Relative Invariants of Finite Groups Generated by Pseudoreflections

RICHARD P. STANLEY*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Communicated by D. Buchsbaum

Received November 15, 1976

1. INTRODUCTION

Let V be an m-dimensional vector space over the complex numbers \mathbb{C} . Fix a basis $x_1, ..., x_m$ for V, and identify the polynomial ring $R = \mathbb{C}[x_1, ..., x_m]$ with the symmetric algebra of V in the obvious way. If $A \in GL(V)$ (the group of invertible linear transformations $V \to V$), then A extends to a \mathbb{C} -automorphism of R by $(Af)(x_1, ..., x_m) = f(Ax_1, ..., Ax_m)$, where $f \in R$. Suppose G is any subgroup of GL(V). Denote by R^G the ring of invariants of G acting on R, i.e.,

$$R^G = \{ f \in R \mid Af = f \text{ for all } A \in G \}.$$

More generally, if χ is any linear character of G, then let R_{χ}^{G} denote the set of invariants relative to χ , i.e.,

$$R_{\chi}^{G} = \{ f \in R \mid Af = \chi(A)f \text{ for all } A \in G \}.$$

Elements of $R_x^{\ G}$ are sometimes known as *relative invariants*, *semiinvariants*, or *x-invariants*. Clearly $R_x^{\ G}$ is a module over the ring R^G .

If G is finite, then it is easily seen [2, Sect. 262] that R^G contains m, but not m + 1, elements which are algebraically independent over \mathbb{C} . Equivalently, R^G has Krull dimension m. It is natural to ask when in fact we can find m such invariants which generate all of R^G as a \mathbb{C} -algebra, i.e., when $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$ for some $\theta_1, ..., \theta_m \in R$. The answer to this question is associated with the names of Coxeter, Shephard and Todd, Chevalley, and Serre. For an exposition, see [1, Chap. 5, Sect. 5.2] or [4]. To state the result, recall that an element A of GL(V) is a *pseudoreflection* if 1 - A has rank one. Thus if $A \in GL(V)$ has finite multiplicative order, then A is a pseudoreflection if and only if it has exactly one eigenvalue ρ not equal to one. In this case $\rho = \det A$.

* Supported in part by Bell Telephone Laboratories and by NSF Grant MCS 7308445-A04. 1.1. THEOREM. Let G be a finite subgroup of GL(V). Then $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$ for some $\theta_1, ..., \theta_m \in R$ if and only if G is generated by pseudo-reflections. (A classification of all such groups appears in [7].)

Henceforth we shall call a finite subgroup of GL(V) generated by pseudoreflections an f.g.g.r. Our object will be to describe the modules R_x^G of relative invariants of an f.g.g.r. G. As a consequence, we will obtain a fairly explicit description of the rings R^H , where H is a normal subgroup of an f.g.g.r. G such that G/H is Abelian. In particular, when $H = G \cap SL(V)$, we obtain a necessary and sufficient condition for R^H to be a complete intersection.

A fundamental tool in our work will be a result of Molien. If G is any subgroup of GL(V), then R^G has the structure of a graded ring, viz., $R^G = R_0^G + R_1^G + \cdots$, where R_n^G is the space of all homogeneous polynomials in R^G of degree *n*. More generally, each R_x^G has in the same way the structure of a graded R^G -module, written $R_x^G = (R_x^G)_0 + (R_x^G)_1 + \cdots$. Define the *Molien series* $F_x(G, \lambda)$ to be the formal power series

$$F_{\mathsf{x}}(G,\lambda) = \sum_{n=0}^{\infty} (\dim_{\mathbb{C}}(R_{\mathsf{x}}^{-G})_n) \lambda^n,$$

where λ is an indeterminate. If χ is the trivial character, so that $R_{\chi}^{G} = R^{G}$, then we write $F(G, \lambda)$ for $F_{\chi}(G, \lambda)$.

1.2. THEOREM ([6]; see also [2, Sect. 227] and [1, Chap. V, Sect. 5.3, Lemme 3]). If G is a finite subgroup of GL(V) and χ is a linear character of G, then

$$F_{\chi}(G,\lambda) = \frac{1}{\mid G \mid} \sum_{A \in G} \frac{\chi(A)^{-1}}{\det(1 - \lambda A)}$$

If G is an f.g.g.r., then by Theorem 1.1 we have $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$, for some $\theta_1, ..., \theta_m \in R$, which can be chosen to be homogeneous, say with deg $\theta_i = d_i$. It is clear from the definition of $F(G, \lambda)$ that then

$$F(G,\lambda) = 1/(1-\lambda^{d_1})(1-\lambda^{d_2})\cdots(1-\lambda^{d_m}).$$
 (1)

It is well known and easy to deduce from Theorem 1.2 and (1) that

$$d_1 d_2 \cdots d_m = |G|, \qquad (2)$$

$$(d_1 - 1) + (d_2 - 1) + \dots + (d_m - 1) = r,$$
 (3)

where r denotes the number of pseudoreflections in G.

