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1. Introduction. Let be a finite graph allowing loops and multiple edges.
Hence G is a pseudograp in the terminology of [10]. We shall denote the set
of vertices of G by V, the set of edges by E, the number IVI of vertices by p,
and the number IEI of edges by q. Also if an edge e is incident to a vertex v, we
write v e. Any undefined graph-theoretical terminology used here may be
found in [10]. A magic labeling o] G o] index r is an assignment L :E .--.
{0, 1, 2, of a nonnegative integer L(e) to each edge e of G such that for each
vertex v of G the sum of the labels of all edges incident to v is r (counting each loop
at v once only). In other words,

(1) L(e) r, for all v Y.

For each edge e of G let z, be an indeterminate and let z be an additional
indeterminate. For each vertex v of G define the homogeneous linear form

(2) P,=z- z,, v V,

where the sum is over all e incident to v. Hence by (1) a magic labeling L of G
corresponds to a solution of the system of equations

(3) P, 0, v V,

in nonnegative integers (the value of z is the index of L). Thus the theory of
magic labelings can be put into the more general context of linear homogeneous
diophantine equations. Many of our results will be given in this more general
context and then speciali,ed to magic labelings.

It may happen that there are edges e of G that are always labeled 0 in any
magic labeling. If this is the case, then these edges may be ignored in so far as
studying magic labelings is concerned; so we may assume without loss of gen-
erality that for any edge e of G there is a magic labeling L of G for which L(e) > O.
We then call G a positive pseudograph. If in a magic labeling L of G every edge
receives a positive label, then we call L a positive magic labeling. If L1 and L2
are magic labelings, we define their sum L LI - L2 by L(e) Ll(e) L2(e)
for every edge e of G. Clearly if L and L are of index r, and r, then L is
magic of index rl -t- r.. Now note that every positive pseudograph G possesses
a positive magic labeling L, e.g., for each edge e of G let Lo be a magic labeling
positive on e, and let L Lo.
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In general, there appears to be no simple criterion for determining when a
finite pseudograph is positive. However, the following condition, which is a
special case of Stiemke’s theorem [21], is sometimes useful. A finite pseudograph
G is not positive if and only if there exists a labeling K V -- Z of the vertices
of G by integers such that ev K(v)

_
0 and for all e E, ,:,e, K(v) >_ O,

with at least one of these q q- 1 sums not equal to zero.
Let Ha(r) be the number of magic labelings of G of index r, and let/a(r) be

the number of positive magic labelings of index r. Hence /a(r) __. Ha(r),
He(0) 1, Ha(0) 0 (unless G has no edges), and Ha(l) is the number of
1.-factors of G (counting loops as having degree 1). Our primary purpose is to
prove Theorems 1.1, 1.2, and 1.3 below, which deal with the functions Ha(r)
and/a(r). Our results, however, will be developed as generally as possible
within the context of linear homogeneous diophantine equations.

THEOREM 1.1. Let G be a finite positive pseudograph with at least one edge.
Then there exist polynomials Pa(r), Qa(r), a(r), and Qa(r) such that for all
nonnegative integers r, Ha(r) Pa(r) q- (-1)rQa(r)and Ia(r) a(r) +
(- 1)" a (r) o,(- 1)", where o, is the Kronecker delta and where m deg Pa (r)
(given explicitly by Proposition 5.2).

Note that if G has no edges, then Ha(r) o,, which is not of the form Pa(r) q-
(-1)’Qa(r). The reason for this exception to Theorem 1.1 will become clear
in the proof of Corollary 3.10.

THEOREM 1.2. If in the previous theorem the graph obtained by removing all
loops ]rom G is bipartite, then Qa(r) Qa(r) O.

By Theorem 1.1 we can evaluate Ha(r) and/a (r) when r is a negative integer.
The next theorem tells us the significance of these numbers.

TEOnE 1.3. With the hypotheses o] Theorem 1.1, we have ]or all integers
r O, (-1)’Ha(-r) ta(r), where m deg Pa(r).

COrOLLarY 1.4. I] G (as in Theorem 1.1) is regular o] degree d (counting
ldops as having degree 1), then Ha(--1) Ha(-2) Ha(-d - 1) 0
and (-1)Ha(r) Ha(-d r).

