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SUBDIVISIONS AND LOCAL A-VECTORS

RICHARD P. STANLEY

PART 1. SIMPLICIAL COMPLEXES

1. INTRODUCTION

Let A be an (abstract) simplicial complex of dimension d — 1 with f, i-
dimensional faces (or i-faces, for short). (For undefined terminology, see, €.g.,
[Stag].) Throughout this paper, all simplicial complexes will be finite. The f-
vector of A is given by f(A) = (f, ..., f;_,), with the understanding that
f_; =1 unless A = @. We will be concerned here with properties of the f-
vector of subdivisions of A. It is often more convenient to deal not with the
f-vector, but rather the h-vector h(A) = (h, ... , h;), defined by

d o d ‘
(1) S =T =S R
i=0 i=0

For instance, if A is a Cohen-Macaulay complex [ Sta,; Stag, Chapter I1.3],
then A, > 0 (and in fact A(A) can be completely characterized in an elegant
way). We often deal not with the h-vector h(A) = (hy, h,, ... , h;) per se, but
rather with the A-polynomial

h(A, x) = hy +hyx + -+ hyx”.

Sections 2-5 deal with combinatorial properties of simplicial subdivisions
(or triangulations) A’ of a simplicial complex A. The basic combinatorics of
subdivisions depends in a subtle way on the precise notion of the term “subdi-
vision.” We will be concerned primarily with four types of subdivisions:

(a) General (or topological) subdivisions. Here we only require that (infor-
mally speaking) each simplex 2F of the simplicial complex A is subdivided
into a ball whose boundary is a subdivision of the boundary of 2.

Received by the editors May 31, 1991.

1991 Mathematics Subject Classification. Primary 05E99; Secondary 06A07, 52B05.

Research carried out at M.I.T., Hebrew University (Jerusalem), the University of Augsburg,
Tokai University (Hiratsuka), and the Royal Institute of Technology (Stockholm). Research at
M.LT. partially supported by NSF grant #DMS-8401376, at Hebrew University by a grant from
the U.S.-Israel Binational Science Foundation (BSF), and at Tokai University by the Matsumae
International Foundation.

©1992 American Mathematical Society
0894-0347/92 $1.00 + $.25 per page

805



806 R. P. STANLEY

(b) Geometric subdivisions. Here we want A and A’ to have geometric
realizations (each face realized as a Euclidean simplex) such that A and A’
have the same underlying set, and such that every face of A’ is contained in
a face of A. This is the usual notion of subdivision used by topologists, e.g.,
[Mu, p. 83; Sp, p. 121].

(c) Quasi-geometric subdivisions. These subdivisions are topological subdivi-
sions with one extra combinatorial condition; namely, no face of the subdivision
A’ can have all its vertices on a face of A of smaller dimension. Clearly geomet-
ric subdivisions have this property, but quasi-geometric subdivisions are more
general. As shown by Corollary 4.4, the defining property of quasi-geometric
subdivisions is precisely what is needed to obtain the essential positivity result
of Corollary 4.7. (See property (L3) of local h-vectors below.)

(d) Regular subdivisions. Loosely speaking, these are projections of a strictly
convex polyhedral surface. They are an extensively studied subclass of the geo-
metric subdivisions whose main significance for us is that we can apply the hard
Lefschetz theorem for the decomposition theorem of intersection homology to
obtain the unimodality result given by Theorem 5.2. (See property (L4) of local
h-vectors below.)

The original motivation for §§2-5 is the following question of Kalai and
this author: If A’ is a (simplicial) subdivision of the Cohen-Macaulay com-
plex A, then is h(A) < h(A')? This question is answered affirmatively for
quasi-geometric subdivisions, and remains open for topological subdivisions.
The hypothesis that A is Cohen-Macaulay may even be relaxed somewhat; see
Theorem 4.10. The key concept for the proof is that of the “local A-vector”
£,(1) = (4, ... , £;) or “local h-polynomial” £, (I, x) = £+ £,x +--- +£,x*
of a subdivision I of a (d — 1)-simplex with vertex set V. The vector £,(I)
has the following properties:

(L1) ¢, =¢,_; forall i.

(L2) For any pure simplicial complex A and any subdivision A’ of A, we
have

) h(A, x) =S 0.(Ap, X)h(Kk,F, x),
FeA

where (i) A'F denotes the restriction of A’ to the face F of A, and (i) lk,F
denotes the link of F in A.

(L3) For any quasi-geometric subdivision I of a simplex 2", £,(I>0.

(L4) If T is combinatorially equivalent to a regular subdivision of 2" (as
defined in Definition 5.1), then £, (T") is unimodal.

Of these properties, (L1) and (L2) have elementary proofs, (L3) uses ma-
chinery from commutative and homological algebra, while (L4) relies on deep
results in intersection homology theory. Equation (2) shows exactly how the A-
polynomial (or A-vector) of A" depends on the properties of A alone (viz.,
the terms A(lk,F, x)) and on how each face F of A is subdivided (viz.,
Ly (A;r , X)). It explains the terminology “local A-vector,” since the local behav-
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iorof A at F determines A(lk,F, x), and thus ¢ F(A'F , X) is the contribution
to h(A', x) of the subdivision A} itself “at F.”

If in (2) A is a Cohen-Macaulay simplicial complex and A" is a quasi-
geometric subdivision of A, then every term on the right-hand side is non-
negative. Moreover, when F = @ the corresponding term is A(A, x). Hence
h(A, x) < h(A', x), thus proving the above-mentioned conjecture of Kalai and
this author in the quasi-geometric case.

Similarly, suppose we know that A is Cohen-Macaulay, and that for ev-
ery F € A the h-vector h(lk F) satisfies h, = h,_, and hy < h < ... <
hLm L where m = #F . (This is the case for the boundary complex of a
simplicial d-polytope [Sta;].) Let g = h; — h;_,, and define the g-vector
8(A) = (8 & -+ » 8ajy) - Let A’ be a subdivision of A such that, for all

F € A, the subdivision A} of F (or, more precisely, of the simplex 2F ) is
combinatorially equivalent to a regular subdivision. Then it is easy to deduce
from (2) and (L4) that g(A) < g(A'). In other words, g-vectors (and not just
h-vectors) of suitable simplicial complexes increase under regular subdivision.
It is not known whether this fact remains true for more general subdivisions,
such as geometric, quasi-geometric, or even topological.

A number of applications and examples related to our results on local A-
vectors are presented in §§2-5. For instance, in Proposition 3.4 we prove
a conjecture of M. Kapranov concerning certain triangulations of simplices.
In Problem 4.13-Example 4.17, we investigate the question of when local A-
polynomials are 0 and relate it to the topic of “minimal triangulations.” Propo-
sition 4.20 deals with the interaction between the action of the symmetric group
<, on the first barycentric subdivision I" of a (d — 1)-dimensional simplex 2r
(so T is essentially the Coxeter complex of %) and the local A-vector £,,(T).

In §§6-9 we extend the results of §§2-5 to more general situations. For
instance, we consider polyhedral subdivisions of polyhedral complexes. The
h-vector is replaced with the “generalized h-vector” of [ Sta,,]. Properties (L1)
and (L2) of the local A-vector carry over without difficulty, but we can only
prove (L3) (as well as (L4)) in the special case when we can interpret the gen-
eralized A-vector in terms of the intersection homology of toric varieties.

Here is a brief description of some of the highlights of §§6-9. In §6 we
give a broad formal generalization, valid for any locally finite graded poset P,
of the theory developed in §§2-5 (the case where P is a boolean algebra). For
instance, Example 6.9 shows that Kazhdan-Lusztig polynomials can be incorpo-
rated within our theory (though we obtain no new results about these remarkable
polynomials). In §7 we specialize the previous section to Eulerian posets, which
have many special properties. In particular, in Definition 7.4 we give a vast
formal generalization of the concept of subdivision of a simplicial complex. In
Example 7.13 we discuss the connection between our methods and the theory
of Ehrhart polynomials. In particular, an earlier result of Betke and McMullen
[B-M, Theorem 1] is an Ehrhart polynomial analogue of (2) and provided some
of the motivation for this paper. Section 8 is devoted to the effect on our theory



808 R. P. STANLEY

of dualizing the poset P. As a consequence of our results we give (Corollary

8.8) a simple, conceptual proof of a conjecture of G. Kalai, originally proved

independently by Kalai and by A. Klapper. Finally in §9 we consider the pos-

sibility of a “ g-analogue” of our theory of Eulerian posets. Unfortunately we

show (Proposition 9.1) that a completely satisfactory g-analogue does not exist.
Throughout this paper we employ the following notation:

N={0,1,2,...},
P={1,2,3,...},
[dl={1,2,...,d}, ifde P.

2. THE LOCAL A-VECTOR OF A SUBDIVISION OF A SIMPLEX

Let V be a d-element vertex set, and let 2" denote the simplex with vertex
set V. (Thus 2V s simply the set of all subsets of V'.) Let I' denote a
(finite) simplicial subdivision (or topological subdivision) of 2" . Formally,
this means that I' is a simplicial complex and that we have a “subdivision
map” o: I — 2¥ satisfying: (a) For every W C V, T}, := a_l(ZW) is a
subcomplex of I' whose geometric realization |a_1(2W)| is homeomorphic to
a ball of dimension (#W) — 1; and (b) a_l(W) consists of the interior faces
of the ball 0_1(2W) . (Hence o is surjective.) We call the subcomplex I'j, the
restriction of T' to W (or to 2W). If F eT,, then we say that F lieson W .

Hence for any F € I', we have that g(F) is the unique smallest face of 2" on
which F lies. We call this face a(F) the carrier of F . Thus we always have
dim F < dimo(F).

For any simplicial complex A let A(A, x) denote its A-polynomial; i.e.,

d )
h(A, x) = Zhix' ,
i=0

where h(A) = (h, ... , h;). The fundamental definition of this section is the
following.

2.1. Definition. Let #} = d . For any subdivision I' of a simplex 27 , define
a polynomial £, (", x) =4, + £, x +--- + ded by

(3) AT, x)= > Ty, x).

wcv

We call ¢,(T", x) the local h-polynomial of T' (with respect to 2" orto V),

and we call £,(I') := (¢, ... , £;) the local h-vector of T" (with respect to 2Y
orto V).
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Note. Since equation (3) must be valid for all subdivisions of all simplices, in
particular it holds with I" replaced by I'y,, . Thus by the Principle of Inclusion-
Exclusion (e.g., [ Sta,, , Chapter 2.1]) we can invert (3) to obtain

(4) 6, T, x) =Y )"""nr,, x).
wCv

Thus Definition 2.1 does indeed define ¢, (I, x). We could of course have
made (4) the definition of £, (T", x), but we will see (following Corollary 7.7)
that equation (3) generalizes more naturally than (4).

There is an alternative expression for £,(I', x) which is sometimes useful.
Given G €T, define the excess e¢(G) of G by the formula

e(G) = #0(G) — #G = dimo(G) — dim G.
2.2. Proposition. We have
(5) £,(T, x) = Y () x4 D - 1)@,
Ger

Proof. For any (d — 1)-dimensional simplicial complex A, it follows from (1)
by substituting 1/x for x and multiplying by x? that

(6) ha, x) =3 M-

FeA
Hence by (4),

r X) Z( ld —#W z #G(l_x)#W-—#G

wcv Ger'y,
d _#G —#G #W
=2 DT -0T 30 (x- 1)
Gerl’ W2a(G)

1)#a(G)xd—#a(G)

By the binomial theorem, the inner sum is equal to (x — , and

the proof follows. O

2.3. Example. (a) 66(2'3 , x) =1, where @ denotes the empty set.

I T= 27 (the trivial subdivision) where # =d > 0, then éV(2V , X) =
0. This follows immediately from (3) and the fact that h(2V ,x) =1 for all
V' (including V = @).

(c)If #V' =2 (so dimI'= 1) and T has ¢ interior vertices (so ¢t + 2 vertices
in all), then £, (", x) = tx.

(d) If #V =3 and A(T, x) = hy + h;x + h2x2 -l-h3x3 (so hy = 1 and
hy = 0), then

2,(T, x) = hyx + hyx’.
Moreover (see (f) below), &, is equal to the number of interior vertices of T".

(e) From the above examples it follows that £, (I', x) depends only on I' as
an abstract simplicial complex (in fact, only on A(I", x)) when #J” < 3. This
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fact is no longer true for #V > 4. For instance, let #V = 4. Let [, be the

stellar subdivision of 2" obtained by adding a vertex to the center of a 2-face
and 3-face. (Of course the only 3-face is V itself.) Similarly obtain I', by
adding a vertex to the center of a 1-face and 3-face. Then I', and I, are
isomorphic as abstract simplicial complexes (with A(T";, x) = hT,,x) =1+
2x+2x2+x3), but £, (I, x) =x+x"+x° and £,(I,, x) =x+2x"+x°.

(f) Since h,(A) = 0 for any triangulation A of a (d — 1)-ball, the only
term on the right-hand side of (4) for which the coefficient of x?7! can be
nonzero is given by W = V. Moreover, the coefficient of x? s always 0
unless ' = 2° = {@}. Hence if ¢,(T, x) = Eg £;x', then ¢, = 0 unless
d=0,and £, | = h, (). Let us note that, e.g., from [ Ma, , Proposition
1.1, Sta,, (1.1)] we have that &, (') is the number of interior vertices of I'
(i.e., the number of vertices whose carrier is V). From Theorem 3.3 below we
also see that ¢, = h,_ (I') and £, =0 unless d = 0. (It is also not difficult to
obtain the values of £, and ¢, directly from (3) or (4).) Thus ¢, ¢,, £, ,,and
¢, depend only on A(I'), while (e) above shows that ¢, cannot be computed
from just the structure of I' as an abstract simplicial complex. It is easy to
extend this example to show that any ¢, with 2 < i < d —2 does not depend
only on I' as an abstract simplicial complex.