RICHARD P. STANLEY

2. Free Modules of Relative Invariants

For the remainder of this paper we adopt the following terminology. G denotes a finite subgroup of GL(V) (where V is as in the previous section), and χ denotes a linear character of G. A hyperplane $H \subset V$ is called a *reflecting hyperplane* if some nonidentity element A of G fixes H pointwise. It follows that A is a pseudoreflection, and conversely any pseudoreflection A fixes a unique reflecting hyperplane. Let H_1 , H_2 ,..., H_{ν} denote the (distinct) reflecting hyperplanes associated with G. The set of all elements of G fixing H_i pointwise forms a cyclic subgroup C_i generated by a pseudoreflection. Let c_i denote the order of C_i , and let P_i be some fixed generator of C_i . Let $L_i = L_i(x_1, ..., x_m)$ be the linear form defining H_i , i.e., $H_i = \{\alpha \in V \mid L_i(\alpha) = 0\}$. Thus $L_i \in R_1$, the first homogeneous part of R. For $1 \leq i \leq \nu$, define integers $s_i = s_i(\chi)$ by the condition that s_i is the least nonnegative integer satisfying $\chi(P_i) = (\det P_i)^{s_i}$. (Clearly s_i depends only on C_i , not on P_i .) Finally define $f_x \in R$ by $f_x = \prod_{i=1}^{\nu} L_i^{s_i}$. Thus f_x is homogeneous of degree $s_1 + s_2 + \cdots + s_{\nu}$.

2.1. LEMMA. Let G be a finite subgroup of GL(V) and χ a linear character of G. Suppose R_x^G is a free R^G -module of rank one, so that $R_x^G = g_x \cdot R^G$ for some homogeneous $g_x \in R$ (uniquely determined up to multiplication by a nonzero scalar). Then deg $g_x = s_1(\chi) + s_2(\chi) + \cdots + s_v(\chi)$.

Proof. Let $d = \deg g_x$. It follows from Theorem 1.2 that

$$\sum_{A \in G} \frac{\chi(A)^{-1}}{\det(1 - \lambda A)} = \lambda^d \sum_{A \in G} \frac{1}{\det(1 - \lambda A)}.$$
(4)

Multiply by $(1 - \lambda)^m$ and expand both sides in a Taylor series about $\lambda = 1$. The left-hand side of (4) is given by

$$1 + (1 - \lambda) \sum_{P} \frac{\chi(P)^{-1}}{1 - \rho} + O((1 - \lambda)^2),$$

where P ranges over all pseudoreflections in G and where $\rho = \det P$. The right-hand side of (4) becomes

$$1+(1-\lambda)\left(-d+\sum_{p}\frac{1}{1-\rho}\right)+O((1-\lambda)^2).$$

It follows that

$$d = \sum_{p} \frac{1 - \chi(P)^{-1}}{1 - \rho}.$$
 (5)

If we remove the identity element from each of the cyclic groups C_i defined above, we obtain a partition of the pseudoreflections of G. Hence we may rewrite (5) as

$$d = \sum_{i=1}^{\nu} \sum_{P} \frac{1 - \chi(P)^{-1}}{1 - \rho}, \qquad (6)$$

where for fixed *i*, *P* ranges over all pseudoreflections in C_i (i.e., over all elements of $C_i - \{1\}$). If we let *H* be the subgroup of $GL(1, \mathbb{C})$ generated by the primitive c_i th root of unity $\zeta = \det P_i$, and if we let ψ be the character of *H* defined by $\psi(\zeta) = \chi(P_i)$, then the sum over *P* in (6) has exactly the same form as the right-hand side of (5), with *G* replaced by *H* and with χ replaced by ψ . Thus by what we have just proved, the sum on *P* in (6) is equal to the least degree of a ψ -invariant of *H*. But the ψ -invariants of *H* can be obtained by inspection; if we regard *H* as acting on $T = \mathbb{C}[x]$, then $T_{\psi}^{H} = x^{t_i}\mathbb{C}[x^{c_i}]$, where $\psi(\zeta) = \zeta^{t_i}$, $0 \leq t_i < c_i$. Thus the sum on *P* in (6) is equal to t_i . But since $\psi(\zeta) = \chi(P_i)$ and $\zeta - \det P_i$, we see that $t_i = s_i$, as defined above. The proof follows from (6).

We remark that the above proof is reminiscent of an argument of Solomon [10, p. 279]. Other applications of Molien's theorem to invariant theory appear for instance in [1, 7, 8].

2.2. LEMMA. Let G be any finite subgroup of GL(V), and let χ be a linear character of G. If $f \in R_{\chi}^{G}$, then f is divisible by $\prod_{i=1}^{\nu} L_{i}^{s_{i}(\chi)}$.

Proof. Given i satisfying $1 \le i \le \nu$, choose a new basis $y_1, ..., y_m$ for V so that $y_1 = L_i$ and $y_2, ..., y_m$ spans H_i . With respect to this basis the matrix of P_i has the form

$$P_{i} = \begin{bmatrix} \rho & & & \\ 1 & & \\ & 1 & \\ & & 1 \\ & & \ddots \\ & & \ddots \\ & & & 1 \end{bmatrix}.$$

Thus if $f(y_1, ..., y_m) \in R_x^G$, then $f(\rho y_1, y_2, ..., y_m) = \rho^{s_i} f(y_1, y_2, ..., y_m)$. It follows that f must be divisible by $y_1^{s_i}$. Hence in terms of the x_i 's, $f(x_1, ..., x_m)$ is divisible by $L_i^{s_i}$.

The above proof is analogous to an argument of Steinberg [13]. Combining Lemmas 2.1 and 2.2, we obtain the following result. 2.3. THEOREM. Let G be a finite subgroup of GL(V) and let χ be a linear character of G. The following two conditions are equivalent.

- (i) R_x^G is a free R^G -module of rank one.
- (ii) $f_{\chi} = \prod_{i=1}^{\nu} L_i^{s_i(\chi)}$ is a χ -invariant.

If (i) and (ii) hold then in fact $R_x^G = f_x \cdot R^G$.