Proo] o] Corollary 1.4. If G is regular of degree d, then a one-to-one corre-
spondence exists between magic labelings L of G of index r and positive magic
labelings L of G.ofindex d - r by defining L(e) 1 L(e) for all e E. The
proof now follows from Theorem 1.3.

The Anand-Dumir-Gupta conjecture. Let H,(r) be the number of n X n
matrices of nonnegative integers summing to r in every row and column. Anand,
Dumir, nd Gupta [2] conjectured that H,(r) is a polynomial in r of degree
(n 1) satisfying H(- 1) H(--2) H(-n - 1) 0 and H(r)

(--1)n-lH(--n r). Equivalently, there exist integers c, 0

_
i

_
2
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depending only on n, such that

H(r) c(r zr- n l i).n-- l Zc2i

(The two forms of the conjecture are equivalent since the polynomials

(r-n--ii) 0 < i < (n--1) formabasisoverthe integers for all
n--1-2i 2

polynomials ](r) of degree (n 1) mapping integers into integers and satisfying
1(-1) I(-2) ](-n + 1) 0, ](r) (-1)-/(-n- r).)

Let G be the complete bipartite graph K. so the vertices V of G may be
partitioned into two classes V {v, v.} and V. {v, v} such that
there is an edge between every v and v. If we associate with a magic labeling
L of G of index r an n X n matrix A, where A is the label of the edge con-

then each A is a nonnegative integer and every row andnecting v and
column sum of A is r. Conversely an n X n matrix A of nonnegative integers
with every row and column sum r corresponds to a magic labeling of K.. of
index r. Hence Theorem 1.2 and Corollary 1.4 reduce to the Anand-Dumir-
Gupta conjecture except for the statement deg H.(r) (n 1), which can
be given simple ad hoc proof (see Proposition 5.2). For some work relating
to this conjecture see [1], [15], [18], and [19]. In particular, in [19], H(r) is
computed for n

_
6 assuming the validity of the Anand-Dumir-Gupta con-

jecture. However, the sketched proof in [19] that H.(r) is a polynomial is
invalid. .As a modification of the Anand-Dumir-Gupta conjecture, define H.(r) to
be the number of n X n matrices of nonnegative integers with every row and
column sum less than or equal to r. This corresponds to taking G to be K
with one loop adjoined to each vertex. Hence by Theorem 1.2, Corollary 1.4,
and Proposition 5.2, H*(r) is a polynomial in r of degree n satisfying H*(-- 1)
H*.(-2) H*(-n) O, S*(r) (-- 1)H*(-n 1 r). For instance,

H*(r) (r 4
and

More generally, if G is any finite pseudograph (not necessarily positive),
let H*o(r) be the number of submagic labelings of G of index r, i.e., the number
of maps E -- {0, 1, 2, such that the edge sums at each vertex are less than
or equal to r. Then H*o(r) Ho,(r), where G’ is the graph obtained from G
by adding a loop at each vertex (in. addition to whatever loops are already there).
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Clearly G’ is positive. Hence Theorems 1.1-1.3 may be applied to H(r).
Note that H*a(r) is also equal to the number of ways of labeling the vertices
and edges of G with nonnegative integers such that the sum of the label of any
vertex together with the labels of all edges incident to that vertex is r. Some
other aspects of such labelings were considered by Kotzig and Rosa [13].

The Carlitz conjecture. Let S(r) be the number of symmetric n X n matrices
of nonnegative integers summing to r in every row (and hence in every column).
L. Carlitz [5] conjectured that S.(2r) and S,,(2r + 1) are polynomial functions
of the n0nnegative integer r. Let G be the graph with n vertices vl, v2, vn
and exactly one edge between any two vertices (including one loop at each
vertex). Associate with a magic labeling of G an n X n matrix A, where A; is
the label of the edge between v and v.. Then A is an n X n symmetric matrix
of nonnegative integers with every row and column sum r, and conversely every
such A corresponds to a magic labeling of G of index r. Hence Theorem 1.1
reduces to the Carlitz conjecture. We also obtain from Corollary 1.4 that
S(-1) S(-2) S,(-n + 1) O, S,,(r) +/-S,(-n- r). (The
correct sign is (-1) to the power (), as shown in Section 5.)
Throughout this paper we use ll to denote the nonnegative integers and 1)

the positive integers, ll {0, 1, 2, and P {1, 2, 3, }. We shall call
a solution in nonnegative integers to a system of equations such as (3) an
ll-solution, while a solution in positive integers is a P-solution. Similarly, a
nonnegative integer combination of vectors a, , i.e., a sum a + b +
where a, b, ll, will be called an ll-combination, while a positive integer
combination will be called a P-combination.