(g) Assume V # & and consider Proposition 2.2. No faces G € I' satisfy
e(G) = d, while ¢(G) = d — 1 if and only if G is an interior vertex of I.
Taking the coefficient of x yields that ¢, is the number of interior vertices, as
obtained in (f) above. Similarly, e(G) = d — 2 if and only if either (i) G is an
interior edge, or (ii) G is a vertex whose carrier is a (d — 2)-face of 2" . Let
/f denote the number of interior i-faces of I', and let fo be the number of

vertices v of I' for which #¢(v) = d — 1. Then taking the coefficient of x>
in (5) yields

L=—d-1)f, +f - f

By Theorem 3.3, this is also the value of £,_, . Of course similar formulas hold
for any ¢,, but in general they seem too complex to afford much insight.

(h) (C. Chan) Let V = {1, 2,3, 4}. Let T be the subdivision of 2" ob-
tained by adding a vertex 5 inside face 123, and letting the facets of I" be
1234 and 1235. (Note that the interior of a “curved triangle” 123 has been
inserted into the interior of the simplex 1234.) Then ¢(T", x) = —x*. In 84 we
will see what bad property of I' causes the local A-vector to have a negative
entry.

(i) Let #V =d . A natural subdivision of 2" is the (first) barycentric sub-
division I' = sd(2V) . I' may also be regarded as the Coxeter complex of the
symmetric group ;. It is well known that

d—1

AT, x)= ZAd,ini,
i=0
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where 4, ., denotes the Eulerian number [C, Chapter 6.5, Sta,,, p. 22].
(Thus xh(T, x) is the Eulerian polynomial A,(x).) The Eulerian numbers
have the following combinatorial interpretation (among others) [ Sta,, , Propo-
sition 1.3.12]:

(7) AT, x)= Y x*,

weS
where ex(w) denotes the number of excedances of w , defined by
ex(w) =#{i: w(i)>i}.
We now give a similar interpretation of £, (T", x).

2.4. Proposition. With notation as above, we have

£, x)= 3 x™,
weY,

where D, denotes the set of all derangements (i.e., w(i) # i forall i)in .

Proof. Let us write W (x) for h(T', x) and ¢/ (x) for £,(T", x) when #Y =j
and I' = sd(2Y) . Since for any W C V' we have I'),, = sd(2W) , and since V
has (‘f) faces of cardinality i, it follows from (3) that

B (x) = Zdj(‘f)e"(x).

i=0

Hence by (7) we need to show

(8) Z K@) _ Xd:((lf) Z )

weES, i=0 VEY,

But if w € %, has a given set S of d —i fixed points, then the remaining
set T =[d]—S of i elements which w permutes can form any derangement
of T, while relabeling the elements of 7" by 1, ..., i in increasing order
preserves the number of excedances. Since there are ( d‘i ;)= (‘f ) choices for

S, (8) follows. O

For further information about excedances, see [Br,]. For a refinement of
Proposition 2.4, see Proposition 4.20 below.

3. ELEMENTARY PROPERTIES OF LOCAL /-VECTORS

We now come to the basic properties of local A-vectors. We have four results
in all (Theorem 3.2, Theorem 3.3, Corollary 4.7, and Theorem 5.2). The first
of these results clarifies the terminology “local A-vector.”
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3.1. Lemma. Let T be a pure (d — 1)-dimensional simplicial complex. (“Pure”
means that all maximal faces have d elements.) Then

S DT RO, x) = —(x - 1) (D),
Fel
where ¥(I') = —1+ fy— f, + -, the reduced Euler characteristic of T.

Proof. Since I' is pure we have dim(lk . F) =d —#F — 1 forall F € I'. Thus
by (6) we have

Z( )d #Fh(lk F, x Z(_l)d—#F Z x#(G—F)(l_x)d—#G

Fer Fer FCGer

_ Z(_l)dx#G(l _ X)d_#G Z (_x)—#F

Ger FCG

#G

_ l)dx#G(l )d—#G |- 1

IC (1-%)
=(x- 1" (-n*

GeT

= —(x-1zD). O

3.2. Theorem. Let A be a pure (d — 1)-dimensional simplicial complex, and let
A" be a simplicial subdivision of A. Then

9) h(A', x) =Y £, (A, X)h(k,F , x).
FeA

Proof. Let R denote the right-hand side of (9). By (4) and the previous lemma,
we have

R=Y" [Z D" Dnay, x)] h(Ik,F , x)

FeA-GCF
=S h(ay, x) [Z D"k, F, x)]
GeA FOG
= =3 hAy, x)(1 - x)* 31k, G).
GeA

Now using (6) we get

x#H #(G H) (1 —x)d_#G)Z(lk G)
A

GeA HeA
#H d—#H ~
==Y x"(1-x) > 7k,G).
HeA' G2a(H)

Let P be the poset of faces of A (ordered by inclusion), with a maximal
element 1 adjoined. Let u denote the Mobius function of P [Sta,, , Chapter
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3.7]. By [Sta,,, Proposition 3.8.8] we have
(K, G) = (G, 1),
Hence by the fundamental recurrence [ Sta,, , Chapter 3.7, (14)] for x4, we have

> ak,G)=—pd, 1) =-1

GDo(H)
Therefore
R=Yx"(1-x)™ = p@', x),
HeA'
by (6). O

For a generalization of Theorem 3.2, see Theorem 7.8 (for which we give a
slicker but somewhat less elementary proof).

Our second main result on local A-vectors is a “self-duality” theorem analo-
gous to the Dehn-Sommerville equations.

3.3. Theorem. Let T" be a (finite) simplicial subdivision of the simplex 2Y,
where #V =d . Then

d
x £, (T, 1/x)=£,(T, x).
Equivalently, ¢, =¢,_; forall i.
Proof. A more general result will be proved later (Corollary 7.7). O

As an application of Theorem 3.3, we give a proof of an unpublished conjec-
ture of M. Kapranov related to the work of [G-Z-K].

3.4. Proposition. Let I" be a simplicial subdivision (or triangulation) of the sim-
plex 2V (where #V = d ) such that every vertex v of I' has excess (as defined
in §2) e(v) = 0 or 1. It is then easily seen that every face G € T satisfies
e(G) < #G. Let o) be the number of faces G of T satisfying e(G) = #G
(including G = @, for which e(2) = 0 = #@). Then o) = f, ('), the
number of facets of T".

Proof. Let @ # W C V', with #W = s. According to Proposition 2.2, we have

Ty, x) = 3 (1) x4 - )9,
Gerl,

If #G = r then as mentioned above e(G) < r, while since G € I', with
I'y, = s we have e(G) < s —r. Hence 2¢(G) < s. Suppose s is odd, say
s=2t+1. Then s—e(G)>t+1,s0 £,(C, ,x) is divisible by x"*'. Since
Ty, x) =x£,(T, , 1/x) by Theorem 3.3, it follows that £,,(T,,, x) =0.
Now suppose s is even, say s = 2¢. We then get s —e(G) > t,s0 £,(I'},, x)
is divisible by x'. Again by Theorem 3.3 we have ¢,,(T,,, x) = c,,x' for some
integer ¢y, . To obtain the value of ¢, , note that from the above expression
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for ¢,,(I',, x) we have that the coefficient of x’ in £, (I'y,, x) is given by

—#G G
=3 (=D
GeTy
e(G)=t
The only way we can have G € ', and e(G) =t isfor #G =t and o(G) = W .
Hence ¢y, is just the number of faces G of I',, for which ¢(G) = W and
e(G) = #G. Setting x =1 in (3) yields that A(I", 1) is the number of faces G
of T' for which e(G) =#G. Since A(T', 1) = f,_,(I'), the proof follows. O

4. NONNEGATIVITY OF LOCAL A-VECTORS

Our aim in this section is to establish nonnegativity of the local A-vector
£, (I') for certain subdivisions I" of 27 we begin by defining the subdivisions
of interest to us. First define a geometric simplex to be the convex hull of a set
of affinely independent points in R” .

4.1. Definition. (a) A simplicial subdivision A" of a simplicial complex A is
quasi-geometric if for every face F of A, there does not exist a face W of
A such that (i) dim W < dim F, and (ii) for every vertex v of F, v lies on
some subset Y (depending on v) of W . Equivalently, no face of A’ has all
its vertices on the closure of a face of A of lower dimension.

(b) A simplicial subdivision I" of a simplex 2" is geometric if it can be real-
ized in R” as a subdivision of a geometric simplex into geometric simplices. 0O

Clearly every geometric subdivision I" of 2" is quasi-geometric. Example
2.3(h) gives a subdivision I" of 2Y for vV = {1, 2, 3, 4} which is not quasi-
geometric. A similar example can be given for V = {1, 2, 3}; viz., add a
vertex 4 inside the face 12 of 2V, and let the facets of I" be 123 and 124.
On the other hand, it is known that there exist quasi-geometric subdivisions of
simplices which are not geometric. For instance, take a non-PL 5-sphere I'"
(existence guaranteed by work of Edwards; see [Dav]), and remove any facet
V = {x;,...,xs} “away from” vertices whose links are not spheres. The
remaining complex I'=I" — {V'} is a quasi-geometric but nongeometric subdi-
vision of the simplex 2" . There also exist PL examples, e.g., quasi-geometric
subdivisions of a 3-simplex for which the boundary of some 2-face is knotted.

The proofs of Theorem 3.2 and 3.3 (the latter yet to be given) are purely
formal, but for our next result we do not see how to avoid introducing machinery
from commutative and homological algebra. Given a simplicial subdivision I’
of 2V, where V' = {x, ..., x;}, let K[I'] denote the face ring (or Stanley-
Reisner ring) of T over the field K, as defined e.g. in [ Stag, p. 62].

4.2. Definition. A homogeneous system of parameters (h.s.o.p.) 6,,..., 0,
of degree one of K[I'] is called special if each 6, is a linear combination of

vertices x of I' which do not lie on the closure 2"~} of the face ¥ — {x;}
of 2. o
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We want to show that a special h.s.o.p. always exists when I' is quasi-
geometric (and when K is “large”). To do this we use the criterion [ Stag,
Remark on p. 150; Bi, p. 66] for the existence of an h.s.0.p. of degree one.
Since this result is stated in [Stay; Bi] without proof and is only stated and
proved implicitly in [K-K], for the sake of completeness we will sketch a proof.

4.3. Proposition. Let A be a (d — 1)-dimensional simplicial complex. Let
0,,...,60,; € K[A], (the space of elements of K[A] which are homogeneous
of degree one). Then 0., ... , 0, isan h.s.o.p. if and only if for every face F of
A (or just for every maximal face), if we set in 0, ..., 0, each vertex x; ¢ F
equal to zero (in other words, if we restrict each 0, to F), then 0, ... ,6,
span the vector space with basis F .

Proof (sketch). The “only if” part is easy. To prove the “if” part, let R =
K[A)/(0,, ... , 6,). Assuming the conditions on the 6’s given in the statement
of the proposition, we want to show dim, R < co. Let R =R oeR,®--- . If
F is a maximal face of A, then one easily sees that R , annihilates in R the

monomial x© := [Iicrx . Thus dimg R < co if and only if

dim, R/(xF : F is a maximal face of A) < oco.

Now repeat the argument for A" = A — {maximal faces of A}, etc., until we
reach R/ (xF : F is any face of A) = 0, which is clearly finite-dimensional
over K. O

4.4. Corollary. Let T be a simplicial subdivision of 2", where #V = d, and
let K be an infinite field. Then there exists a special h.s.op. 6, ..., 0, for
KT ifand only if T is quasi-geometric.

Proof. Assume T is quasi-geometric. Choose 0,,...,0, € K[I'], as “generi-
cally” as possible subject to satisfying the condition for being special, so 0, isa
“generic” linear combination of vertices x of I" which do not lie on the closure
of the face V — {x;} of 2" . Let F = {r»...»y,} beafacet of I'. By the
previous proposition, we need to show that, when 6,,..., 06, are restricted to
F , they remain linearly independent. Since I' is quasi-geometric, we can as-
sume by a simple application of the Marriage Theorem that the y;’s are labelled
so that y; does not lie on the closure of the face V' — {x;}. Thus the coeffi-
cient of y; in 6, is nonzero. Since y,, ..., y, are linearly independent and
the nonzero coefficients of 6, ... , 6, are generic, it follows that 0,,...,0,
restricted to F are linearly independent.

For the converse, assume I' is not quasi-geometric. Let F be a face of T,
say of dimension e — 1, whose vertices lie on the closure of some face of 2"
of dimension at most e —2. If 0, ... , 6, were a special h.s.o.p. then at most
e — 2 of the 6,’s would involve any of the vertices of F, violating Proposition
43. O

Now let (int I') denote the ideal of K[I'] generated by the interior faces of
I'; e, (intT) = (xF : o(F) =V). (We have by [Stag, Theorem 7.3] that
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(int I') is the canonical module of K[I'], but we do not need this fact here
except for Corollary 4.19, which is unrelated to the rest of the paper.)