Proof. Assume (i). By Lemma 2.2, any χ -invariant f is divisible by f_{χ} . By Lemma 2.1, there exists a χ -invariant of degree $\sum s_i(\chi)$. It follows that f_{χ} is a χ -invariant.

Assume (ii). By Lemma 2.2, any χ -invariant f is divisible by f_{χ} . Then $f/f_{\chi} \in \mathbb{R}^{G}$. It follows that $R_{\chi}{}^{G} = f_{\chi} \cdot \mathbb{R}^{G}$, so (i) holds.

Note that in the course of the proof we have established the assertion $R_x^{G} = f_x \cdot R^{G}$.

Problem. Classify all pairs (G, χ) satisfying the conditions of Theorem 2.3. In the next section we will apply Theorem 2.3 to groups generated by pseudo-

reflections. First we give an application of a different nature.

2.4. COROLLARY. Preserve the notation of this section. The following two conditions are equivalent.

(i) R^G is a Gorenstein ring.

(ii) Let χ be the character $\chi(A) = \det(A)^{-1}$. Then $L_1^{c_1-1}L_2^{c_2-1}\cdots L_{\nu}^{c_{\nu}-1}$ is a χ -invariant.

Remark. Some conditions for R^{G} to be Gorenstein appear in [14, 15]. These were extended to a necessary and sufficient condition (different from (ii) above) in [12], namely, R^{G} is Gorenstein if and only if the following identity holds in the field $\mathbb{C}(\lambda)$, λ an indeterminate:

$$\lambda^{r} \sum_{A \in G} \frac{1}{\det(1 - \lambda A)} = \sum_{A \in G} \frac{\det A}{\det(1 - \lambda A)},$$

where r is the number of pseudoreflections in G.

Proof of Corollary 2.4. Hochster and Eagon [5, Prop. 13] (and others) have shown that R^G is a Cohen-Macaulay ring. It follows from work of Watanabe [15] (a direct proof was shown to me by Eisenbud) that if G is any finite subgroup of GL(V), then R_{χ}^{G} is the canonical module of R^G (where $\chi = \det^{-1}$). Recall that a Cohen-Macaulay graded algebra S is Gorenstein if and only if the canonical module K_S is a free S-module of rank one. For the character $\chi = \det^{-1}$, it is clear that $s_i(\chi) = c_i - 1$. The proof now follows from Theorem 2.3.

RELATIVE INVARIANTS

3. RELATIVE INVARIANTS OF f.g.g.r.'s

Unless otherwise stated, for the remainder of this paper G denotes an f.g.g.r. and χ a linear character of G. Moreover, we assume that $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$, where θ_i is homogeneous of degree d_i . We now show that Theorem 2.3 is applicable to this situation.

3.1. THEOREM. Let $G \subset GL(V)$ be an f.g.g.r., and let χ be a linear character of G. Then the module R_x^G is a free R^G -module of rank one. Thus $R_x^G = f_x \cdot R^G$, where f_x is given explicitly by Theorem 2.3.

Proof. Chevalley [3, Thm. (B)] has shown that if G is finite and generated by reflections (i.e., pseudoreflections of determinant -1), and if F is the ideal of R generated by the homogeneous elements in R^G of positive degree, then the natural representation of G in R/F is equivalent to the regular representation. There is no difficulty in extending this result to f.g.g.r.'s. Since a linear representation of a finite group has multiplicity one in the regular representation, it follows immediately that R_x^G is a cyclic R^G -module. Since R_x^G is clearly torsionfree, it follows that R_x^G is free of rank one, as was to be proved.

An alternative proof of Theorem 3.1 can be given using the easily established result that if G is any finite subgroup of GL(V) and if χ is any linear character of G, then R_x^G is a Cohen-Macaulay R^G -module of Krull dimension m. The details are omitted. A result closely related to Theorem 3.1 appears in [11, Cor. 2.8].

Remarks. (1) Suppose we take χ to be the character defined by $\chi(A) = (\det A)^{-1}$. Then $s_i = c_i - 1$, so deg $f_{\chi} = \sum (c_i - 1) = r$, the number of pseudoreflections in G. The formula $f_{\chi} = \prod L_i^{c_i-1}$ is a known result (see [9, pp. 59-60]). We remark that an alternative expression for f_{χ} is known (e.g., [13, p. 616]), viz.,

 $f_x = \det J(\theta_1, ..., \theta_m),$

where $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$ and $J(\theta_1, ..., \theta_m) = (\partial \theta_i / \partial x_j)$, the Jacobian matrix of $\theta_1, ..., \theta_m$.

(2) Now take χ to be defined by $\chi(A) = \det A$. Then $s_i = 1$, so deg $f_{\chi} = \nu$, the number of reflecting hyperplanes, and $f_{\chi} = \prod L_i$. From (5) we get

$$\nu = \sum_{P} \frac{1 - \rho^{-1}}{1 - \rho} = -\sum_{P} \rho.$$

Note also the formula

$$\frac{r}{2} = \sum_{p} \frac{1}{1-p} = -\sum_{p} \frac{p}{1-p}$$

This is most easily seen from the fact that $[1/(1-\rho)] + [1/(1-\rho^{-1})] = 1$ since $|\rho| = 1$.

4. INVARIANTS OF CERTAIN SUBGROUPS OF f.g.g.r.'s

The results of the preceding section make it possible to give a fairly explicit description of the rings R^{H} , where H is a normal subgroup of an f.g.g.r. G such that G/H is Abelian. We require the following lemma.

