. Since y,, ..., y, are linearly independent and
the nonzero coefficients of 6, ... , 6, are generic, it follows that 0,,...,0,
restricted to F are linearly independent.

For the converse, assume I' is not quasi-geometric. Let F be a face of T,
say of dimension e — 1, whose vertices lie on the closure of some face of 2"
of dimension at most e —2. If 0, ... , 6, were a special h.s.o.p. then at most
e — 2 of the 6,’s would involve any of the vertices of F, violating Proposition
43. O

Now let (int I') denote the ideal of K[I'] generated by the interior faces of
I'; e, (intT) = (xF : o(F) =V). (We have by [Stag, Theorem 7.3] that
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(int I') is the canonical module of K[I'], but we do not need this fact here
except for Corollary 4.19, which is unrelated to the rest of the paper.)

4.5. Definition. Let I be a quasi-geometric simplicial subdivision of 2" ,

where #V = d. Let 6,,...,0, be a special h.s.o.p. for K[I']. Then we
denote the image of (intI') in Rj.:=K[I']/(6,, ..., 8,) by L,(I') and call it
the local face module of T (with respectto V and 6,, ..., 6,).

The module L, (T) is a graded ideal of R.. Since I is a triangulation of a
ball it is Cohen-Macaulay (see [ Stag , Chapter II, Corollary 4.2]), and therefore
by standard properties of face rings (e.g., [ Sta,]), the Hilbert function of R =
R,®R, @--- is given by

H(Ry, i) :=dim, R, = h,(T).
Hence (since 4, = 0 for i > d) the grading of L, (I') has the form
L,N=Ly®---0L,,
where dim, L, < h,(T') . Our main result on the ideal L, (I") is the following.
4.6. Theorem. The Hilbert function of L, (I') is given by
dim L, = ¢,,
where £,(I) = (¢,, ... , £,) is the local h-vector of T .

4.7. Corollary. If ' is quasi-geometric, then the local h-vector £,(I') satisfies
£.>0.
i 2

4.8. Corollary. If I is quasi-geometric, then the vector
h(T) =€, (T) = (hy— £y, ... , hy—¢,)

is an O-sequence (also called an M-vector), as defined in [ Sta, , p. 60].
Proof of Corollary 4.8. The Hilbert function of R./L,(T) is given by

H(R/L,(T), i) =h,—¢,.

The proof follows from the characterization of Hilbert functions in terms of
O-sequences [ Sta, , Theorem 2.2]. O

Note. Before proving Theorem 4.6, let us note that the assumption that the

hso.p. 6,,...,6, € K[I'], is special is essential (still assuming that I" is
quasi-geometric). If for instance AT is the boundary complex of a simplicial
polytopeand 6, ... , 8, € K[I'], is generic, then it can be deduced from [ Sta(]
that the Hilbert function H(i) = H((int I')/(6,, ..., 0,), i) of the image of
(intT') in K[I7/(6,, ..., 8,) is given by

N Jh (D), 0<i<|d/2],
(10) HQ) = {hi(l“), L+ |d/2]<i<d.

Only in rare cases do we have H(i) =¢,. Let us also note that it follows from
the fact that H(K[T1/(6,,... ,0,), i) = h() for any hs.o.p. 6,,...,0, €