4.5. Definition. Let I be a quasi-geometric simplicial subdivision of 2" ,

where #V = d. Let 6,,...,0, be a special h.s.o.p. for K[I']. Then we
denote the image of (intI') in Rj.:=K[I']/(6,, ..., 8,) by L,(I') and call it
the local face module of T (with respectto V and 6,, ..., 6,).

The module L, (T) is a graded ideal of R.. Since I is a triangulation of a
ball it is Cohen-Macaulay (see [ Stag , Chapter II, Corollary 4.2]), and therefore
by standard properties of face rings (e.g., [ Sta,]), the Hilbert function of R =
R,®R, @--- is given by

H(Ry, i) :=dim, R, = h,(T).
Hence (since 4, = 0 for i > d) the grading of L, (I') has the form
L,N=Ly®---0L,,
where dim, L, < h,(T') . Our main result on the ideal L, (I") is the following.
4.6. Theorem. The Hilbert function of L, (I') is given by
dim L, = ¢,,
where £,(I) = (¢,, ... , £,) is the local h-vector of T .

4.7. Corollary. If ' is quasi-geometric, then the local h-vector £,(I') satisfies
£.>0.
i 2

4.8. Corollary. If I is quasi-geometric, then the vector
h(T) =€, (T) = (hy— £y, ... , hy—¢,)

is an O-sequence (also called an M-vector), as defined in [ Sta, , p. 60].
Proof of Corollary 4.8. The Hilbert function of R./L,(T) is given by

H(R/L,(T), i) =h,—¢,.

The proof follows from the characterization of Hilbert functions in terms of
O-sequences [ Sta, , Theorem 2.2]. O

Note. Before proving Theorem 4.6, let us note that the assumption that the

hso.p. 6,,...,6, € K[I'], is special is essential (still assuming that I" is
quasi-geometric). If for instance AT is the boundary complex of a simplicial
polytopeand 6, ... , 8, € K[I'], is generic, then it can be deduced from [ Sta(]
that the Hilbert function H(i) = H((int I')/(6,, ..., 0,), i) of the image of
(intT') in K[I7/(6,, ..., 8,) is given by

N Jh (D), 0<i<|d/2],
(10) HQ) = {hi(l“), L+ |d/2]<i<d.

Only in rare cases do we have H(i) =¢,. Let us also note that it follows from
the fact that H(K[T1/(6,,... ,0,), i) = h() for any hs.o.p. 6,,...,0, €
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K[I'], (since K[I'] is Cohen-Macaulay) and from Proposition 4.18 below that
the function H (i) of (10) is the /argest possible Hilbert function of any image of
K[int I'] in a ring of the form K[I'l/(6,, ..., 0,), where 0, ..., 6, € K[I'],
is an h.s.o.p. It might be interesting to consider what the smallest such Hilbert
function can be. When I' is quasi-geometric it is not always achieved by the
ideal L [I'], since by Example 2.3(e) a different choice of V' may produce a
smaller Hilbert function.

The proof of Theorem 4.6 rests upon a homological lemma. For any mod-
ule M over a (commutative) ring 4 and submodules N, ... , N,, thereis a
natural complex of A4-modules

(11) M - [[M/N, - [ [M/(N;+Nj) == M/(N; +---+ N;) -0,
i i<j
whose maps are the usual coboundary maps.

4.9. Lemma. Let T" be a quasi-geometric simplicial subdivision of 2V, where
V={x,,...,x;}. In equation (11), choose M = K[I'] (regarded as a module

over itself), and let N, be the ideal of K[I'] generated by all monomials xF
Jor which F € T does not lie on the closure of the face V — {x;} of 2Y (i.e,

x; € 0(G) forsome GCF). Thusif S = {xil yeors X, }CV and T=V -S,
then

(12) KITV/(N, +---+N,) = K[/,

where T';. denotes the restriction of ' to T . Denote the resulting complex (11)
by Z =%{I). Let 0 ={6,,...,0,} be a special h.s.o.p. for K[I']. Let
F |0F denote the complex obtained from Z by modding out by 6, ... ,0,,
or equivalently, by tensoring % with K[I')/6K[I']. Then % |0% is exact.
Proof. We prove by induction on r that Z/(6,,...,6,)% is exact. For

r =0, we need to prove that .# is exact. To see this, note that the modules ap-
pearing in (11) are multigraded by N, where m is the number of vertices of I’
and N={0, 1, ...}. The grading is given by degx‘ll' -~-xf‘n'" =(a,...,q,).
(This is the “fine grading” of [Stag, p. 63].) The maps in (11) preserve de-
gree, so it suffices to show that the restriction .Z of Z to its part of degree
aeN" isexact. If a = (a,, ..., ), then Z will be the zero complex un-
less {xj Do # 0} isaface F = F_ of I'. In this case suppose that the carrier
o(F) of F satisfies #0(F) = i. Then .Z may be identified with the usual
augmented cochain complex (followed by some irrelevant zero terms), with the
first term (which is 0) omitted, of a (d — i — 1)-simplex . If i < d then X
and hence .7, is acyclic When i = d we obtain the complex

K—-0-0-----0,

which is also acyclic. Hence %7 is exact as claimed.
Now assume the hypothesis for . Proofs of the induction step follow
from arguments shown to me by K. Watanabe (based on spectral sequences),
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S. Yuzvinsky (based on sheaf cohomology), and M. Hochster (also based on
spectral sequences). Hochster then reformulated his argument in more elemen-
tary terms. It is this argument of Hochster on which the proof given here is
based.

Let an overhead bar denote the modding out by {6,, ..., 6}, sobyassump-
tion the complex

K[F]-»]_[K[F]/W,.—»--.—»o

is exact Let C' denote the ith term of the above complex, beginning with
c'=X% K[TT], so we have a complex & given by

& : O—>C0—>C1—>~--—>Cd—»0,

which is exact except (possibly) at C°. Form the exact sequence 0 - F —

& b Z — 0 of complexes, where the map & — % is given by multiplica—
tion by 6,,,, and where & =ker(¥ — %), & = coker(¢ — %) =%/6
In more expanded notation we have

r+1

0 0 0
T i T

0o - D0 - p' - ... - p! L 0
] T T

0—>C0—>Cl—>-~~—>Cd—>0
] i ]

0 - ¢ - ¢! - - c 50
1 T i

0 - B - B' o - B & 0
1} T T
0 0 0

We want to show that & is exact except at D° . Consider

L]EWMNKw~+N&

ll<"'<lj

Since 6, ... ,0 4 18 special, 6, +1 Will annihilate the term

Wmﬁww~+NﬂzKWﬂ

J
of C’ if some ig=r+1, while 6, + will be a nonzero-divisor on this term

otherwise. Hence the kernel B’ of the map C’ -~ b, €7 looks like

(13) B= ] KIT/(N;, +N, +--+N,).
some 7, ~r11
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Thus by (12), after some straightforward fiddling with signs as in the proof
[Stag, p. 72] of Reisner’s theorem, % may be identified with the complex

F )/ Oy o5 6) =F Ty ry),

shifted in degree by one (so B’ =0, B' = K[T\,_.,,)/(6;,... ,0,), etc.).
Hence applying the induction hypothesis to I’ [dl-{r+1} > it follows that & is

exact except at B'.

Now let & = ker(% — Z) = coker(# — &) = € /% . Thus we have two
short exact sequences 0 » & - % -2 —-0and 0-F - & - & — 0. The
long exact sequence for cohomology (e.g., [H-S, p. 121]) shows that H'(Z) =
HY (&)~ H*(#), i>1. Since H (F)=0 for i >2, weget H(Z)=0
for i > 1 as desired. O

Proof of Theorem 4.6. Let M = K[I']. Consider the complex % /0% of
Lemma 4.9, i.e.,

(14) Miom [ [MyoM+N) s

Let L' = ker(6°). Thus L’ is the just the image of N,N---NN, in M/0M .
But N,n---NN, = (intT),so L' = L,(T). Since % /6.% is exact by Lemma
4.9, it follows that the Hilbert series F (L, (I'), x) is given by

F(L,(), x)=F(M/0M), x)—F (]_[M/(Ni +6M), x)
TR (—1)"F(]_[M/(Nl +o N+ OM), x)

= > ("TVFKIT,/6, ).
wcy

But since K[I',,] is Cohen-Macaulay and 6 is an h.s.o.p. of degree one of
K[I'y,1 (except for irrelevant elements 6, which annihilate K[I'y]), we have

F(K[T,1/0, x) = h(Ty,, x).
By (4) it follows that F(L,(I'), x) = £,(I", x), completing the proof. O
Note. Let I denote the kernel of the map
K[l — [ [KITI/N,.
i

In view of (14) it is natural to ask what is the Hilbert series of 1/61. But clearly
I = (int I'), so by [ Stay, Chapter I1.7] we have

F(I/0, x)=hy+hy_,x+--+hyx*,
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where A(T') = (hy, ... , h,). Thus the exact sequence

0 — (int T) — K[ — | [KITI/N,

does not stay exact when we mod out by 6, since
(int I')/(6,(int ) +--- + 6,(int T)) 2 L, (T").

Note. For the class of shellable (or more generally, partitionable) simplicial com-
plexes, there is a simple combinatorial interpretation of their A-vectors which
shows that they are nonnegative (see [ Sta, , Proposition 3.6] for a more general
result). We have been unable to find a similar result for local A-vectors, say for
shellable quasi-geometric subdivisions of a simplex.

Note. A result related to Corollary 4.7 appears in [G-Z-K]. Comparing their
definition of the “combinatorial Newton number” N C,(I') of a triangulation
' of the simplex 2" with our equation (4) shows that NC,(I') = ¢,(T, 1).
They show that NC,,(I') > 0 when I' is geometric, essentially the same way
in which we prove Theorem 5.2 below. In [G-Z-K] there is also a discussion of
“Newton number” and “relative Newton number.” This topic is closely related
to the paper [B-M] and to our Example 7.13.

Theorem 3.2 and Corollary 4.7 lead immediately to our original goal of show-
ing that under certain circumstances the A-vector of a Cohen-Macaulay complex
increases under subdivision.

4.10. Theorem. Suppose A is a simplicial complex and A' a quasi-geometric
simplicial subdivision of A. Then h(A') > h(A) provided one of the Jollowing
successively weaker conditions holds:

(a) A is Cohen-Macaulay.

(b) A is Buchsbaum. This means that A is pure and the link of every vertex v
(or equivalently, of every nonempty face) is Cohen-Macaulay. (Characterizations
of Buchsbaum complexes appearing in [Sc; S-V, Theorem 2.4, p. 116; Stag,
Chapter II, Theorem 8.1] omitted the condition that A is pure. The necessity
Jor this condition was pointed out in [Mi, Remark, p. 251].)

(c) A is pure, and for every F € A with #F > 2 we have h(lk,F , x) > 0
(i.e, h(lk,F)>0 forall i).

(d) A is pure, and for every @ # F € A with £,(A,,x) # 0 we have

h(lk,F, x)>0.
Proof. We have (c) = (d) since éF(A'F, x) = 0 when #F = 1 (so that A'F
is just a single vertex). We have (b) = (c) since if Ik, F is Cohen-Macaulay,
then A(lk,F, x) > 0. We have (a) = (b) immediately from the definition of
Cohen-Macaulay and Buchsbaum complexes.

Hence assume (d). Since £,(¢,x)=1 and lk,& = A, the term indexed by
F =2 in (9) is just A(A, x). By Corollary 4.7 and (d), all the terms F # @
in the right-hand side of (9) are nonnegative. Hence h(A', x) > h(A, x) as
desired. O
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4.11. Conjecture. The hypothesis that A’ is quasi-geometric is not needed in
Theorem 4.10 (at least in case (a)).

Note. There is an alternative condition for which one can show that h(A') >
h(A) . Define a pure simplicial complex A to be partitionable if it can be written
as a disjoint union of intervals [F, G]:={J € A: F CJ C G}, where G is a
facet of A. For instance, shellable simplicial complexes are partitionable, and
it is conjectured that all Cohen-Macaulay complexes are partitionable. Using
the techniques of [ Sta,, , §5], Kalai and this author showed (unpublished) that
if A’ is a quasi-geometric simplicial subdivision of a partitionable simplicial
complex A, then h(A") > h(A).

4.12. Example. We show that h(A') > h(A) does not hold for every pure A
and subdivision A’. By Corollary 4.10(c) and the fact that A(T", x) > 0 when
dimI" < 0, the smallest possible value of dimA is 3. Let A have maximal
faces 1234 and 1256. Add a new vertex 7 on the edge 12, and let A be
the subdivision of A with maximal faces 1347, 2347, 1567, 2567. Then
h(A, x)=1+2x—x* and h(A', x) = 1 +3x+x" = x°, 50 hy(A') < hy(A). O

Condition (d) in Theorem 4.10 suggests the following problem.

4.13. Problem. Find a “nice” characterization or description of all quasi-
geometric simplicial subdivisions I'" of the simplex 2" such that 2,(T, x) =
0. o

The following result gives a solution of sorts to Problem 4.13, but it would
be preferable to have a more explicit characterization.

4.14. Proposition. Let " be a quasi-geometric simplicial subdivision of 2V, with
#V =d. Then £,(I', x) = 0 if and only if the number of even-dimensional faces
of T of excess 0 is equal to the number of odd-dimensional faces of excess 0.