4.1. LEMMA. Let G be any finite subgroup of GL(V) and let Γ be the group of all linear characters of G. (Thus $\Gamma \cong G|G'$, where G' is the commutator subgroup of G.) Let A be a subgroup of Γ , and let H be the normal subgroup of G defined by

$$H = \{A \in G \mid \chi(A) = 1 \text{ for all } \chi \in A\}.$$

(Thus by the character theory for Abelian groups, $G/H \simeq \Lambda$.) Then

$$R^{H} = \sum_{\chi \in A} R_{\chi}^{G}$$
 (vector space direct sum).

Proof. First note that the sum $\sum_{x \in A} R_x^G$ is indeed a direct sum, since linear representations are irreducible. Now let $R' = \sum_{x \in A} R_x^G$. If $A \in H$, $\chi \in A$, and $f \in R_x^G$, then $Af = \chi(A)f = f$, so $f \in R^H$. Thus $R' \subset R^H$. We prove the reverse inclusion by showing that R' and R^H have the same Hilbert function, i.e., the space R_n' of forms in R' of a given degree n has the same dimension as the space R_n^H of degree n. If $b_n = \dim R_n'$, then by Theorem 1.2 we have

$$\sum_{n=0}^{\infty} b_n \lambda^n = \sum_{\mathbf{x} \in G} \frac{1}{|G|} \sum_{A \in G} \frac{\chi(A)^{-1}}{\det(1 - \lambda A)}$$
$$= \frac{1}{|G|} \sum_{A \in G} \frac{1}{\det(1 - \lambda A)} \sum_{\mathbf{x} \in A} \chi(A)^{-1}.$$

Now for fixed $A \in G$ we have

$$\sum_{\mathbf{x}\in A} \chi(A)^{-1} = |A| \quad \text{if } A \in H$$
$$= 0 \quad \text{if } A \notin H.$$

Hence

$$\sum_{n=0}^{\infty} b_n \lambda^n = \frac{|A|}{|G|} \sum_{A \in H} \frac{1}{\det(1 - \lambda A)}$$
$$= F(H, \lambda),$$

by Theorem 1.2, since $G/H \cong \Lambda$ so $|\Lambda|/|G| = 1/|H|$. This completes the proof.

4.2. COROLLARY. In Lemma 4.1, let G be an f.g.g.r. Then

$$R^{H} = \sum_{x \in A} f_{x} \cdot R^{G},$$

where f_x is given by Theorem 2.3.

We have mentioned previously that R^G is a Cohen-Macaulay ring when G is a finite subgroup of GL(V). This is equivalent to the assertion that there exist m homogeneous elements $\theta_1, \theta_2, ..., \theta_m \in R^G$ which are algebraically independent over \mathbb{C} , such that R^G is a finitely generated free module over the polynomial ring $\mathbb{C}[\theta_1, ..., \theta_m]$. In other words, there exist $\eta_1, \eta_2, ..., \eta_t \in R^G$ (which may be chosen to be homogeneous) such that every $f \in R^G$ has a unique representation in the form $f = \sum_{i=1}^{t} \eta_i \cdot p_i(\theta_1, ..., \theta_m)$, where p_i is a polynomial in $\theta_1, ..., \theta_m$ with complex coefficients. When G is an f.g.g.r. and H is a subgroup of G containing G' (the commutator subgroup of G), then Corollary 4.2 gives an explicit description of $\theta_1, ..., \theta_m$ and $\eta_1, ..., \eta_t$ for the ring R^H . Namely, the θ_i 's are the polynomials guaranteed by Theorem 1.1 for which $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$, and the η_i 's are the f_x's, $\chi \in \Lambda$. Moreover, implicit in Corollary 4.2 is the following simple description of the quotient ring $Q = R^H/(\theta_1, ..., \theta_m)$.

4.3. COROLLARY. Let $G \subseteq GL(V)$ be an f.g.g.r., and let H be a normal subgroup of G for which G/H is Abelian. Let Λ be related to H as in Lemma 4.1, and let $R^G = \mathbb{C}[\theta_1, ..., \theta_m]$, where the θ_i 's are homogeneous and algebraically independent over \mathbb{C} . Then $\theta_1, ..., \theta_m$ is a system of parameters (and a regular sequence) for R^H . Let $Q = R^H/(\theta_1, ..., \theta_m)$. Then as a vector space over \mathbb{C} , Q has as a basis the (images of the) elements f_x , $\chi \in \Lambda$ (given explicitly by Theorem 2.3). After multiplying the f_x 's by suitable nonzero complex numbers, multiplication in Q is given by

$$f_x f_{\psi} = \begin{cases} f_{x\psi}, & \text{if } \deg f_{x\psi} = \deg f_x + \deg f_{\psi} \\ 0, & \text{otherwise.} \end{cases}$$
(7)

Proof. Only (7) needs to be proved. Now $f_x f_{\psi}$ is a $\chi \psi$ -invariant of G, so $f_x f_{\psi} = g f_{\chi \psi}$ for some $g \in \mathbb{R}^{G}$. If deg $f_{\chi} + \deg f_{\psi} = \deg f_{\chi \psi}$, then g is a nonzero scalar. Otherwise g belongs to the ideal $(\theta_1, ..., \theta_m)$ of \mathbb{R}^{G} , so it is zero in Q. Finally, it is easy to arrange that each scalar g is 0 or 1, e.g., by letting the coefficient of the lexicographically greatest nonzero term of f_{χ} be 1.