2. The Hilbert syzygy theorem. In this section we prove that for a finite
pseudograph G (which we may assume is positive) there exist polynomials
P((r) and Q(r) such that H((r) P(r) + (- 1)rQ(r) for all but finitely many
nonnegative integers r. The proof is based on the Hilbert syzygy theorem. A
separate argument is needed to show that then Ha(r) Pa(r) -P (--1)rQa(r)
for all nonnegative integers r (cf. Section 3). We shall also show in this section
that if G minus its loops is bipartite, then Qa(r) O.

Consider the following general situation. Let

Pl(zl z.) 0

(4)

P(zl z,) 0

be a system of p homogeneous linear equations with integer coefficients in the
a (a a)beaunknowns z, z.. Let a (all, a.),

is a nonnegative integer, andfinite set of nonzero ll-solutions to (4); so each a
for each i some a 0. All the ll-solutions to (4) form a commutative semigroup

with identity 0 (0, 0, 0) under the operation of componentwise addi-
tion. Let X, X, be new indetermiaates corresponding to the solutions
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a,1 ,ag, and form the polynomial ring R K[XI, Xg], where K is any
field. We impose on R the structure of a -graded ring, R .e R. by
defining R, to be the vector space over K spanned by all monomials
a,y..... X’ such that ala aa ag . Clearly R.R c R +

so we have indeed defined a -grading.
Now define a -graded R-module M as follows. M is a vector space over K

with a basis consisting of all "symbols" [a], where a is an N-solution to (4).
The action R X M -- M of R on M is uniquely defined by imposing the condition
of K-linearity and the relations X[a] [a - a], a , i 1, 2, g.
If we define M. to be the (one-dimensional) vector space generated by [a],
where a @ , then it is easily seen that M becomes a -graded R-module, i.e.,
M .e, M, and R,M

_
M.+.

We need to know when M is finitely-generated. For this purpose we first
require a lemma.

LEMMA 2.1 (Hilbert). There are only finitely many nonzero N-solutions
/ , called ]undamental solutions, such that i] , where a, ,
then 0 or O. Every solution is an N-combination o] ]undamental
solutions.
For a simple proof of Lemma 2.1 see, e.g., [7; 97].

PROPOSITION 2.2. The following two conditions are equivalent.

(i) The R-module M is finitely-generated.
(ii) For every a there exists a positive integer n (depending on a) such that

na is an N-combination o a, a,
Pro@ (i) (ii). Assume M is finitely-generated. Since each element of M

has the form ’ ].[a], where the sum ranges over finitely many a and
where ]. K, we may take the generators of M to be [], [f], [t],
where . Let/ . Now since M is finitely-generated, for all positive
integers n there must exist {1, 2, ..., m} and nonnegative integers
a,, a. such that [n,] X X’’[f;’] or, equivalently,

Since there are only finitely many distinct ., there is some/c {1, 2, m}
such that j. / for infinitely many values nl <: n.. of n. It follows from
Lemma 2.1 or is easily proved directly by induction on g [7; 152-153] that there
are values n. <: n. such that a..

_
a., for i 1, 2, g. Hence (n. n)/

(a,. a,.)a’ so (ii) holds.
(ii) (i). Assume that (ii) holds. Let ,, 7 , be the fundamental

solutions to (4), finite in number by Lemma 2.1. Hence by (ii) there are positive
integers n, n, n such that each n,’ is an N-combination of the a"s.
We claim M is generated by all nn n., symbols [ e;/;], where 0

_
e . n. Let/ ; so , a,

a2, - - a,, a N. Define e by
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at ei (mod n) and 0

_
ei ,( n. Hence 7 nb7 q- ’ e7 for some

b N. Since niT’ is an N-combination of the a ’s, we have 7 c,a’ q-
e7 for some c, N. Hence [7] yc,y....