Proof. By Corollary 4.7 we have £,(I', x) = 0 if and only if ¢,(I', 1) = 0.
The result now follows by putting x = 1 in equation (5). O

Thus, for instance, if #V' =2 or 3, then £,(I', x) = 0 if and only if " has
no interior vertices. If #/" =4 or 5, then £,(I', x) = 0 if and only if I" has no
interior vertices and the number of interior edges of I' is equal to the number
of vertices of I' whose support is a face with d — 1 vertices. (See Example
2.3(c,d,g).) Two other instances where £, (I", x) = 0 are the following.

(a) Let v € V. Let I be any simplicial subdivision of 2"} Let T be
the simplicial join v «I" (i.e., the cone over I with apex v). Then it is easy
to see that £,(I', x) =0.

(b) Suppose d is odd and e(v) =0 or 1 for every vertex v of I". Then it
follows from the proof of Proposition 3.4 that £,(I', x) = 0. More generally,
if 2¢(G) <d forall GeT, then £,(T", x)=0.
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Note. Putting x =1 in equation (5) and using Corollary 4.7 shows that for any
quasi-geometric simplicial subdivision ' of 2", we have

Z (_l)d—#G > 0.
e(%e)io
Is there a proof of this inequality avoiding Corollary 4.7?
An interesting property of quasi-geometric subdivisions with local A-vector
equal to 0 is given by the next proposition.

4.15. Proposition. Let I" be a quasi-geometric simplicial subdivision of 2V with
,T,x)=0.1If I’ is any quasi-geometric simplicial subdivision of 2" with
oT = 8T, then h(I') > h(T'). In other words, T minimizes h(I") among all
quasi-geometric simplicial subdivisions T' of 2" with the same boundary as T .

Proof. By (3) we have
AT, x) = h(T, x) =, x),
which is nonnegative by Corollary 4.7. O

Proposition 4.15 suggests the following problem, which is of course closely
related to Problem 4.13.

4.16. Definition. (a) Given a quasi-geometric simplicial subdivision I" of the
boundary 92" of the simplex 2 , when does there exist a quasi-geometric
simplicial subdivision " of 2" satisfying 8T =I” and ¢,(T, x) = 0?
(b) More generally, given I find the minimum values of h(T') or f(I')
among all quasi-geometric simplicial subdivisions I’ of 2" satisfying 0T =
0

Part (b) above is probably hopeless, but (a) may be more tractable. The next
example shows that (a) does not have the trivial answer “always.”

4.17. Example. It is easy to see that if #J < 3 then the answer to Problem
4.16(a) is “always.” We give an example where #V = 4 and I' does not
exist. Let V = {x, x,, x;, x,}. Add a new vertex x; ; inside each edge
xx; (1 <1< j<4). Subdivide each facet XXX of 82" so the maximal

faces are XX Xk XXX s XX X and X Xk X jie - We claim that this

subdivision I" of 82" cannot be extended to a subdivision T of 2" such that
T =T and ¢,(T, x) = 0. If on the contrary 8T =I" and ¢,(T, x) = 0,
then one computes from (3) that A(I", x) = 1 + 6x. Thus I' has seven facets.
Since the 2-faces of I" have no interior vertices, it follows from the paragraph
after Proposition 4.14 that I' has no interior vertices or edges. Since three
edges of I' meet at each vertex x; of 2Y , exactly one facet F; of I' contains
X; . When we remove the open star of each x; from I', we will remove the four

facets F; and no other facets, and will remain (since each edge of 2" has one
interior vertex in I') with an octahedron triangulated with three facets. But a
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little thought shows that there is no way to arrange (even abstractly) for three
tetrahedra to triangulate an octahedron, so I" does not exist.

Theorems 3.3 and 4.6 show that the graded module L, (I =L, ®---® L,
satisfies dimy L; = dim, L,_;, for 0 < i < d. This suggests that L, (I") is
a “Gorenstein module.” Since L, (I') has finite length, this means that the
(Matlis) dual

L, (" =Homy (L, (), K)

is isomorphic (up to a shift in grading) to L,(T") (as an Rp-module or K[I']-
module). Indeed this is the case, as follows from the following result due to
D. Eisenbud (private communication). Since we will not use this result later
and it gives nothing new about the local h-vector £, (') itself, we omit the
proof.

4.18. Proposition. Let A be a Cohen-Macaulay ring possessing a canonical
module Q, which is an ideal of A. Let 6,, ... , 8, be a maximal A-sequence.
Then the image of Q, in A/(0,, ..., 0,) is a Gorenstein A-module.

4.19. Corollary. L, (T') is a Gorenstein K[I']l-module (or Rp-module).

Proof. Follows from Proposition 4.18 and the fact [ Stag, Theorem 7.3] that
(int T") is the canonical module of K[I']. O

Note. Let M be any module of finite length (over a commutative noetherian
ring A). Let M" be the canonical module (or Matlis dual) of M. Let ¢ :
M™ — M be a homomorphism. It is natural to ask whether Proposition 4.18 can
be generalized to the statement that ¢(M") is Gorenstein. A counterexample,
however, has been provided by C. Huneke.

Theorem 4.6 leads in certain circumstances to an interesting refinement of
the local A-vector. Suppose G is a group of automorphisms of the simplex
2Y (so G is isomorphic to a subgroup of the symmetric group %, where
#V = d), and that T" is a G-compatible quasi-geometric subdivision of 2
(i.e., each w € G induces an automorphism of I' in the obvious way). Suppose
0,,...,0, € K[I']; is a special h.s.o.p. for K[I'] such that the vector space
spang{6,, ..., 6,} is G-invariant. It is easy to see that G then acts in a natural
way on L, (I'), and that this action is degree-preserving. Assume char K is
relatively prime to #G, so the G-module L, = L, ('), is a direct sum of
irreducible modules. Let G be the set of irreducible characters of G, and for
x € G let mx(i) be the multiplicity of x in the action of G on L. Then

¢,=Y m(i)(degy),

x€G

so we have obtained a “refinement” of the numbers ¢, . (For a similar situation,
see [ Sta,, §1].)

We give one example illustrating a group action on L, ; viz, let I' = sd(2V)
as in Example 2.3(i). Let G be the full automorphism group of 2Y ,0 G=.7,
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the symmetric group of degree d. We assume familiarity with the irreducible
characters of %, and their connection with symmetric functions as explained
in [Ma,, Chapter 1.7]. Let €, ... , &; be the unit coordinate vectors in R?.
Assume that the simplex 2" is geometrically realized in R’ as the Euclidean
simplex ¢ = conv{e,, ... , &}, and that sd ¢ is the usual Euclidean barycen-
tric subdivision. Let &}, ... , ¢} : RY R be the dual basis to {eg, ..., 8,5},
so &(¢;) =6,;. If sd o has vertex set V', then define 6, € R[T], by

(15) 6= Y & (.
vev’

Clearly 6,, ... , 8, isaspecial h.s.0.p., and the space spang{6,, ..., 6,} is G-
invariant. Let El a = E () =E (t,t,,...) bethe characteristic (in the sense
of [Ma,, p. 61]) of the action of 5” on R,, where R =R[I'/(0,,...,0,)
=R, &R ®---®R,. Thus E, () isa symmetnc function in the variables
t= (t t2 y e .) wh1ch is homogeneous of degree d. It follows from [Sta,,,
Proposmon 12] and its proof that

' 2505,
(16) E x'= 129J |
E) g ! T=x3 (I x4 +x z)sj

where s ;= sj(t) is the Schur function indexed by the partition (j) (so also
s;=h ; in the notation of [ Ma,]). (We do not need another variable in (16)
keeping track of the index d since E,, is homogeneous of degree d .)

4.20. Proposition. Let E, d = E 4(1) denote the characteristic of the action of
S on L, =L,T),, where T = sd V' as above, and where L, (T) is defined

wzth respect to the special h.s.op. 0, ..., 0, given by (15). Then
' 1

(17) E x = —.

E) ; ! L= X3 (T x+ -+ x 2)sj
Proof (sketch). Let V = {xl s +++ > Xz} . In the complex (11) choose K = R,
M = R[I'], N, to be as in the proof of Theorem 4.6, and 6, ... , 6, to be
given by (15). For 0 <r < d define an action of %, on the module
(18 M,:= [[ RIVW, +--+N)= [] R,

1<ij<<i <d sgv:;g‘, e xg}

=r

as follows. Let u = y;" yZ" be a monomial in R[I", _ s]- Thus the support
of u is a face of I'y_g- If wel#, then set

(19) w - u = (sgn w)(w-yl)a‘---(w-yk)a" el“w(,, _s)-

One checks that (19) does indeed define an action of &, on (11), and that
this action commutes with the coboundary operator in (11) The vector space
spang{6,, ... , 6,} C K[I'] is .%-invariant, so we obtain an induced action of
&, on the complex (11).
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As explained in the proof of Theorem 4.6, the complex (11) is acyclic. For
a graded vector space W = W;® W, @ --- with each W, a finite-dimensional
&-module, write ch(W, x) for the power series

ch(W, x) = 3 (ch W)x',
n>0

where ch W, denotes the characteristic of the action of 5’;, on W,. It follows
from the proof of Theorem 4.6 (including the exactness of (11)) that &, acts
on L,(I') so that

y(D), x)=> E,x _z 1)’ch(M,d/eM,d,x)_,
i>0 r>0

where M, is given by (18).
Now a not-so-difficult combinatorial argument (really the crux of the proof)
shows that

ch(Mrd/OMrd ,X)=e,- Ch(MO,a'—r/eMO,d—r , X),

where e, denotes the rth elementary symmetric function. Note that My 4 .

is just RIT“~"], where the superscript (d — r) indicates that T*¢™" = sd 2"
for #V =d —r. Thus

ch(M, ,_,/OM, ,_ ., x)= ZE,. X

i>0

SO

Z zE;dxi = Z Z(—l)’erZEidxi

d>0 i>0 d>0 r>0 i>0
r i
- (Ze1e)E TEa
r>0 d>0 i>0

The proof follows from (16) and the well-known (and easy) formula

Y-1e =5y

r>0 Jj>0

The generating function (17) first appeared in [Sta,,, Proposition 13] in a
purely combinatorial setting. Letting R,(x) denote the coefficient of s, when
(17) is expanded in terms of Schur functions, it was conjectured in [Sta,,]
that R,(x) is a unimodal polynomial. This conjecture was proved by Brenti
[Br,] and later Stembridge [Ste]. It can also be proved by using a suitable
refinement of Theorem 5.2. The generating function (17) also appears in [G-K-
Z] in a completely different context. Its square may be regarded as the generating
function for the degree of the hyperdeterminant. We do not know whether the
appearance of (17) in our work and in [G-K-Z] is just a coincidence.
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We conclude this section by mentioning a generalization of the local A-vector
£,(T). If A is any (d — 1)-dimensional simplicial complex and A’ a simplicial
subdivision of A, then we can define in analogy with equation (4) a “local
h-polynomial” £,(A’, x) by

(20) 6@, ) = Y @y, x).
FeA

We do not, however, know of any sort of “local” interpretation of ¢ A(A' , X).
It is easy to find examples (even when A triangulates a ball) where ¢ A(A’ , X) #
x%e A(A’ , 1/x). We do, however, have the following result.

4.21. Proposition. Let A' be a quasi-geometric subdivision of the Cohen-
Macaulay simplicial complex A. Then £,(A’, x) > 0.

Proof. We have
6@, x) =3 (=) hay, x)

FeA

=S DTS Ay, x)
FeA GCF

= 1A, x) Z(—l)""”
GeA FD2G

=158, (-1 (1k,G).
GeA

When A is Cohen-Macaulay we have (—1)‘1_'6I 1k, , G) > 0. Moreover, if A
is a quasi-geometric subdivision of A, then A'G is a quasi-geometric subdivision
of 2 for any G € A. Thus the proof follows from Corollary 4.7. 0O

Of course the hypothesis that A is Cohen-Macaulay in Proposition 4.21 can
be relaxed somewhat. For instance, we need only assume that (— 1)"[_’6l 1k, G)
> 0 for every face G € A such that dimG #0.

5. UNIMODALITY OF REGULAR LOCAL A-VECTORS

For our fourth basic property of local A-vectors, we need the concept of
“regular subdivision” (or “regular triangulation™) as discussed, for instance, in
[B-F-S, L.

5.1. Definition. Let L = L(Z) be the face lattice of a convex (d — 1)-polytope
& . An abstract polyhedral subdivision I of L (or of ) is called regular
if T’ can be geometrically realized in RY™" as a Euclidean subdivision of a
convex polytope % whose face lattice is L (so for every F € I', the geometric
realization |F| C & is a convex polytope) with the following property: There
exists a function w: & — R which is (a) piecewise-linear, i.e., w is linear on
each face |F|, and (b) strictly convex, i.e., w is convex (w(Au + (1 — A)v) >
Aw(u) + (1 — A)w(v) forall u,v €|l and 0 <A< 1) and is a different linear
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function on each facet ((d — 1)-face) of |I'|. (One can think that there is a

strictly convex polyhedral surface in R? which projects to the subdivision of
. pd-1

I'l in R" ")

Note. The definition of regular subdivision in [B-F-S] or [L] applies only to
the geometric, and not the abstract, situation. We have actually extended the
definition to abstract complexes by defining I' to be regular if it possesses a
regular (in the sense of [B-F-S] or [L]) geometric realization. Also in [B-F-S]
and [L] the vertices of the subdivision are given in advance, but this is not
relevant to us here.