EXAMPLE. An explicit example will be given for the sake of clarity. Suppose G has five reflecting hyperplanes H_1 , H_2 , H_3 , H_4 , H_5 . Let C_j be the cyclic group fixing H_j , and let $c_j = |C_j|$. Suppose $(c_1, c_2, c_3, c_4, c_5) = (2, 3, 3, 4, 6)$. Let $\zeta = e^{2\pi i/12}$, and suppose we have chosen generators P_j of C_j so that det $P_1 = \zeta^6 = -1$, det $P_2 = \zeta^4$, det $P_3 = \zeta^4$, det $P_4 = \zeta^3$, det $P_5 = \zeta^2$. Suppose finally that ψ is a character of G satisfying $\psi^{12} = 1$, $\psi(P_1) = \zeta^6 = -1$, $\psi(P_2) = \zeta^6 = -1$, $\psi(P_2) = \zeta^6 = -1$, $\psi(P_3) = \zeta^6 = -1$.

 $\zeta^4, \psi(P_3) = \zeta^8, \psi(P_4) = \zeta^3, \psi(P_5) = \zeta^2$. Let $\Lambda = \{1, \psi, \psi^2, ..., \psi^{11}\}$. The following table of the numbers $s_i = s_i(\chi)$ (as defined at the beginning of Section 2), and from this the numbers deg $f_{\chi} = \sum s_i(\chi)$, is easily constructed for $\chi \in \Lambda$.

x	\$ ₁	\$ ₂	<i>s</i> ₃	<i>s</i> ₄	\$ ₅	$\deg f_x$
1	0	0	0	0	0	0
ψ	1	1	2	1	1	6
ψ^2	0	2	1	2	2	7
ψ^3	1	0	0	3	3	7
ψ^4	0	1	2	0	4	7
ψ^5	1	2	1	1	5	10
ψ^6	0	0	0	2	0	2
ψ^7	1	1	2	3	1	8
ψ^8	0	2	1	0	2	5
ψ^9	1	0	0	1	3	5
ψ^{10}	0	1	2	2	4	9
ψ^{11}	1	2	1	3	5	12

Hence Q as a vector space has a basis $1 = f_0, f_1, ..., f_{11}$ with $f_i f_j = 0$ except for the following relations (and the commutative law): $f_0 f_i = f_i$ for all $i, f_1 f_6 =$ $f_7, f_2 f_9 = f_{11}, f_3 f_8 = f_{11}, f_4 f_6 = f_{10}, f_5 f_6 = f_{11}, f_6 f_8 = f_2, f_6 f_9 = f_3,$ $f_8 f_9 = f_5$. Hence $Q \cong \mathbb{C}[f_1, f_4, f_6, f_8, f_9]/(f_1^2, f_4^2, f_6^2, f_8^2, f_9^2, f_1 f_4, f_1 f_8, f_1 f_9,$ $f_4 f_8, f_4 f_9)$.

5. A CLASS OF COMPLETE INTERSECTIONS

Let k be a field. Recall that a graded k-algebra S is a complete intersection if it is isomorphic to a quotient $R/(\phi_1,...,\phi_t)$, where $R = k[x_1,...,x_m]$ and $\phi_1,...,\phi_t$ is a (homogeneous) R-sequence. If one can take t = 1, then S is called a hypersurface. It is an open problem to determine all finite $G \subset GL(V)$ such that R^G is a complete intersection or a hypersurface. Using Corollary 4.3 we can give some cases where R^G is a complete intersection.

Let $G \subseteq GL(V)$ be an f.g.g.r., and let Λ be the cyclic group generated by the character ψ given by $\psi(\Lambda) = \det \Lambda$. In this case the subgroup H of Lemma 4.1 is given by $H = G \cap SL(V)$. We will determine an explicit condition for R^H to be a complete intersection. Our method can be extended to subgroups H of G containing G' other than $H = G \cap SL(V)$, but we will content ourselves here with the case $H = G \cap SL(V)$.

Let $H = G \cap SL(V)$ as above; and let $c_1, c_2, ..., c_r$ have the same meaning as in Section 2. Let $A = \{a_1, a_2, ..., a_t\}$ be the set of *distinct* c_i 's. Applying Corollary 4.3 to the case at hand (so that A is a cyclic group of order a = 1.c.m. $(a_1, a_2, ..., a_t)$ generated by the character $\psi = \det$), we see that the ring Q = Q(A) of Corollary 4.3 has the following structure. A C-basis for Q(A) can be taken to be all sequences

$$X_i = \langle \alpha_1, \alpha_2, ..., \alpha_i \rangle, \qquad 0 \leqslant i < a, \tag{8}$$

such that $\alpha_j \equiv i \pmod{a_j}$ and $0 \leq \alpha_j < a_j$ for all j. Multiplication in Q(A) is defined by

$$\langle \alpha_1, ..., \alpha_t \rangle \cdot \langle \beta_1, ..., \beta_t \rangle = \langle \alpha_1 + \beta_1, ..., \alpha_t + \beta_t \rangle, \text{ if } 0 \leqslant \alpha_j + \beta_j < a_j \text{ for all } j$$

$$= 0, \quad \text{otherwise.}$$

$$(9)$$

Now if S is a (graded) Noetherian k-algebra and $\phi_1, ..., \phi_m$ is a regular sequence, then S is a complete intersection if and only if $S/(\phi_1, ..., \phi_m)$ is a complete intersection. Hence \mathbb{R}^H is a complete intersection if and only if Q(A) is, so the question of whether or not \mathbb{R}^H is a complete intersection is completely determined by the set A. We say that A is a CI-set if \mathbb{R}^H (or Q(A)) is a complete intersection. Our problem is to characterize CI-sets.

