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Let X be a graph with vertices pi,..., x,. Let Xi be the graph obtained by remov- 
ing all edges {x,, x,} of X and inserting all nonedges {x,, xk}. I f  n f 0 (mod 4), 
then X can be uniquely reconstructed from the unlabeled graphs X, ,..., X,,. I f  n = 4 
the result is false, while for n =4m > 8 the result remains open. The proof uses 
linear algebra and does not explicitly describe the reconstructed graph X. Q 1985 

Academic Press, Inc. 

1. INTR~OUCTION 

Let X be a graph (with no loops or multiple edges) on the vertex set 
IX ,7..., x,}. The well-known Kelly-Ulam vertex-reconstruction conjecture 
(see [l] for a survey up to 1977) asks whether X can be uniquely 
reconstructed from its unlabeled vertex-deleted subgraphs when n # 2. Here 
we consider a variation of this problem where vertex-deletion is replaced by 
vertex-switching. More precisely, let Xi be the graph obtained from X by 
switching at vertex xi [6, 71, i.e., by deleting all edges of X incident to xi 
and inserting all possible edges incident to xi which are not in X. 

VERTEX-SWITCHING RECONSTRUCTION PROBLEM. Can X be uniquely 
reconstructed from the unlabeled graphs X, ,..., X,? In other words, if X’ is 
another graph on the same vertex set and if X,2X; for 1 d i< n, then is 
XZ X’? 

1.1. EXAMPLE. Let X= 4K,, the totally disconnected graph on four ver- 
tices, and let A” = C,, a cycle of length 4. Then for any i, Xi and Xi are 
isomorphic to the star (or claw) K,,,. Hence the vertex-switching 
reconstruction problem has a negative answer in general. 
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We shall show, however, that the answer is affirmative when n & 0 
(mod 4). It remains open for n = 4m > 8. The proof uses a technique from 
linear algebra introduced in [S] to give an alternative proof of a result of 
Lovasz [3,4, Sect. 15.17a] on the edge-reconstruction conjecture. 

2. FOURIER TRANSFORMS AND INVERTIBLE LINEAR TRANSFORMATIONS 

Let Zl; denote the additive group of k-tuples of integers modulo 2. If 
f: Z$ + R is a real-valued function, then the Fourier transform off is the 
function f: .Zi + R defined by 

Here X. Y denotes the dot product, taken modulo 2. Given a nonempty 
subset TC Zi, also define f: Zt + R by 

f(Y) = c f(X), (1) 
XEI-f Y  

where f + Y= {Z+ Y: ZEN). Let xr: Z, k -+ R denote the characteristic 
function of r, so 

f,(X)= 1 (-1)““. 
YEr 

(2) 

The following lemma is easily verified (e.g., [2, Lemma 11.) 

2.1. LEMMA. The linear transformation f Hf (defined on the vector space 
of all functions f: Zt -+ R) is invertible if and only if f,( X) # 0 for all X E Hi. 

Now fix n z 1. Let ~9~ denote the set of all graphs on the vertex set 
{x1 ,..., x,}, and let 9’; denote the real vector space of all formal linear com- 
binations CXG 9n axX, axE R. (Any field of characteristic 0 will do in place 

of R.) Thus dim 9$=2(z). Define a linear transformation 4: “yj, -+ Vn by 

&X)=X, + ... +x,, (3) 

where X, ,..., X, are the labeled vertex-switched graphs defined above. We 
come to our main lemma. 

2.2. LEMMA. The linear transformation C$ is invertible if and only if n & 0 
(mod 4). 

Proof: Identify 9n with L$F) ’ m the obvious way, viz., order the (;) pairs 
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e,, e,,..., e n 
(2) 

of distinct vertices and let XE 4 correspond to the charac- 

teristic vector of its edge set. For 1 < i < n, let Ci E 4 = 2,2 (“) be the star 

K,.,- i with center xi (so as an element of $), Ci is the characteristic vec- 
tor of the set of pairs of vertices which contain xi). Set f = (Ci,..., C,}. 