Note that a regular subdivision I' of & (as in Definition 5.1) is geometric
and hence quasi-geometric.

5.2. Theorem. Let I" be a regular simplicial subdivision of the simplex 2",
where |V| =d. Then the local h-vector £,(I') = (¢,, ... ,{,) is unimodal; i.e.
(since £, =1,_,),

by < ¢ S"'Se[a’/ZJ'

Proof. Let H be an affine hyperplane (which we identify with Rd_l) in R?
which does not contain the origin. Let I" be a regular geometric realization in
H of T, as defined in Definition 5.1. Thus I" is a collection of Euclidean sim-
plices o (with suitable properties), and |I"| = Uger 0 is a Euclidean simplex.
Small perturbations of the vertices v of I" which preserve the faces F of |I”|
on which the vertices v of I" lie will not affect the combinatorial structure
or the regularity (since all faces are simplices) of I", so we can assume that
the vertices have rational coordinates. (First perturb to rational vertices those
vertices of I which are vertices of |I”|.)

For each face F of the simplex |I”|, let C(F) denote the cone of all rays
through F with endpoint at the origin. The set X, of all such cones forms
a rational fan. Similarly let X, be the rational fan of all cones C(g), where
oel’. Let X , and X, be the (complex) toric varieties corresponding to the
fans £, and Z,, as defined e.g. in [Dan].

Since X, is a subdivision of X, , we have a corresponding proper algebraic
map f: X, — X, [Dan, 5.5.1]. Thus we can apply the decomposition theorem
for intersection homology, as described in [Mac, Theorem 1.12]. We take the
stratification X, = (J,(X,), of X, where (X)), is the inverse image of the
interior of the i-dimensional faces of |I”| under the moment map. The local
systems L; can be all taken to be trivial, and there is a standard choice of the
smoothly enclosed subsets 4 C B C X, in X, . (Actually, 4 can be done away
with in the present situation; there is no need to consider relative intersection
homology.) The intersection homology /H(X,) of X, with compact supports
coincides with the singular homology H(X,) with compact supports (over C,
say) since I is simplicial, and is given by

dim IH,,(X,) = h,(T),

IH,, (X,)=0.
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The decomposition theorem shows that the polynomials ¢’ in the statement of
this theorem satisfy
W, x)= 3 #'(x

FCV
dim F=i

Since this formula is true for V replaced with any F C V and I replaced
with I';, comparing with (3) yields

¢'(x)= 3 LTy, x).

dim i
In particular, d)d_l(x) =£,(T, x).

The hypothesis that I” is a regular subdivision of |I”| implies that f is
projective. (In fact, f is projective if and only if I" is regular.) By the hard
Lefschetz property of the decomposition theorem, we have that ¢d_l(x) =
£,(T", x) is unimodal, as desired. O

Note. We do not need projectivity of f to conclude that qbd_](x) has non-
negative coefficients. Thus we have another (and much more difficult) proof of
Corollary 4.7 when I' is a geometric simplicial subdivision of 2V,

5.3. Corollary. Let A be a pure simplicial complex such that for every face F €
A the h-vector (hy, ..., h;_ #F) of Ik F is symmetric (h; = h;_,p_, for all
i) and unimodal (hy < h; <--- < h L(d—#F)) assuming symmetry). (By [ Sta]
the boundary complex of a szmplzczal convex polytope satisfies this condition.
For a generalization, see [Ka, §8] and [Sta,;, Corollary 2.4].) Let A" be a
simplicial subdivision of A such that for all F € A, the restriction A; is a
regular subdivision of 2F . Then

(21) h(A)—h,_,(A) < h(A)—h,_,(A), 0<i<|d/2].

Proof. Consider equation (9). By hypothesis each polynomial A(lk,F, x) is
symmetric and unimodal, with center of symmetry at }(d — #F). By Theorem
3.3, £y (A'F , X) 1s symmetric, with center of symmetry %(#F }. By Theorem 5.2,
¢.(A%, x) is unimodal. Hence the product £, (A}, x)h(Ik,F , x) is symmetric
about d4/2, and by e.g. [Sta,,, Proposition 1] is unimodal. The term indexed
by F =2 in (9) is just A(A, x), and the proof follows. O

Note. As in Theorem 4.10, the conclusion (21) to Corollary 5.3 holds if we
replace the symmetry and unimodality of A(lk,F) for all F € A by symmetry
and unimodality for all F # @ for which ZF(A; , X) # 0, and just symmetry
for h(A, x) itself (the case F = o).

5.4. Conjecture. Theorem 5.2 continues to hold when I' is a quasi-geometric
simplicial subdivision of 2" . (Example 2.3(h) shows that Theorem 5.2 fails
for arbitrary simplicial subdivisions of 2r 2
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PART II. GENERALIZATIONS

6. KERNELS AND K-ACCEPTABILITY

It is natural to consider subdivisions of complexes more general than sim-
plicial subdivisions of simplicial complexes. First we consider a very general
situation in which the notion of “subdivision” is purely formal and devoid of
geometric content, but for which an interesting theory nonetheless exists. In
particular, the theory of Kazhdan-Lusztig polynomials occurs as a special case
(see Example 6.9), though we add nothing new to the theory here. We also give
a formal “ g-analogue” of subdivisions of a simplex (see §9), though our results
show that a rich geometric theory is unlikely. In §7 we specialize our general
theory to a more geometric setting.

A poset P is said to be locally finite if every (closed) interval [x, y] is finite.
We denote by 0 the unique element (when it exists) of P satisfying 0 < ¢ for
all z € P. Alocally finite poset with 0 is graded if for all ¢ € P, every maximal
chain of the interval [0, ¢] has the same length. We denote this length by p(¢),
and call p the rank function of P. A locally finite graded poset with 0 will be
called lower graded.

A poset P is called locally graded if P is locally finite and for all s < ¢
in P, every maximal chain of the interval [s, f] has the same length. We
denote this length by p(s, ¢). Thus p(¢,¢) = 0, and if s < u < ¢ then
p(s, 1) = p(s,u)+ p(u, t). If P is locally graded with 0 then P is (lower)
graded, and we have p(s, t) = p(t) — p(s) .

Fix a field K, and suppose that P is locally finite. Let I(P) denote the
incidence algebra of P (as defined e.g. in [Sta,, , Definition 3.6.1]) over the
polynomial ring K[x]. As a K-vector space (or K[x]-module) I(P) consists of
all functions f : Int(P) — K[x], where Int(P) denotes the set of (nonempty)
intervals of P. The value of f atthe interval [s, ¢] is denoted Sy = £, (x). We
denote the convolution product in I(P) simply by juxtaposition. Recall [ Sta,, ,
Proposition 3.6.2] that I(P) has a multiplicative identity (denoted either 1 or
J), and that f € I(P) is invertible if and only if f, € K* = K — {0} for all
t € P. The multiplicative identity & of I(P) is just the Kronecker delta. Let
K [x]P denote the space of all functions f: P — K[x]. We denote the value
of feK[x]" at te P by f,=f(x). If P hasa O (more generally, if every
principal order ideal A, = {s € P: s <t} is finite) then I(P) acts on the right

on the space K [x]P by the rule

(f&),=> /8,  gelI(P).

s<t

Suppose P is lower graded. For any f € K [x]P satisfying deg f, < p(t) for
all t€ P, define f: P— K[x] by

7,00 =x" 1 (1/x).
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Note that 7 = f . Similarly if P is locally graded, write
={fe€lI(P): degf, < p(s, ) forall s <tin P}.

It is easy to see that I'(P) is a subalgebra of [ (P). If f e I'(P) then define
feI'(P) by

=z p(S,t)

So(X)=x""7 £ (1 x).
Thus ~ is an involution on I'(P). A function f € K[x]" or f € I'(P)
satisfying f = f is called symmetric.

6.1. Lemma. Suppose f,geI(P). Then fg =fg. If moreover f is invert-
ible, then f —f_ .
Proof. Let s <t in P. We have

(fg)_g[(x) = Z fyu(x)gu[(x)’

s<u<t

Substitute 1/x for x and multiply by x”“*" to obtain fg = f 2. A similar
argument applied to

Sy= > S fy (%)

s<u<t
——1 —
shows f = f"!'. o

Define a function « € I(P) to be unitary if x,, =1 for all t € P. We now
come to the key definitions of this section. They were suggested originally by
the definition of “acceptable” in [Sta,,, p. 200].

6.2. Definition. (a) Let P be a lower graded poset, and let k¥ € I(P) be unitary.
A function f € K[x]® is called k-acceptable if fx = f,i.e.,

D S0k, (x) = T (%),

s<t
forall teP.

(b) Let P be a locally graded poset, and let k € I(P) be unitary. A function
f €I(P) is called k-totally acceptable if fx = f, i.e.,

(22) D Lok, (x) =T, (x),

s<u<t
for all s <t in P. If there exists an invertible x-totally acceptable function,
then we call k a P-kernel.

Note that for fixed x the conditions of being x-acceptable and k-totally
acceptable are lmear i.e., the functions satisfying them form a K-vector space
(a subspace of K [x] and I(P) (or I'(P)), respectively).

6.3. Proposition. Let P be locally graded, and let f € I'(P) be invertible. Then
there exists a unique k € I(P) (necessarily unitary) for which f is k-totally
acceptable.
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Proof. Equation (22) states that fx = f in I(P), whence k= f~'f. O

6.4. Lemma (the generalized Dehn-Sommerville equations for the kernel ).
Let Q be a finite graded poset with 0 and 1. Let x € I'(Q) be unitary and
satisfy =k Finally let f: Q— {1} — K[x] satisfy, forall s <1,

S F (K, (x) = F(x)

u<s
(i.e, fk=f on Q—{1}). Then the polynomial
(23) g(x) = fi(x)r(x)

s<i
is antisymmetric, i.e, = —g.
Proof. We have

= ST 07,100 = X (S A000m, 00 )i

s<i s<i ‘u<s
=3 10) 3w (0K () = 3£, (=ke g (%) ()
u<i u<s<i u<i
==Y f(x)K,i(x) = —g(x). O
u<i

Note. We have called Lemma 6.4 the “generalized Dehn-Sommerville equa-
tions” for the following reason. Suppose Q is Eulerian of rank d + 1 and
K, (x) = (x — 1) 0=2) forall s <t in Q (see §7, in particular Proposition
7.1), and let g(x) be defined by (23). Then the polynomial g(x)/(x —1) is
the h-polynomial of Q — {i}, as defined in [Sta,,, §2] or Example 7.2 be-
low (more precisely, the vector of coefficients of g(x)/(x — 1) is called the
h-vector of Q — {1}). The generalized Dehn-Sommerville equations of [Sta,,
Theorem 2.4] assert that g(x)/(x — 1) is symmetric (as a polynomial of degree
d). Clearly this is equivalent to g(x) being antisymmetric (as a polynomial of
degree d + 1), as asserted by Lemma 6.4. If we take Q — {i} also to be simpli-
cial, i.e., every interval [0 , t] is a boolean algebra, then we obtain the classical
Dehn-Sommerville equations, essentially in the generality first given by Klee
[Kl]. An additional reference to the generalized Dehn-Sommerville equations
for Eulerian posets is [ Sta,, , Theorem 3.14.9].

6.5. Theorem. Let P be locally graded, and let k € I(P) be unitary. The
following two conditions are equivalent:

(a) K isa P-kernel, i.e, there exists an invertible x-totally acceptable function
fel(p).

b) k=",
Proof. (a) = (b). Given (a), we have k = f~'f, from which it is immediate
(using Lemma 6.1) that & = k"
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(b) = (a) Assume (b). Let J denote the identity element of I(P) (so d,
is the Kronecker delta). For s <t in P, define

(24 fo= X (77 )ee-an.

i>0

where (k — 9 );t denotes the value of the function (x — ¢ )i € I(P) at the interval
[s, ¢]. Since «,(x) =1 for all ¢t € P, the right-hand side of (24) is actually a
finite sum and hence is well-defined. Note that f, (x) =1 forall 1€ P,so f is
invertible. By the binomial theorem we then have f = k2 (ie., f 2= x_l).
Moreover, applying the involution ~ to (24) and using ¥ = k~' shows that
f=f ~!. From this it follow that fx =f,s0 f is k-totally acceptable. O

6.6. Proposition. (a) Let P be lower graded, and let k € I(P) be a P-kernel.
Forany t € P, let &/(P) denote the space of all x-acceptable functions restricted
to the interval [0, t]. Then

(25) dim&/(P) =Y |1p(s) +1].

s<t

Moreover, if P is finite and &/ (P) denotes the space of all k-acceptable func-
tions, then

(26) dims/ (P) = [1p(s) + 1.
seP
(b) Let P be locally graded, and let k € I1(P) be a P-kernel. For any s < t
in P, let J (P) denote the space F (P) of all k-totally acceptable functions
restricted to the set Int([s, t]) of intervals contained in [s, t]. Then

dimJ,(P)= > [ip(u,v)+1].

s<u<v<t

Moreover, if P is finite then
dimJ (P)=>_[1p(u, v) +1].

u<v

Proof. (a) Let t € P. Suppose that we have defined f, forall s < ¢, so
that (fk), = Ts. We will show that the set of all polynomials f, satisfying
(fx), = 7, is a vector space of dimension [1p(¢) + 1], from which (25) and
(26) follow.