-1 Xg’[ eiT;]; so M is
indeed finitely-generated.
Note. It is easily seen (though we have no need for this fact) that M is

a include all thegenerated by one element, viz., [0], if and only if a,
fundamental solutions to (4).
We are now in a position to invoke the Hilbert syzygy theorem. For our

purposes the following special case is convenient.
2.3. Hilbert syzygy theorem. Let be the semigroup of ll-solutions to the

system (4) of linear homogeneous equations with integer coefficients. Let
a be nonzero elements of (b satisfying condition (ii) of Proposition 2.2.

Let R K[XI X,] be the -graded ring constructed from a,
as before, and let M be the corresponding -graded R-module. Then there
exists an exact sequence

(6) 0--+ M -+ M- -+ -- M --+ M -* 0

where the M are free finitely generated -graded R-modules and all homo-
morphisms are of degree 0, i.e., if M .e M then the image of M
2 _< i

_
g, in (6) lies in M-, while the image of M lies in M..

Note. The statement that M is free means the following. M is free as an
R-module (ignoring the grading), and M is -graded. However, the grading
on M’ may be "shifted". In other words, the homogeneous generators of M
need not be of degree 0 but may have any degree a (b.

In Hilbert’s original proof [11; Theorem III] he considers only ll-graded
polynomial rings K[X,..., X] and ll-graded R-modules, where also
deg X, 1. His proof, however, remains valid under the assumptions of
Theorem 2.3. The much simpler proof given in [22; Chapter III, 13] is also
valid under the assumptions of Theorem 2.3.
We now introduce the basic tool of generating ]unctions. Given the system (4)

with ll-solution set , define the (formal) power series F(x x.) in the
variables x, x. by

(7) F(x, x,) x:"

where a (al a). Hence F "lists" all elements of ; knowing F is
equivalent to having a list of elements of . We shall use the symbolic notation
x (x x) and x x’ x:’ so that (7) my be rewritten

(s) F(x) x".

In this section and the next we shall prove two fundamental results concerning
the form of the generating function F(x) (Theorems 2.5 and 3.9). We need
for the first of these results one additional concept.
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DEFINITION. A completely fundamental solution a to (4) is a nonzero
solution such that for all positive integers n if na f + 7 for f, 7 , then

ka and 7 (n /)a for some/ N.

By taking n 1 in the above definition, we see that every completely funda-
mental solution is a fundamental solution. The converse, however, need not
be true. For instance, the equation zl - z2 2z3 has three fundamental solu-
tions, a (2,0, 1), (0, 2, 1),7 (1, 1, 1). However, only a and flare
completely fundamental since 27 a -t- ft.

LEptA 2.4. There are finitely many completely ]undamental solutions, to (4). For every solution a there is a positive integer n (depending
on a) such that na is an N-combination o] ill, f12,

Proo]. Since every completely fundamental solution is fundamental, it
follows from Lemma 2.1 that there are finitely many completely fundamental
solutions.
Assumea . If for somer Pandsomei 1, 2, ,hwehavea

r, then na is an N-combination of t1, t2, for n 1. Hence we may
assume a is not a multiple of any/. We prove by induction on the number
of nonzero coordinates of a that for some n > O, na is an l-combination of.
f, f2, f. This is clearly true for/ 0, since then a 0. Assume that
for some ]c satisfying 0 < ] s (with s as in (4)) we have proved that for every
a’ with less than/ nonzero coordinates there is an n P for which ha’ is
an N-combination of fl, fl, flA.
Suppose now that a has/c nonzero coordinates. By assumption a is

not a multiple of any . It is easily seen that then there are an n P and, 7 such that neither nor 7 are rational multiples of a and na fl -{-
Since a, fl, and 7 are all N-vectors and a has ] nonzero coordinates, f and 7 have
at most ]c nonzero coordinates.