In order to state our characterization, we require some additional terminology. Let π be a partition of some finite set A of positive integers. (A *partition* of a set A is a collection of nonvoid pairwise-disjoint subsets of A, called *blocks*, whose union is A.) We say that a partition σ of a set A' is an *elementary reduction* of π , written $\pi \to \sigma$, if σ can be obtained from π by one of the following two rules:

(ϵ_1) σ can be any refinement of π such that any two elements of A which are not relatively prime are in the same block of σ ;

(ϵ_2) if some integer $\delta > 1$ divides every element of some block B of σ ; then we may divide every element of B by δ and discard the integer 1 if it now appears.

If π has no elementary reductions, then it is called *irreducible*. If by a series of elementary reductions π can be transformed into a partition ω such that the elements of each block of ω are linearly ordered by divisibility, then we say that π is *completely reducible*. (It is evident that ω may now be further reduced to the null partition.) We identify a set A with the partition of A into one block, and therefore speak of A as being irreducible, completely reducible, etc.

For instance, suppose a, b, c, d, e are pairwise prime integers greater than one, and let $A = \{a, a^2, a^3, a^3b, ac, ac^3, d, de\}$. Then the following sequence of elementary reductions shows that A is completely reducible:

$$\begin{array}{l} A \to \{a, \, a^2, \, a^3, \, a^3b, \, ac, \, ac^3\}, \{d, \, de\} \\ \to \{a, \, a^2, \, a^2b, \, c, \, c^3\}, \{d, \, de\} \\ \to \{a, \, a^2, \, a^2b\}, \{c, \, c^3\}, \{d, \, de\}. \end{array}$$

We can now state the main result of this section.

5.1. THEOREM. Let A be a finite set of integers greater than one. The following two conditions are equivalent:

- (i) A is completely reducible,
- (ii) A is a CI-set.

Proof. (i) \Rightarrow (ii) We have noted that a completely reducible partition π can actually be transformed into the null partition by a sequence of elementary reductions. Hence it suffices to prove that if $\pi \rightarrow \sigma$, then every block of π is a CI-set if and only if every block of σ is a CI-set. (We in fact only need the "if" part for (i) \Rightarrow (ii).) Since we need consider only one block of π at a time, we may assume $\pi = A$ (the partition of A into one block).

Let $A = \{a_1, ..., a_t\}$ be the set of distinct c_i 's which correspond to some f.g.g.r. $G \subset GL(V)$ and let $H = G \cap SL(V)$. Suppose that $A \to \{A_1, ..., A_q\}$ is an elementary reduction of type ϵ_1 . Using the description (8) and (9) of Q(A), a simple application of the Chinese Remainder Theorem shows that

$$Q(A) = Q(A_1) \otimes_k Q(A_2) \otimes_k \cdots \otimes_k Q(A_q).$$

Now Q(A) is a complete intersection if and only if each factor $Q(A_i)$ is a complete intersection, so A is a CI-set if and only if each A_i is a CI-set.

Now assume that $A \to B$ is an elementary reduction of type ϵ_2 . Hence $A = \{a_1, ..., a_i\}$ and $B = \{b_1, ..., b_i\}$, where $a_i = \delta b_i$ for some $\delta > 0$ and all i, except that if some $a_j = \delta$ then we discard b_j . This last step of discarding $b_j = 1$ is by (9) irrelevant in what follows, so let us ignore it. Let $X_0, ..., X_{a-1}$ be the \mathbb{C} -basis for Q(A) defined in (8); and let $Y_0, ..., Y_{b-1}$ be the analogous basis for Q(B), so $b = a/\delta = 1.c.m.$ $(b_1, ..., b_l)$. Every X_i can be written uniquely in the form $X_i = Y_j^{\delta} \cdot \langle h, h, ..., h \rangle$ for some j and h satisfying $0 \leq j < b$, $0 \leq h < \delta$. (Multiplication is taking place in Q(A).) The subalgebra of Q(A) generated by the Y_j^{δ} 's is isomorphic to Q(B). The additional generator $Z = \langle 1, 1, ..., 1 \rangle$ satisfies $Z^{\delta} = Y_1^{\delta}$ for some l, while every other relation involving Z is a consequence of this one. Hence $Q(A) \simeq Q(B)[Z]/(Z^{\delta} - Y_i), Y_i \in Q(B)$. It follows that Q(A) is a complete intersection if and only if Q(B) is, so A is a CI-set if and only if B is a CI-set. This completes the proof that (i) \Rightarrow (ii).

To prove that (ii) \Rightarrow (i), we first require some lemmas.

5.2. LEMMA. Suppose that the finitely generated graded k-algebra S is a complete intersection and that $S = T \oplus I$ (vector space direct sum), where T is a graded subalgebra and I is a homogeneous ideal of S. Then T is a complete intersection.

Proof. Let the homogeneous elements $\Psi_1, ..., \Psi_r$ generate T as a k-algebra, and choose homogeneous $\Omega_1, ..., \Omega_s \in I$ so that the Ψ 's and Ω 's together generate S as a k-algebra. Thus $S = k[x_1, ..., x_r, y_1, ..., y_s]/J$, where $\bar{x}_i = \Psi_i$ and $\bar{y}_i = \Omega_i$ (an overhead bar denotes the image in S). Since S is a complete intersection, \overline{J} is generated by a homogeneous regular sequence. We claim that we can choose this regular sequence to be of the form $\theta_1, ..., \theta_p$, $\eta_1, ..., \eta_q$, where $\theta_i \in k[x_1, ..., x_r]$ and $\eta_i \in (y_1, ..., y_s)$. For given any regular sequence $\omega_1, \omega_2, ..., \omega_m$, write $\omega_i = \omega_i' + \omega_i''$ where $\omega_i' \in k[x_1, ..., x_r]$ and $\omega_i'' \in (y_1, ..., y_s)$. Then $\overline{\omega_i'} \in T$ and $\overline{\omega_i''} \in I$, so $\omega_i' \in J$ and $\omega_i'' \in J$. Choose a basis for the k-vector space W generated by $\omega_1, ..., \omega_m$ consisting of various ω_i' and ω_j'' . As is well known, any homogeneous basis for W is a homogeneous regular sequence, so we have found a regular sequence of the desired type. Since any nonzero polynomial in the η_i 's involve y_i 's, it is clear that $T = k[x_1, ..., x_r]/(\theta_1, ..., \theta_p)$. Hence T is a complete intersection.