Let m = p(t). The condition (fx), = f,
(27) d LKy =T~ 1.

s<t

can be rewritten as

By Lemma 6.4, the left-hand side of (27) is antisymmetric. Hence we may
arbitrarily choose the coefficients o; of x' in f, for 0 < i < |m/2] (or for
[m/2] < i < m), and this uniquely determines all of a polynomial f, satisfying
(27). Thus we have |m/2] + 1 degrees of freedom in choosing f;, as desired.
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(b) This follows from (a) and the fact that f € I([s, ¢]) is k-totally accept-
able if and only if for all u € [s, t], the function g € K [x][”"] defined by
8, = f,, is K-acceptable. O

6.7. Corollary. (a) Let P be a lower graded poset, and let k be a P-kernel.
Then there exists a unique k-acceptable function y(P,k) =y : P — K [x]
satisfying

vo(x)=1,  degy(x)<[3(p(t)-1)], t>0.

(b) Similarly if P is locally graded and « is a P-kernel, then there is a unique
k-totally acceptable function y(P, k) =y € I(P) satisfying

Y (x)=1, forallteP,

degy,(x) < |3(p(s,0)=1)], foralls<tinP.

Proof. (a) According to the proof of Proposition 6.6, once we have chosen fi(x)
for all s < ¢ (where p(t) = m > 0), we uniquely determine fi(x) = o, +
a X+ + amx by choosing «, , Qg5 ens QL - Hence we must choose
Qpy =, | =" =ayp,;, =0 to insure that deg f, < [}(m — 1)], so y exists
and is unique.

(b) This follows from (a) for the same reason that Proposition 6.6(b) follows
from Proposition 6.6(a). O

Note that the proof of Proposition 6.5, together with Corollary 6.7(b), gives
two “canonical” examples of k-totally acceptable functions on a locally graded
point P with P-kernel k, viz., K ~172 and y(P, k). As will become apparent
from Example 6.9 and much of §7, the function y(P, k) is in general the more
interesting and important of the two.

6.8. Example. Let P bea locally graded poset. Perhaps the simplest nontrivial
example of a kernel k = [~ f is obtained by choosing f = { (the zeta function
of P, defined by {,=1 forall s<t in P). Then

_ Z P xp(u,t)
Su 2

s<u<t

where u = ¢~' is the Mébius function of P [Sta,, , Chapter 3.7]. Thus x,(x)
is the characteristic polynomial x (x) of the interval [s, ¢] (see [Sta,,, pp.
128-129]). Of course for this P-kernel y we have (P, x) =

6.9. Example. One of the deepest and most interesting examples of a P-kernel
arises from the Kazhdan-Lusztig theory of representations of Hecke algebras
[K-L; Hu, Chapter 7]. We adhere to the terminology and notation of [K-L]. Let
W be a (not necessarily finite) Coxeter group, and let S be the corresponding
set of simple reflections. Regard W as a poset endowed with the Bruhat order.
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Define a function R € I(W) inductively as follows:

R =1, foralluew

uu
R, ., if su < u and sv < v (for some s € S),
R =<¢(R ifus<uandvs <wv,

uv us,vs’
(x-—1DR +xR if su > u and sv < v.

Su,v Su,sv’

(For an explicit but complicated formula for R, see [D].) Then [K-L, Lemma
2.1(3,i1)] implies that R is a W-kernel. From [K-L, (2.2.6)] and the definition
of P, it follows that the function y = y(W, R) is given by

uv
p(u,v)
Yo (X) = (=1) P, (x),

where P is the Kazhdan-Lusztig polynomial. (Note. The involution ~ in [K-
L] is not quite the same as our ~ .) The W-kernel R has the special property
[K-L, Lemma 2.1(i)]
¥ p(u,v) .
R, =(-1) R

uv ?
ie., R, is symmetric (respectively, antisymmetric) for p(u, v) even (respec-
tively, odd). The function R is also a W-kernel, and for this W-kernel we
have simply y(W ,R)=P.

We now come to a very general symmetry result. In the next section (after
the proof of Corollary 7.7) we will explain how it includes Theorem 3.3 as a
special case.

6.10. Proposition. Let P be lower graded (respectively, locally graded) with P-
kernel k. Let g € I'(P) be x-totally acceptable and invertible. Then fek [x]P
(respectively, f € I'(P)) is k-acceptable (respectively, k-totally acceptable) if
andonly if f g_1 is symmetric.

Proof. We have (using Lemma 6.1 and Theorem 6.5 when appropriate)

fel=fe = fa ) ' =fg = fx=7. O

Proposition 6.10 shows that every k-totally acceptable function has the form
K_l/z(f+7) for f € I'(P) (or equivalently, setting f = k'/’g, g+ k'g
for g € I'(P)), and conversely every such function is totally acceptable. In
particular, for any o € K we have that k_ := k(K™ + k7% is a k-totally
acceptable function commuting with f. This leads to several questions which
we leave to the reader to investigate: (a) Let 77 be the vector space spanned by
all k, with a € K. What is the dimension of 7°? Which ks form a basis for
77? (b) Does 7~ consist of all k-totally acceptable functions which commute
with x? If not, what further ones are needed?

We conclude this section with a result on the structure of the set % (P) of
all P-kernels.
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6.11. Proposition. Let P be locally graded. Let I(P) be the multiplicative
group of all unitary f € I'(P). Let

S(Py={felP): f=1},

so S(P) is a subgroup of I(P). Let I(P)/S(P) be the set of all right cosets
S(P)- f, fel(P), and let Z (P) be the set of all P-kernels. Finally define

G(P)={felP): deg f, < 3(p(s, )= 1)) forall s < t in P}.

Thus G(P) is an affine subspace (over K ) of I'(P) . Define maps o, : I(P)/S(P)
— Z(P) and ¢,: G(P) - F(P) by ¢,(S(P)-f)=f""'T and 9,() = f"'T.
Then ¢, and ¢, are bijections. In fact, G(P) forms a set of right coset repre-
sentatives of S(P) in I(P), and (pl_l(;c) =S(P)- k2 R (oz_l(x) =y(P, k).

Proof. If S(P)-f = §(P)-g, then f = pg forsome p =p,so [ 'f =
(pg)_l(p_g) = g_1§. Hence ¢, is well defined. By the proof of Proposition

6.3, ¢, is surjective. By Proposition 6.10, ¢, is injective. The remaining
statements follow from Corollary 6.7(b) and simple direct arguments. 0O

7. EULERIAN POSETS AND THEIR SUBDIVISIONS

In this section we deal with a certain P-kernel 4 which will allow us to extend
many of our results on local A-vectors to more general types of subdivisions.
For any locally graded poset P, define a function A € I'(P) by

A, (%) = (x — 1)’*0

for all s <t in P. Recall that a finite poset P is Eulerian [Sta,, , Chapter
3.14] if it is graded, has a 0 and 1, and its Mobius function u is given by

uis, 1) = (17"

for all s < ¢t in P. (Equivalently, every interval [s, f] with s < ¢ has as
many elements of even rank as of odd rank.) A lower graded (respectively,
locally graded) poset P is lower Eulerian (respectively, locally Eulerian) if every
interval is Eulerian.

7.1. Proposition. Let P be locally graded. Then A is a P-kernel if and only if
P is locally Eulerian.
Proof. Let P be locally graded, and let s <¢ in P. Then

T = s (1N e
(), = 3 (< (x-1)

s<u<t

— (X _ I)P(S,t) Z (_I)P(Sau).

s<u<t



836 R. P. STANLEY
Hence A=A"" (ie., A isa P-kernel) if and only if

(28) 5= S (=),

s<u<t
for all s <t in P. But by the defining recurrence [ Sta,, , Chapter 3.7, (14)]
for u, equation (28) is equivalent to u, = (—1)”(“) forall s<tin P. O

For the remainder of this section we will say simply acceptable and totally
acceptable for A-acceptable and A-totally acceptable. Moreover, y will always
denote y(P, 4).

7.2. Example. Let P be lower Eulerian. The polynomial y,(x) is denoted by
g(P,, x) in[Sta]. If P is Eulerian and y;(x) = hy+hx +---+hx’ (where
we can take s = [%(p(i) —1)J, then (A, ..., k) is called in [Sta,, §2] the
(generalized) h-vector of P or g-vector of P — {i}.

When P is the boolean algebra B, of rank d, we have y,(x) =1 for all
te B, [Sta,,, Proposition 2.1; Sta,, , Example 3.14.8]. For an arbitrary finite
lower Eulerian poset P of rank d, the h-vector h(P) = (h, ... , h;) is defined
by

(29) E(P, x) = hoxd + hlxd_l 44 hd — Zyt(x)(x _ l)d—/)(t).
tepP

When P is Eulerian, (29) is consistent with our definition
h(P, x)=hy+hx+-+hx" = p(x),
since y is acceptable. O

We now turn to some examples of acceptable and totally acceptable functions
on lower or locally Eulerian posets. Our first result is included for the sake of
completeness, though we do not know of any reasonable application. First note
that for P locally Eulerian, it follows from Proposition 7.1 and the proof of
Proposition 6.5 that ATV s totally acceptable. For any « € K, a simple
argument shows

(30) l?t(x) = 4‘:,/1”()() = C;(x — 1)/’(5,1) ,

forall s <t in P. (For any unitary f € I(P) we define, analogously to (24),

= (5)r-om

n>0

In particular, for the boolean algebra B, one can compute C; = o , SO

A = (A(1 = x))?®? (see [Sta,,, Example 3.11.2]). Equation (30) in the
case a = —1/2 motivates the following result. The proof is straightforward
and will be omitted.
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7.3. Proposition. (a) Let P be lower Eulerian. Given a : P — K, define
a: P— K[x] by

a,(x) = a,(x — 1)’".

Then a is acceptable if and only if
(@), = (-1)""a

for all t € P. The set of all such a forms a vector space over K of dimension
#{t € P: p(t) is even}.

(b) Let P be locally Eulerian. Given a € I(P, K) (the incidence algebra of
P over K), define a € I(P) (the incidence algebra of P over K[x]) by

~ ,t
a,(x) = a,(x —1)"¢7,

Then a is totally acceptable if and only if

(@f),, = (-1)"*"a,,,

forall s <t in P. The set of all such a forms a vector space over K of
dimension #{s < tin P: p(s,t) is even}.

We now will give a more significant example of an acceptable function on a
lower Eulerian poset. The key definition is the following.

7.4. Definition. Let P be a lower Eulerian poset. A formal subdivision of P
consists of a lower Eulerian poset I and a surjective function ¢ : I’ — P with
the following properties:

(i) Forall t eI", p(¢) < p(a(t)).

(ii) For every F € P,let P_, ={G€ P: G < F}. Then T, := ¢~ '(P_})
is an order ideal of I';i.e., if /€T, and s < ¢, then s € I',. We think of T,
as the “restriction” of I" to F.

(iii) Define the interior int(I'y) of the poset I'y by int(I'y) = a_l(F) . Let
h(T'y, x) denote the h-polynomial of the lower Eulerian poset I',. (see (29));
ie.,

F F)—pl(t
Onr,, 1/x) = 3y x)x - )70,
IGF
or equivalently,
F)—p(t F)—
Z)’ ( )— p()( 1)”( ) p(t).
tel,

Similarly define A(int(I'y), x) by replacing I';, with int(I'z) in the above for-
mula. Then we require that E(FF , x)=h(int(I';), x);ie.,

(31) P, , 1/x) = h(int(T,), x). O

Sometimes by abuse of notation we will speak of I" as being a formal sub-
division of P,the map o : I' = P being tacitly understood.



838 R. P. STANLEY

7.5. Theorem. Let 0 : I — P be a formal subdivision of the lower Eulerian
poset P. Let f: P — K[x] be defined by f.(x) = h(I'y,x). Then f is
acceptable.

Proof. Fix F € P. Then
§:~f MG F)
olx

G<F

— Z(X _ l)p(G’F) Z 7 (X)(—l)p(G)_p(t)(.x _ l)P(G)—P(t)
t

GEF tel;

— Z Z X)(X I)P(F)_P(t)(_I)P(G)_P(t).

1€l F>G>a (1)

Now since the interval [g(t), F] is Eulerian we have

P(G) _ NF)
> (-1 O on(—1)

F>G>0(t)

Hence

) =11 = 7,00(x — 1?70 ()=
G t

G<F te InY(r,)
= h(int(I'y), x)

= E(FF ’ .X) = 7F(X) s
so f is acceptable. O

Note. We do not see a reasonable way of extending the notion of formal subdi-
vision to posets P with a more general P-kernel x . The proof of Theorem 7.5
uses the special property of the kernel A thatif s <u <t¢,then A, =414

su”ut *

Note. A special case of Theorem 7.5 with basically the same proof as here ap-
pears in [ Ba, , Proposition 6].

Theorem 7.5 raises the problem of finding “nice” examples of formal subdi-
visions. Thus we will discuss how the usual topological notion of subdivision is
related to formal subdivisions. Let P be a CW-poset, in the sense of Bjérner
[Bj]. This means that P is the face poset of a regular CW-complex, also denoted
P . Equivalently, P hasa 0 and the order complex A(f), t) of every open inter-
val ((), t) of P is a triangulation of a sphere. There is an obvious topological
notion of a subdivision I' (as a regular CW-complex, i.e., I' is a CW-poset) of
a regular CW-complex P. Namely, we have a function g : I' — P satisfying
properties (i) and (ii) above of formal subdivisions, but (iii) is replaced by:

(ili") For every F € P, the poset T’ — {0} = o~ '(P_,) — {0} is topologically
a ball; i.e., its order complex is a triangulation of a ball. Moreover,

int(Cz) ={pel: p¢al,},
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where 0@ is the order ideal (subcomplex) of I generated by all codimension
one faces of I';. contained in exactly one facet (maximal face) of ..