Let p/q be the largest rational number (reduced to lowest terms with p N,
q P) such that every coordinate of fl (p/q)a is nonnegative. Clearly
p/q exists. Moreover, q pa 0 since by assumption/ is not a rational
multiple of a. Hence by definition of p/q, q# p is a nonzero element of
with less nonzero coordinates than ; so qf pa has less than ] nonzero coordi-
nates. Similarly define pt/qr with fl replaced by 5’ in the definition of p/q.
Hence q% pta has less than ] nonzero coordinates.
Now from na fl 7 we get (qqn pq’ pq)o q(q p) q(q7

pra). Since q pa, q7 pta, and a are N-vectors with q pa 0 and
q > 0, we have qq’n pq’- p’q O. Since q- pa and q7- pa have less
than k nonzero coordinates, by the induction hypothesis there exist nl, n.
such that n(q pa) and n(q7 p’a) are N-combinations of , , .
Hence nn.(qqn pq pq)a is an N-combination of , , ,/, and the
proof follows by induction.
We now come to the main result of this section.
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T,o, 2.5. The generating ]unction F(x) defined by (8) is a rational
]unction o] the x’s (in the algebra o] ]ormal power series), which when reduced to
lowest terms has denominator

D(x) II(1 x)

where ranges over all completely ]undamental solutions to (4).

ProoI. It was known since about 1900 that F(x) is a rational function
(cf. Section 3); this will also come out of this proof. Let ’, 5 be the com-
pletely fundamental solutions to (4), let R K[X,, X] be the @-graded
polynomial ring corresponding to 5’, f, and le M be the corresponding
-graded R-module. By Proposition 2.2 and Lemma 2.4, M is finitely-generated.
Hence by Theorem 2.3 there is )-graded exact sequence

(9) 0-- M- M- -- -- M --* M -- 0

where the M are free finitely-generated -graded R-modules. If N is -graded
R-module, let N. denote the homogeneous component of N corresponding to. Thus N. has the structure of a vector space over K. Since (9) is
-graded, i.e., the homomorphisms are of degree 0, the exact sequence (9)
induces exact sequences

(10) 0 -- M -- i.- ---, - M. -- i. --> 0

for each a @, where the homomorphisms are linear transformations. Since
M and each M re finitely-generated, the vector spaces appearing in (10) are
finite-dimensional. Hence by well-known property of such exact sequences
[21; p. 233]

(11) dim M. dim M. dim M, + + (-1)-’ dim M..
Multiply (11) by x" and sum on all a @. Since dim M, 1 for all
we get

(12) F(x) F(x) F(x) -{- + (-1)-’F(x)

where E(x) .ea (dim M.)x". (F(x) may be thought of as the multi-
variable analogue of the Poincard series of M .corresponding to the function
dim (.).) Suppose M has free homogeneous generators Y, Y of degrees

il
a a respectively. Then a K-basis for M, consists of all elements
X’ X,Y, where a + a’ a. Hence F’(x)
E-, x’ (E-, x"’h)/II,-, (1- x’), where t= E a,fl’+ a". Thus
by (12) the denominator D(x) of F(x) divides IX (1 x),/ completely funda-
mental.

It remains to prove that D(x) cannot be a proper divisor of IX (1 x).
If any factor 1 x were reducible, then fl nil’ for some n > 1, fl’ . But
this contradicts the fact that B is completely fundamental (or even fundamental).
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Hence we must prove that F(x) cannot have a denominator II (1 x), where
ranges over a proper subset T of 1, . Suppose =/ T. Now for

any n P the term xn must appear in the power series expansion of F(x).
Hence there is some term x in the numerator of F(x) with nonzero coefficient
such that 8 - eTa n, a N. Since 8 is an N-vector and % n ,
we have 8 . Thus by the definition of completely fundamental solution,
using the fact that fl and each , T are completely fundamental, we have
a 0 so n# 8. Hence the coefficient of xn in the numerator of F(x)

is nonzero for all n P; so this numerator is not a polynomial. This completes
the proof.
One my regard the exact sequence (9) as specifying all relations (or syzygies)

holdhug among the N-solutions to (4). For instance, if a, t, % 8 are N-solutions
related by a fl , -t- 8, then they form a syzygy o] the first kind. All such
syzygies are specified by the homomorphism M - M. Similarly, relations
among syzygies of the first kind are called syzygies o] the second kind and are
specified by M -. M2, etc. Thus the Hilbert syzygy theorem states that this
"chain of syzygies" terminates within h steps.

Applications to magic labelings. In order to apply Theorem 2.5 to magic
labelings we need some information about completely fundamental magic
labelings, i.e., completely fundamental solutions to (3). This information is
based upon the following lemma.

LEMMA 2.6. Let X be an n ) n matrix of nonnegative integers such that eery
row and column has the same sum. Then X is a sum o] permutation matrices.