Identifyfe VY with the functionf: Zi;) + R given by f = xx f(X)X. In par- 
ticular, x~= C, + . . . + C,. Then &” = j: the transform off based on trans- 
lates of Z as defined in ( 1). Hence by Lemma 2.1, q5 if invertible if and only 
if 

f,(X)= 1 (-l)““#O forallXEZi;)=?&. 
YEI- 

If Y = Ci E Z, then ( - 1)“’ ’ = ( - 1 )h, where di is the degree of the vertex 
xi of X. Therefore f,(X) = ( - l)d’ + . . . + ( - 1 )“n. If n is odd, then fr(X) is 
odd and hence nonzero. If n ~2 (mod 4), then f,(X) z 2 (mod 4) since 

d, + . . . + d, is even, so again 2,(X) # 0. If n - 0 (mod 4) then one can 
easily construct an X for which ( - 1)“’ + . . . + ( - l)dn = 0, e.g., take X to 
be a disjoint union of n/4 edges and n/2 vertices. From this the proof 
follows. 1 

Let us remark (as pointed out by J. Kahn) that it is very easy to show 
directly that 4 is invertible when n is odd. Namely, one easily sees that 
&’ = nZ (mod 2), where t denotes transpose with the respect to the basis $ 
of U,, and Z denotes the identity transformation. 

3. UNLABELING 

The symmetric group 6, of all permutations of (x1,..., x,} acts on 9,, by 
permuting vertices, and hence acts on Vn by w. za,X= Ca,(w . X). Given 
fe K;,, define [f] E ^y;, by 

VI= 1 w.f: 
WEG, 

The map f + [f ] is a linear transformation on “y^,. If X E %n then one can 
regard [X] as the unlubeling of X, and we clearly have 

[X] = [x’]ox~x’. (4) 

We now come to the main result of this paper. 

3.1. THEOREM. Let n f 0 (mod 4). Suppose X, X’ E $ and Xi% X; for 
1 <<in. Then X=X’. 
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Proof: Let 4: Vn -+ Vn be given by (3). For any XE ‘$‘,, WE G,, and 
1 <i<n, we have (~J.X)~=W.X,.-~~~). It follows that 

4CXl=C i tw.mi 
w i=l 

= 1 w. i Xi 
i= I 

= ;cx,. 

(since w  permutes the vertices) 

Now suppose that A’, X’ E 5$ and that Xir X’; for 1 G i < n. Thus 

= [X, + . . . + X,] 

= [Xl] + ... + [X,] 

= [A-,‘] + ... + [F,] (by (4)) 

= Qt[X]. 

When n f 0 (mod 4) then by Lemma 2.2 we get [X] = [X’]. Thus XrX 
by (4) as desired. 1 

Let us make two remarks concerning the case n - 0 (mod 4). 

(a) Every edge of X will appear in n - 2 of the switches X, ,..., X,,, 
while every nonedge of X will appear as an edge in two of A’, ,..., X,. Hence 
if X has q edges then the total number of edges in Xi,..., A’, is given by 

Thus q can be reconstructed when n # 4. Moreover, if vertex xi has degree 
di, then Xi has q + n - 1 - 2di edges, so that the degree sequence of X can 
be reconstructed when n # 4. Thus Example 1.1 is rather special, since 4K, 
and C4 have a different number of edges. 

(b) Example 1.1 also has the remarkable property that there is a per- 
mutation w  of (1,2, 3,4} for which the labeled graphs Xi and x:(i) are 
identical, for 1 < id 4. Such a phenomenon cannot hapen when n # 4, 
because if e = (xi, xi} is an edge of X then it appears in exactly n - 2 of the 
labeled graphs X1 ,..., X,,, while if e is a nonedge then it appears in two of 
x 1 ,-.*, X,,. Hence when n - 2 # 2 it can be determined which pairs e are 
edges of X. 
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4. VARIATIONS 

Many variations of Theorem 3.1 can be established using essentially the 
same proof. We state one such result here, leaving the reader to verify that 
the proof carries over from before. 