Let us call such a subdivision CW-regular, to distinguish it from a regular
subdivision in the sense of Definition 5.1.

7.6. Proposition. Let o: I' — P be a CW-regular subdivision of the CW-poset
P. Then o is a formal subdivision, so the function h(T" F» X) Is acceptable on
P.

Proof Let F € P. We may assume F > 0, so I’y is a nonempty ball. The
“reciprocity theorem” (31) is then the special case of [ Sta,,, Lemma 6.2] where
we take P in [Sta,,, Lemma 6.2] to be I'y,and I in[Sta,,, Lemma 6.2] to be
OI'r . (In the statement of [ Sta,,, Lemma 6.2], the possibility that I = oT" F 18
not allowed, but actually the proof goes through in this case without change.) 0

Note that if A and A’ are both simplicial complexes (which we identify
with their poset of faces), then a CW-regular subdivision o : A" — A is just a
subdivision of A into A’ as discussed in §2.

There exist certain kinds of geometrically meaningful subdivisions of a CW-
poset more general than CW-regular subdivisions. For instance, rather than
requiring that ', — {0} be a ball, it would suffice that T ¢ 1s a Cohen-Macaulay
pseudomanifold with boundary, where the boundary is given by aT" r=Tg—
int(I'.) . We will not discuss such generalizations any further here.

7.7. Corollary. Let I" be a formal subdivision of the Eulerian poset P. Assume
P has rank d, and let y = y(P, ). Define

~1

(32) £p(T, x) = S h(T,, x)77' (x).
tepP
Then
x?2,(T, 1/x) = £,(T, x).

Proof. Apply Proposition 6.10 to the case f,(x) = h(I’ ,» X) (which is acceptable
by Theorem 7.5) and 8, (x) = v,,(x), which is totally acceptable by definition
of y,(x) (and the result that y (x) actually exists, i.e., Corollary 6.7). O

When P is the boolean algebra 2 in Corollary 7.7, then y (x) =1 for all
s <t (as essentially noted in Example 7.2), and y,'(x) = (~1)”**". Hence if
T is a simplicial subdivision of 2" , then comparing (4) and (32) shows that

(T, x) =£,(T, x),

the local h-vector as investigated in §§2-4. Therefore Corollary 7.7 specializes
to Theorem 3.3, so Theorem 3.3 is proved.

Equation (32) is thus the “correct” definition of the local A-vector of arbi-
trary CW-regular subdivisions of arbitrary Eulerian CW-posets (or even formal
subdivisions of Eulerian posets). Since ¢ = hy_l if and only if 4 = £y, it is
equivalent (as a definition valid for all CW-regular subdivisions of all Eulerian
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CW-posets) to

(33) h(T, x) = Ze (T,, X)7,3(x).

tepP

This explains why we defined £, (I", x) by (3) and not (4). Equation (32) raises
the question, however, of whether any kind of formula exists for ys_tl(x) . An

answer, in the general context of any P-kernel x, will be given in Proposition
8.1.

Note. We do not see how to extend the definition (32) of £,(I', x) to formal
subdivisions I' of arbitrary lower Eulerian posets, generalizing the definition of
¢,(A") given by equation (20).

Note. Following [Ba,], define a formal subdivision ¢ : I' = P of an Eulerian
poset P to be shallow if for all F € I' we have

p(a(F)) < 2(p(F)—degyg(x)).

As in [Ba,, Theorem 4], if T" is shallow then A(I', x) = h(P, x). Moreover,
if T is an arbitrary formal subdivision of the Eulerian poset P such that for
all t € P we have £P< (I'y,x) 20 and A(P,,, x) > 0 (by Theorem 7.9 this

condition holds if P is the face lattice of a rational polytope % and T is the
face poset of a rational geometric polyhedral subdivision of ), then it follows
easily from Theorem 7.8 that the following three conditions are equivalent: (a)
I' is shallow, (b) A(T', x) = A(P, x), and (c) £P<1(l"t ,x) =0 forall ¢t >

0 in P. Thus under appropriate conditions we have a characterization of
shallow subdivisions in terms of local A-vectors. (We did not discuss shallow
subdivisions in Part I since a shallow subdivision can have no new vertices, so
no nontrivial simplicial subdivision of a simplex is shallow.)

As pointed out after the proof of Corollary 7.7, that result generalizes Theo-
rem 3.3 from simplicial subdivisions of a simplex to CW-regular subdivisions
of a CW-poset. We can ask whether our other main results on local A-vectors
have a similar generalization. There is little difficulty in generalizing Theorem
3.2, but we are only able to extend Corollary 4.7 in a special case for which we
can apply the intersection homology of toric varieties. Similarly the generaliza-
tion of Theorem 5.2 requires intersection homology theory, but this was also
the case for Theorem 5.2 itself.

7.8. Theorem. Let P be a pure lower Eulerian poset of rank d , and let T be a
formal subdivision of P. Then

(34) KT, x) =34, (T, x)h(Py,, x),

tep

where h is defined by (29).
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Proof. By equation (29), Lemma 6.1, and the purity of P, we have

_ d-
(35) Py, X) = D7, (6)(1 = x)* 7.
u>t
Also by Corollary 7.7 we have
tp_(T,, %)= D R(T,, )7, (x).
B s<t

Hence

Z£P<,(rt s x)h(PZt s X) = Z Z(rs s x)?s_tl(x)ym(x)(l _ x)d—p(u)

tepP s<t<u
=3 "R(T,, x)8,,(1 —x) @
s<u
= Y RT,, 01 -0
s
=hn(T, x),

since A is acceptable (Theorem 7.5). O

7.9. Theorem. (a) Let P be the face-lattice of a rational (i.e., the vertices have
rational coordinates) convex d-polytope & . Let T be a rational polyhedral
subdivision of P (or of ), i.e., T can be realized in Euclidean space as a
geometric subdivision of the rational convex polytope P, such that the faces of
I' are rational convex polytopes. Let £p(I', x) = £y + £,x + -+ + édxd . Then
£, >0 (and ¢, =¢,_, by Corollary 1.7).

(b) If moreover T is a regular subdivision (in the sense of Definition 5.1), then
0< by <l <<y

Proof. Analogous to the proof of Theorem 5.2, using the following variation
of [Sta,,, Theorem 3.1]: Let Q be the face-lattice of a rational polyhedral
decomposition I” of a rational convex polytope, and let X be a rational fan with
cross-section I' | as in the proof of Theorem 5.2. Let X be the complex toric
variety corresponding to X, and let /H denote complex intersection homology
with compact supports. Then dim IH 2'(Xz) = h,(Q), while dimIH 2'“Ll(Xy_) =
0. O

7.10. Conjecture. Theorem 7.9(a) (and perhaps also (b)) remains true if P is
any Cohen-Macaulay Eulerian lattice and ¢ : I' — P any formal subdivision
of P satisfying: (i) I' is a Cohen-Macaulay meet-semilattice, and (ii) o is
quasi-geometric is the sense that if 7 €T and 5,,... ,s, are the atoms of T’
lying below ¢, then a(s,)V---Va(s,) =0a(t).

7.11. Corollary. Preserve the notation and hypotheses of Theorem 7.9(a). Then
(36) I, x)>h(P, x).
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In particular, if T is any triangulation of P (which will be combinatorially
equivalent to a rational triangulation when, as we aresassuming, & is rational),
then the number f,(I') of facets of T satisfies

(37) J4(T) 2 h(P, 1).

Proof. Analogous to the proof of Theorem 4.10. By Theorem 7.9(a) the polyno-
mials £P<l(l"t , X) appearing in (34) have nonnegative coefficients. By [Sta,,,
Theorem 3.1] we similarly have h(P,,, x) > 0. The term of (34) indexed by
t =0 is just A(P, x), so it follows from (34) that A(T", x) > h(P, x).

For any (d + 1)-dimensional simplicial complex A we have A(A, 1) = f,(4),
so (37) follows from (36). O

One case of Corollary 7.11 of particular interest is when % is a d-cube.
Considerable research has been done on finding the minimum number of facets
in a triangulation of the d-cube (see [Ha] and the references cited there). Un-

fortunately equation (37) yields nothing new; it states that f,(T) > d_JlA(Z;) ,

while the best bound known at present is f,(T") > can?. Perhaps a more
detailed study of (34) will yield an improvement over known results, but this
seems quite difficult.

7.12. Corollary (the Upper Bound Conjecture for A-vectors of rational poly-
topes). Let & be a rational convex d-polytope with n vertices, with boundary
0 . Let P be the face poset of 0%, and let h(P, x) = ho+hx+---+ hdxd .
(Thus by [Sta,,, Theorem 2.4] or by Lemma 6.4 and the comments following
it, we have h,=h,_,.) Then 0 < h, < ("~4+-1).

Proof. Let T be a triangulation of .2 without new vertices. (Such triangula-
tions are well known and easily seen to exist.) Consider the formula for A(T", x)

given by (34). In this formula we have ¢ P, (I, x) > 0 by Theorem 7.9(a). For
any ¢ € P the subposet P, is the face po_s’et of the boundary complex of some
rational polytope &, so by [Sta,,, Corollary 3.2] we have h(P,, x) > 0.
Now by the Upper Bound Conjecture for spheres [ Sta,] (or even for simplicial
polytopes, since we can choose I' to be polytopal) we have #,(I') < ("~4+-!).

When ¢ =0 in (34) we just get the term A(P, x), so h(P)< ("), o

The classical Upper Bound Conjecture for polytopes [Mc] or spheres [Sta,]
has a simple combinatorial interpretation in terms of f-vectors. We know
of no such interpretation, however, for Corollary 7.12. We may conjecture a
generalization of Corollary 7.12 along the lines of Conjecture 7.10; in particular,
Corollary 7.12 should remain true without the assumption that 2 is rational.

Example 7.2, Proposition 7.3, and Theorem 7.5 (together with its special
case, Proposition 7.6) give some “natural” examples of acceptable functions.
There is one further example worth mentioning.

7.13. Example. Let L be a lattice in RY . Let A bean L-polyhedral complex
in RY , 1.e., a (finite) set of convex polytopes in R" with vertices in L , such
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that (i) if & € A and & is a face of &, then & € A, and (b) if P, P el
then P NP is a face (possibly empty) of & and of &'. For instance, A
could be the set of faces of some L-polytope & . (Even more general objects
than L-polyhedral complexes could be considered, but for simplicity we do not
deal with them here.) Given an integer n > 0 and a d-dimensional L-polytope
P c RY define

(38) (P, n)=#(nP L),

where nP = {na: a € L}. Also set i(#,0)=1. It is known that (¥, n)
is a polynomial function of n of degree d, called the Ehrhart polynomial of
& (see [Sta,,, Corollary 4.6.28]). It follows that if we set

(39) (@, x)=(1-x)""S i@, nx",
n>0

then w(#, x) is a polynomial in x of degree < d. It is noted in [Sta,,,
p. 201] (for the lattice L = ZN) that w is an acceptable function on A. Now
suppose A is the face lattice of a d-dimensional L-simplex in R" . Since A is
isomorphic to the boolean algebra B, , the zeta function { € I(A) is totally
acceptable (see Example 7.2). Hence the function ¢ = wC_l is symmetric
(Proposition 6.10). Explicitly, we have (since {, P = (=1)&9)

c(x) =S a(s, x)(~1)7¢"".
ser
The polynomial c,(x) was earlier considered by Betke and McMullen [B-M].
(They use C*(T, t) for our ¢,(x), where their T is our ¢, and their ¢ is our
x.) They give a purely geometric definition of ¢,(x) from which it clearly has
nonnegative coefficients. The symmetry of ¢, (x) is their Lemma 3(a), while
the analogue of our equation (3) is their Lemma 3(b). For any L-polyhedral
complex I' in RY , one can define

iC,n)=#(n-[\nL), iT,0=1,

as a straightforward generalization of (38). (Now i(I", n) is a polynomial for
n > 0 but perhaps not at 0.) The polynomial

o(T, x) = (1 -x)" TS 4T, n)x"
n>0
is the “Ehrhart analogue” of the A-polynomial A(I", x). Betke and McMullen
[B-M, Theorem 1] establish also the Ehrhart analogue of our Theorem 3.2. (This
analogue is a special case of our Theorem 7.8.) The paper [B-M] of Betke and
McMullen provided some of the motivation for this paper.

The above discussion suggests that it might be interesting to investigate the
function ¢ := wy_l : T = K[x], where T is the face lattice of a convex L-
polytope Z, w is given by (39), and y = y(P, A). (When # is a simplex we
have y = ¢ so c is the same as defined above.) Specifically:
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7.14. Conjecture. Let I" be the face lattice of a convex L-polytope (or even
a Cohen-Macaulay L-polyhedral complex). With notation as above, we have
a)y_l >0;1i.e,forall s <t in I', the polynomial (wy_l) +(X) has nonnegative
coefficients. O

In view of Theorem 5.2 and Conjecture 5.4, it is tempting to conjecture that
in fact (a)y_l)st(x) is unimodal for all s <7 in I". But [Sta,; , Example 3.4]
implies easily that this stronger conjecture is false.