5.3. COROLLARY. If A is a CI-set and $B \subset A$, then B is a CI-set.

Proof. Consider Q(A) as defined by (8) and (9). The subalgebra T generated by all $\langle \alpha_1, ..., \alpha_t \rangle$ satisfying $\alpha_i = 0$ if $\alpha_i \notin B$ is isomorphic to Q(B), and the remaining $\langle \alpha_1, ..., \alpha_t \rangle$ form a k-basis of an ideal I. The proof now follows from Lemma 5.2.

5.4. LEMMA. Let $A = \{a, b, c\}$ be an irreducible CI-set. Then $A' = \{(a, b)(a, c), (a, b)(b, c), (a, c)(b, c)\}$ is also an irreducible CI-set.

Proof. It is clear that A' is irreducible. Let [i, j] denote the least common multiple of i and j. Choose a set \mathscr{G} of generators for Q(A) (as a k-algebra), as described by (8) and (9), containing $Y_1 = X_{[a,b]}$, $Y_2 = X_{[a,c]}$, and $Y_3 =$ $X_{[b,c]}$. Let a', b', c' be the least positive integers for which $Y_1^{c'} = Y_2^{b'} = Y_3^{a'} = 0$ in Q(A). (Specifically, c' = c/([a, b], c), etc., but this is irrelevant.) Since Y_1 , Y_2 , Y_3 have only one nonzero component (when written in the form (8)), and since no Y_i is a nontrivial power of any X_j , it follows that the relations $Y_1^{c'} =$ $Y_2^{b'} = Y_3^{a'} = 0$ occur in some set \mathscr{R} of minimal relations among the elements of \mathscr{G} . Since Q(A) is an Artinian complete intersection, $|\mathscr{G}| = |\mathscr{R}|$. Now $Q(A') = Q(A)/(Y_1, Y_2, Y_3)$. It follows that Q(A') is generated by \mathscr{G} (or more precisely, the image of \mathscr{G} in Q(A')), subject to the same relations \mathscr{R} except that $Y_1^{c'} = Y_2^{b'} = Y_3^{a'} = 0$ are replaced with $Y_1 = Y_2 = Y_3 = 0$. If \mathscr{R}' is this new set of relations, then $|\mathscr{G}| = |\mathscr{R}'|$, so Q(A') is also a complete intersection.

We now proceed to the proof that (ii) \Rightarrow (i) in Theorem 5.1. In view of our proof that every block of a partition π is a CI-set if and only if the same is true of an elementary reduction of π , it suffices to show that the only *irreducible* CI-set is the null set \emptyset . Suppose that $A = \{a_1, a_2, ..., a_t\}$ is a nonvoid irreducible CI-set with t minimal. Irreducibility implies $t \ge 3$. Corollary 4.3 and the minimality of t imply that every proper subset of A is completely reducible. In particular, any proper subset B of A can be partitioned into blocks δB_1 , $\delta B_2,..., \delta B_s$, where δ is a positive integer depending on B, and where every element of B_i is relatively prime to every element of B_i (denoted $(B_i, B_j) = 1$) for $i \neq j$. (Here $\delta C = \{\delta c: c \in C\}$.) We now will show that t = 3. Case 1. For every maximal proper subset B of A, the elements of B have no common factor greater than one. In particular, this condition holds for $B = A - \{a_i\}$, so this B can be partitioned into blocks $B_1, B_2, ..., B_s, s \ge 2$, such that $(B_i, B_j) = 1$ for $i \ne j$, and such that s is maximal with respect to this property. Since B is completely reducible, each B_i is of the form $\delta_i B_i', \delta_i > 1$. Now for any i = 1, 2, ..., s we cannot have $(a_t, B_i) = 1$ since this would mean that $\{B_i, A - B_i\}$ is an elementary reduction of A. It follows that for $a \in B_1$, $\{B_1 - \{a\}, B_2 \cup \cdots \cup B_s \cup \{a_t\}\}$ is an elementary reduction of $A - \{a\}$. Hence if $|B_1| > 1$ then we would have $(a_t, B_1) = 1$, which cannot occur. Thus $|B_1| = 1$, and similarly $|B_i| = 1$. Since $(a_t, B_i) \ne 1$ for all i and since the elements of $B - \{a\}$ have no common factor greater than one, it follows that $A - \{a\}$ is irreducible, a contradiction. Hence Case 1 cannot occur.