Let 1 < i< n - 1, and let K denote the set of i-element subsets of 

i :‘.- 

n}, so T has (7) elements. Given a graph XE 9, and a subset T of 
9.e.9 n}, let X, denote the graph obtained by switching successively at all 

vertices xi for in T. (X, is independent of the order in which the switches 
are applied.) Define a linear transformation 4i: Vn + ;v^, by 

d;(X) = c XT. (5) 
TEF, 

4.1. THEOREM. Let X, X’E~,,, and suppose there is a permutation w: 
z+% for which X,E:XL., for all TEE. (Here if T= (al,...,ai} then 
w. T= (w . a,,..., w. ai}.) Zf di is invertible, then Xg X’. 

The invertibility of #i can (in principle) be checked as in the proof of 
Lemma 2.2. In particular, define the Krawtchouk polynomial (see [S, 
P. 1301) 

p;(Y)= i (-1)’ ; 11; . 
/=O O( 1 

We then have the following result: 

4.2. THEOREM. Fix 1~ id n - 1. Then the linear transformation ii is 
invertible if and only if the Krawtchouk polynomial p:(v) has no even integer 
zeros v in the interval [0, n]. 

Proof. Arguing as in the proof of Lemma 2.2, we see that 4; is invertible 
if and only if for all XE 9,, we have 

C(- 1pr +%#o, (6) 

where the sum ranges over all sequences 1~ j, < *. . < ji d n and dj is the 
degree of vertex xi of X. The sum on the left-hand side of (6) is just the 
coefficient of xnPi in the polynomial &Y,(x+( - 1)4)=(1 -x)“(l +x)~-“, 
where X has v vertices of odd degree. This coefficient is just p;(v). Clearly v 
is even and 0 d v < n. Since by suitable choice of X we can let v achieve any 
even value in CO, n], the proof follows. 1 

4.3. EXAMPLE. It is convenient to set u= n -2v, so u= n (mod 4) and 
-n<udn. 
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(a) p;(u) = n - 2u = U. Hence $i is invertible if and only if n f 0 
(mod 4). Of course this is just Lemma 2.2. 

(b) P;(U) = t(u’ -n), so & is invertible if and only if n is not the 
square of an integer - 0,l (mod 4). 

(c) p;(u) =&a(~‘- 3n + 2), so b3 is invertible if and only if n f 0 
(mod 4) and 3n - 2 is not the square of an integer = 1,2 (mod 4). 

Note. For any f: Z; + R, define f: i2; + 58 by 

where r consists of all vectors in Z; of Hamming weight (number of l’s) 
equal to i. In [2, Ex. 2.31 it is shown that the linear transformation f ~+@;f 
is invertible if and only if pi(u) has no integer zeros in [0, n]. In fact, it can 
be proved directly that if rl/i is invertible then 4i (as defined by (5)) is also 
invertible. We omit the details. 

5. OPEN PROBLEMS 

Two problems obviously suggest themselves at this point: 

(a) Is Theorem 3.1 true when n = 4m 2 8? 

(b) Is there a proof of Theorem 3.1 which explicitly describes the 
reconstructed graph X? 

A solution of sorts to (b) is due to N. Alon and D. Coppersmith. Aion 
has pointed out that when n is odd, if we look at the n* graphs obtained by 
switching X, ,..., X, at each of their vertices separately, then X is the only 
(unlabeled) graph that occurs an odd number of times. Coppersmith has 
found a similar but more complicated argument for the case n = 2 (mod 4). 
There are related questions involving computational complexity. For 
instance, is there a polynomial-time algorithm for obtaining X from 
X, ,..., X,, assuming that X can be uniquely reconstructed? 
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