Note. As mentioned after the proof of Theorem 4.6, some results in [G-Z-K] are
connected with our Example 7.13. In particular, their definition of the “Newton
number” of an L-triangulation of an L-simplex is equivalent in our notation to
¢j(1) . Thus their definition of “thin” triangulation is equivalent to the condition
¢i(1) = 0, or equivalently, since c;(x) has nonnegative coefficients, to the
condition ¢;(x) =0.

8. DUAL POSETS AND DUAL KERNELS

In this section we investigate the relation between P-kernels and P”-kernels,
where P* denotes the dual poset to P [Sta,, , Chapter 3.2]. As an application,
we give a simple proof of a conjecture of Kalai which was later proved by Kalai
and independently by Klapper.

Let P be a locally graded poset with dual P*. If f € I(P), then define
fTeI(P) by fi=f, forall s <t in P. One easily checks that (fg)* =
g"f",and that f € I'(P) if and only if f* € I'(P*), and that then ()" = /*.
Moreover, if f is invertible then (f~')* = (f*)™'. In particular, fx = fif
and only if (f~")*(x™")* = (f~")*. Thus x is a P-kernel if and only if ¥* is
a P*-kernel, since k =k .

8.1. Proposition. Let P be lower graded and x a P-kernel. Then
(P, &) = (P, k)"

Proof. Write y = y(P, k). Thus yx = 7. Applying ~! and * (and using
k™' = ) yields (y7')'%" = (y~')*. Hence (1" is ®"-totally acceptable.
Clearly (y_l):', =1 forall t e P*.

It remains to show

(40) deg(y ™)L < LL(p"(2, 5) - 1))

forall 1 <s in P*, where p* denotes the rank function of P*. The proof is

by induction on p*(¢, s). When p*(¢, s) = 1 we have (y_l)ts = =¥, SO the
assertion is true in that case. Now assume p*(z, s) > 1. We have

-1
(41) 0= VVu -

s<u<t
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For s < u <t it follows by induction that

deg 7 < L3(p(s, 1) = 1)) + [4(p(u, 1) - 1))
< Lz(p(s, 1) = 1)].

For u =1t we get

-1
degy,y, =degy, < |i(p(s,t)-1)].

Hence from (41) the remaining term yssys_tl =y-" also must satisfy degy,, <

st
L3(p(s, ) — 1)], so the claim is proved.
We have shown that (y_l)* satisfies all the conditions which characterize
y(P*, %), so we must have (y~')* = y(P*, k"), as desired. 0O

8.2. Lemma. Let P be locally graded, and let k be a P-kernel. For f € I(P)
and a € K* define f, € I(P) by

(42) (f,), =" f..

Then «k, is a P-kernel, and y(P,x,)=y(P,k),.
Proof. Straightforward. O

8.3. Corollary. Let P be locally Eulerian, and let A* denote the kernel A for
the poset P*;i.e

)= -1 = (x - 1)’ =4 (x),

forall s<tin P. Let y=y(P,A) and y* =y(P",A"). Then forall s<t in
P;

=D ),
Proof. Note that 4 = A_,, in the notation of (42). Now use Proposition 8.1
and Lemma 8.2. 0O

8.4. Corollary. Let T" be a formal subdivision of the Eulerian poset P. Then
p(T, %) = Y h(T,, x)(-1)" Dyt (x).
teP
Proof. Immediate from Corollary 8.3 and (32). O
Corollary 8.3 may be regarded as giving the relation between the A-vector of
the Eulerian poset P (as defined in Example 7.2) and of its dual P*. As is well
known, one cannot be computed solely in terms of the other (i.e., y,;(x) does

not determine y{o(x)). But Corollary 8.3 shows that knowing y (x) for every
s <t in P then determines y,,(x) for every t<s in P".

8.5. Corollary. Let P be Eulerian of rank d and P — {1} simplicial; i.e., the
interval [0, t] is a boolean algebra for all t <1 in P. If #P > 1, then

(43) 71(x) + 3 (-1 "9} (x) = 0.

t<i
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Proof. By Corollary 8.3,
d *
> 70Dy (x) = 0

tep

Since P — {1} is simplicial, we have Yo:(X) =1 forall ¢ < 1. Since trivially
7ij(x) = 1, the proof follows. O

Corollary 8.5 yields a recursive method for computing the A-vector of an Eu-
lerian poset P* for which P* —{0"} is simple (the dual of simplicial). Although
one can in fact compute y;4(x) = A(P", x) just in terms of %i(x) = h(P, x)
when P — {1} is simplicial (as follows from [Ba1 , Proposition 6.1]), and thus
not requiring knowledge of each y; t( ) for ¢ >0, Corollary 8.5 has the virtues
that (a) it is completely explicit, unlike what follows directly from [Ba,], (b) it
is simpler than the original recursive definition of y, and (c) it is sometimes
more convenient for applications. To illustrate this last point, we will obtain
a generating function for the A-vector of the face lattice of the d-cube which
was overlooked in our earlier work [ Sta, , Proposition 2.6] on this topic. Let
74(x) = h(P;, x), where P, is the face lattice of the d-cross-polytope (or d-
octahedron) K. Since the h-polynomial of the boundary 6K, of K, is well

known to be A(P, — {1}, x) = (1+ x)?, we in fact have

o= S [(0)- (4]

(where (%) =0). Let y;(x) = h(P;, x), where P; is the dual of P, , i.e., the
face lattice of the d-cube. In the notation of [ Sta,,, Proposition 2. 6] we have
va(x) =8(L,, x).

8.6. Proposition. We have

(44) Zl’d(X)y _ 2yz( 1)? yd(x)y .

d>0 d>0

Proof. Apply (43) to P = P,. Since the d-cube has 2d_i(‘f ) i-faces (which are
i-cubes), we get

y,(x) + Z )2 )yf(x) =

By standard generating functlon arguments this is equivalent to (44). O

To conclude this section, we give a simple, conceptual proof of a gener-
alization of a conjecture of G. Kalai. The original conjecture of Kalai was
proved independently by Kalai (unpublished) and A. Klapper (see [Ba, , §7;
B-K, Corollary to Theorem 8]) and is restated here as Corollary 8.8.

8.7. Proposition. Let P be lower graded and x a P-kernel. Let y = y(P, k) €
I(P) and 5 = y(P",K"). Fix s <t suchthat p(s, t) = 2e + 1 (an odd integer).



SUBDIVISIONS AND LOCAL A-VECTORS 847

Let

Ya(X)=ag+ax+-+a,x’,
~ * * * e
Ye(X)=ay+ax+---+a,x.

*
Then a,=-a,.

Proof. By Proposition 8.1, we have

(45) Z ()

s<u<t

If s<u<t,then

degy,, 7y, < L3(p(s, w) = DI + [3(p(u, ) - )] <ee,

since p(s, ) is odd. Taking the coefficient of x° in (45) yields a, + a,=0,
as desired. O

8.8. Corollary (Kalai, Klapper). Let P be an Eulerian poset of odd rank 2e +
1, and let y and y* be as in Corollary 8.3. Let

h(P, x) = y5i(x)=hy+hx+ - +hx°,
h(P", x) = y{s(x) = hy + hjx + -+ h,x".
Then h,=h .
Proof. Using the notation of Proposition 8.7 with s = 0 and ¢ = 1, we have

a, = h, and, by Corollary 8.3, 7; = (—l)p(o’i)ygi. Thus a, = (—l)p(o’i)h: .
Now use Proposition 8.7 and the fact that p(0, 1) is odd. O

9. ON A ¢-ANALOGUE OF EULERIAN POSETS

In this section we briefly discuss the possibility of developing a “ g-analogue”
of the theory of subdivisions of a simplex, or more generally, of formal subdi-
visions of an Eulerian poset. We discuss two natural g-analogues of Eulerian
posets and show (Proposition 9.1) that they coincide. Unfortunately Proposi-
tion 9.1 also shows that these “ g-Eulerian posets” are not nearly as prevalent
as ordinary Eulerian posets. We do, however, have a (well-known) natural
g-analogue B,(q) of the boolean algebra B, , but we have been unable to con-
struct a satisfactory theory of formal subdivisions of B,(q).

First consider the kernel 4 ,(x) = (x — 1)? ¢>% on an Eulerian poset P. The
“natural” g-analogue is given by

(46) Z;I[(x)=(x_1)(x_q),_,(x_qp(s,t)—|).

The g-analogue of the boolean algebra B, is the lattice B,(q) of subspaces
of a d-dimensional vector space over the finite field F p (see [ Sta,, , Example

3.10.2])). B,(q) is locally q-Eulerian (or even g-Eulerian, since it has a 0 and
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1), in the sense that for all s < ¢ in B,(q),

(47) = (-1)"q?,

where m = p(s, t) (see [ Sta;, , Example 3.10.2]). Note that 1%(x) is a B,(q)-
kernel, since the g-binomial theorem [Sta,, , Exercise 3.45] and the formula
(47) imply that

(48) M =ul inI(B,()).

(See Example 6.8.) The next result shows that the two notions of locally g-
Eulerian given by equations (46) and (47) are equivalent, but that unfortunately
g-Eulerian posets are much less prevalent than Eulerian posets.

9.1. Proposition. Let g > 2 be an integer, and let P be a locally graded poset.
The following three conditions are equivalent:

(a) A%(x) (as defined by (46)) is a P-kernel.

(d) u, = (=1)"q'?) forall s<t in P, where m = p(s,t).

(c) Forall s <t in P with p(s,t) = m, the number of elements u € [s, t]
with p(s, u) = i is equal to the g-binomial coefficient (") . (See e.g. [Sta,,,
p. 26] for the definition of (7) .)

Proof. (a) = (c) Fix an interval [s, ¢] of length m . Let N; be the number of
u € [s, t] satisfying p(s, u) =i. Let

n(x)=(x-D(x-q)-(x-¢"") - (1-x)1-gx)---(1-g""

Assume A/(x) isa P-kernel. Thus by Theorem 6.5 we have A° = (1%)”!, which
is equivalent to

1x).

(49) Y Nm(x) =,
i=0

We have N, = 1. Set x = g in (49). We obtain a linear equation in the vari-
ables N, and N, , for which the coefficient of N, is nonzero, so N, is uniquely

determined. Now set x = q2 in (49). We obtain a linear equation in N;, N,,
and N,, for which the coefficient of N, is nonzero, so N, is uniquely deter-
mined. Continuing, we see that (49) uniquely determines Ny Ny, ..., N, _,
(and of course N, = 1). On the other hand, we know from (48) that 17(x) is
a kernel for B,(q) (where we choose d > m), so N; must be the number of
elements of rank / in an interval of length m in B,(q). But this number is
just (7) , proving (c).

(c) = (b) Since u,, = (—l)mq(';) for B,(q), we have (by the defining recur-
rence [ Sta;, , Chapter 3.7, (14)] for u) that

(50) fo (7)1a® =4,

But assuming (c), equation (50) implies that in fact u, = (—l)mq(’;) for P.
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(b) = (a) For any locally graded P, we have by Proposition 6.3 (or Example
6.8) that u{ isa P-kernel. But if (b) holds then by the g-binomial theorem
[Sta,, , Exercise 3.45] we have u{ =17. O

It is natural to ask for a complete description of all posets P satisfying the
conditions of Proposition 9.1. For p(P) <2 (where p(P) denotes the rank of
P) there is clearly a unique P (up to isomorphism) for each g > 2. For p(P) =
3, P is essentially a regular bipartite graph of degree g + 1 with 2(q2 +q+1)
vertices. Such graphs are clearly very numerous and have no special structure.
For p(P) > 4 we suspect the posets P are also quite numerous, though at
the other extreme it is conceivable that for p(P) sufficiently large (possibly
p(P) > 4) P must be isomorphic to B,(q) (so in particular ¢ is a prime
power). As pointed out by M. Haiman, this unlikely result would yield an
extremely simple axiomatization of finite projective spaces (of sufficiently large
dimension).

Since B,(q) is a good g-analogue of B,, we can ask whether the theory
of subdivisions of B, (i.e., of the simplex 2" with #V = d) can be given a
satisfactory g-analogue. The most obvious approach would be to extend the
definition of formal subdivision of an Eulerian poset (Definition 7.4) to the
poset B,(q). But, as discussed after the proof of Theorem 7.5, we do not see
how to do so because the kernel A’ fails to satisfy A7 A7 =27 for s<u<zt.
A. Zelevinsky has suggested that one might need to change the incidence algebra
I(B,) into a “ g-incidence algebra” I ,(B,(q)) , rather than an ordinary incidence
algebra I(B,(q)).
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ABSTRACT. In PartI a general theory of f-vectors of simplicial subdivisions (or
triangulations) of simplicial complexes is developed, based on the concept of lo-
cal h-vector. As an application, we prove that the A-vector of a Cohen-Macaulay
complex increases under “quasi-geometric” subdivision, thus establishing a spe-
cial case of a conjecture of Kalai and this author. Techniques include com-
mutative algebra, homological algebra, and the intersection homology of toric
varieties. In Part II we extend the work of Part I to more general situations.
First a formal generalization of subdivision is given based on incidence alge-
bras. Speciai cases are then developed, in particular one based on subdivisions
of Eulerian posets and involving generalized h-vectors. Other cases deal with
Kazhdan-Lusztig polynomials, Ehrhart polynomials, and a g-analogue of Eule-
rian posets. Many applications and examples are given throughout.
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