Case 2. For some a_i , say a_t , the elements $a_1, a_2, ..., a_{t-1}$ of $A - \{a_t\}$ can be written in the form $\delta b_1, ..., \delta b_r$, $\delta c_1, ..., \delta c_s$ $(r + s = t - 1, r \ge 1, s \ge 1, s \ge 1)$, $\delta > 1$, such that $(b_i, c_j) = 1$ for all i and j. Assume r > 1. The set $B = \{\delta b_1, ..., \delta b_{r-1}, \delta c_1, ..., \delta c_s, a_t\}$ is completely reducible. Since A is irreducible, $(a_t, \delta) = 1$. Then since $(b_i, c_j) = 1$ and $\delta > 1$, in order for B to be reducible we must have $(a_t, B - \{a_t\}) = 1$. Similarly if $B' = (B - \{\delta b_1\}) \cup \{\delta b_r\}$, then $(a_t, B' - \{a_t\}) = 1$. Hence $(a_t, A - \{a_t\}) = 1$, contradicting the irreducibility of A. Thus r = 1 and similarly s = 1, so t = 3 as was to be proved.

Therefore assume that $A = \{a, b, c\}$ is an irreducible CI-set. By Lemma 5.4, $A' = \{(a, b)(a, c), (a, b)(b, c), (a, c)(b, c)\}$ is also an irreducible CI-set. Since (a, b, c) = 1 because A is irreducible, A' can be written as $A' = \{\alpha\beta, \alpha\gamma, \beta\gamma\}$, where $(\alpha, \beta) = (\alpha, \gamma) = (\beta, \gamma) = 1$, and where at most one of α, β, γ is equal to one. We will now reach a contradiction by showing that A' is not a CI-set. A (minimal) set of generators for Q(A') can be taken to be

$$\begin{split} X_{1} &= \langle 1, 1, 1 \rangle, \\ Y_{1} &= \langle 0, \beta_{1}\gamma, \gamma_{1}\beta \rangle, \dots, Y_{r} = \langle 0, \beta_{r}\gamma, \gamma_{r}\beta \rangle, \\ Z_{1} &= \langle \alpha_{1}'\beta, \beta_{1}'\alpha, 0 \rangle, \dots, Z_{s} = \langle \alpha_{s}'\beta, \beta_{s}'\alpha, 0 \rangle, \\ W_{1} &= \langle \alpha_{1}'\gamma, 0, \gamma_{1}''\alpha \rangle, \dots, W_{t} = \langle \alpha_{t}'\gamma, 0, \gamma_{t}''\alpha \rangle, \end{split}$$

where $r, s, t \ge 1$ and where $\beta_1 < \cdots < \beta_r$, $\gamma_1 > \cdots > \gamma_r$; $\alpha_1' < \cdots < \alpha_s'$, $\beta_1' > \cdots > \beta_s'$; $\alpha_1'' > \cdots > \alpha_t''$, $\gamma_1'' < \cdots < \gamma_t''$. We have relations among these generators of the form:

$$Y_i Z_j = X_1 \Phi_{ij} \,, \tag{a}$$

$$Y_i W_j = X_1 \psi_{ij} \,, \tag{b}$$

$$Z_i W_j = X_1 \Omega_{ij}; \tag{c}$$

$$Y_i^{a_i} = Z_i^{b_i} = W_i^{c_i} = 0.$$
 (d)

These relations are easily seen to be independent. Types (a)–(c) have quadratic terms and are therefore minimal. The three relations of type (d) are minimal when we choose a_i , b_i , c_i to be minimal. Hence we have 1 + r + s + t generators with at least rs + rt + st + r + s + t minimal relations. In order that $rs + rt + st + r + s + t \ll 1 + r + s + t \ll 1$ a contradiction. Hence Q(A) has more relations than generators, so it cannot be a complete intersection. This completes the proof of Theorem 5.1.

5.5. COROLLARY. Let $G \subset GL(V)$ be an f.g.g.r., and let $H = G \cap SL(V)$. If [G:H] is a power of a prime p, then R^H is a complete intersection.

Proof. The set A contains only powers of p, and is therefore completely reducible.

5.6. COROLLARY. If in Corollary 5.5 [G:H] is a prime p, then R^H is a hypersurface (i.e., there is only one relation among a minimal set of generators for R^H).

Proof. We have $A = \{p\}$, and it is then obvious from (8) and (9) that Q(A) has a single generator and is therefore a hypersurface. It is well known and easily seen that then R^{H} is also a hypersurface.

Acknowledgment

I am grateful to B. Kostant and D. Eisenbud for their helpful comments regarding the proofs of Theorem 3.1 and Lemma 5.2, respectively.

References

- N. BOURBAKI, "Groupes et algèbres de Lie," Ch. 4, 5, et 6, Éléments de mathématique, XXXIV, Hermann, Paris, 1968.
- 2. W. BURNSIDE, "Theory of Groups of Finite Order," 2nd ed., Dover, New York, 1955.
- C. CHEVALLEY, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- 4. L. FLATTO, Invariants of finite reflection groups, to appear.
- M. HOCHSTER AND J. A. EAGON, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
- T. MOLIEN, Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152–1156.
- 7. G. C. SHEPHARD AND J. A. TODD, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
- N. J. A. SLOANE, Error-correcting codes and invariant theory: New applications of a nineteenth-century technique, Amer. Math. Monthly 84 (1977), 82-107.
- 9. L. SOLOMON, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57-64.
- 10. L. SOLOMON, Invariants of Euclidean reflection groups, Trans. Amer. Math. Soc. 113 (1964), 274–286.

- 11. T. A. Springer, Regular elements of finite reflection groups, *Invent. Math.* 25 (1974), 159–198.
- 12. R. STANLEY, Hilbert functions of graded algebras, Advances in Math., to appear.
- 13. R. STEINBERG, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616-618.
- 14. K. WATANABE, Certain invariant subrings are Gorenstein, I, Osaka J. Math. 11 (1974), 1-8.
- 15. K. WATANABE, Certain invariant subrings are Gorenstein, II, Osaka J. Math. 11 (1974), 379-388.