Lemma 2.6 is a well-known simple consequence of the theorem of Garrett
Birkhoff [4] (see also [17; p. 56]) that the convex hull of the doubly stochastic
matrices consists of the permutation matrices.

]ROPOSTION 2.7. Let G be a finite pseudograph. Then every completely
]undamental magic labeling o] G has index 1 or 2. More precisely, i] L is any
magic labeling of G, then 2L is a sum o] magic labelings o] index 2.

Proo]. If L is any magic labeling of G, form the symmetric matrix A indexed
by the vertices ot G, where A, is the sum of the labels of all edges between
u and v. If L has index r, then every row and column of A sums to r. Hence
by Lemm 2.6, A is a sum of permutation matrices , A . Since A is
symmetric, we have A v* (* denotes transpose) so 2A ( + *).
Each + * is a symmetric matrix, and we associate with it a magic labeling
L, of index 2 as follows. For any pair of vertices u and v (including u v)
let el., e., , e be the edges connecting u and v. Define the vector l(u, v)
(l l), where l L(e). It is obvious that 2l can be written as a sum
21 of nonnegative integer vectors (l] l) with ( - *),
l] - - l. Now define the magic labelingL by the conditionL(e) l,
1 _<: i __%. . (In particular, if only one edge e connects u to v, then L(e)
( + r*), .) We therefore have 2L L as required.
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A proof of Proposition 2.7 can also be based on Petersen’s result [16] that a
regular graph of even degree has a 2-factorization, but care must be given to the
fact that we are taking loops to have degree 1 rather than degree 2 [12; p. 165,
Satz 8].
The reader may be curious as to whether some analogue of Proposition 2.7

holds for fundamental magic labelings. Therefore we remark that it follows
from the results of [12; Chapter XI, 3] that for r P there exists a finite
pseudograph (or graph) with a fundamental magic labeling of index r if and
only if r 2 or r is odd.

COROLLARY 2.8. Let G be a finite pseudograph. Then there exist polynomials
Pa(r) and Qa(r) such that ]or all but finitely many r ll, Ha(r) P((r) -(- 1)rQa(r).

Proof. Let el,
series

e be the edges of G, and define the formal power

(13) Fe(xl x2 xq y) ,xlx;" x’y

where the sum ranges over all magic labelings L(e) a of G and where r is
the index of L. It follows that

(14) Fe(1, 1,... 1, y) H(r)y.
Now by Theorem 2.5 and Proposition 2.7, Fa(x, x, y) has a denominator
of the form ]I (1 1- ’) where in each factor s 1 or s 2. Hence--x2 ...xy
Fo(1, 1, 1, y) has a denominator of the form (1 y)"(1 y), a, b ll.
By (14) this implies (e.g., by expanding Fa(1, 1, 1, y) by partial fractions)
the desired result.

Observe that if for a given pseudograph G the completely fundamental magic
labelings all have index one, then the proof of Corollary 2.8 would show that
Fa(1, 1, 1, y) has a denominator of the form (1 y) so that Q((r) O.
The next result tells us when this phenomenon occurs.

PnoeosTO 2.9. Let G be a finite pseudograph. The ]ollowing conditions
are equivalent.

(i) Every fundamental magic labeling o] G has index one.
(ii) Every completely ]undamental magic labeling o] G has index one.
(iii) I] G is any spanning subgraph o] G such that every connected component

o] G is a loop, an edge, or a cycle (o length greater than or equal to 3),
then every one o] these cycles o] length greater than or equal to 3 must have
even length.

Proo]. (i) (ii). The proof is trivial, since a completely fundamental
magic labeling is fundamental.
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(ii) (i). Assume (ii). Let L be fundamental magic labeling of G. By
Proposition 2.7, 2L _, L’, where each L’ is completely fundamental. By
assumption, each L’ has index 1; so L’(e) 0 or 1 for every edge e E. Hence
since for any L’ appearing in the above sum for 2L, 2L(e) L’(e) >_ 0 for all
e E, we hve that L(e) L’(e) 0 also. Thus L L’ is a magic labeling.
Since L is fundamental, we must hve L L’, and so L has,index one.

(ii) (iii). Suppose (ii) holds but (iii) fails. Let G’ be a spanning subgraph
of G such that every component of G’ is a loop, an edge, or a cycle of length
greater than or equal to 3, with C a cycle in G’ of odd length greater than or
equal to 3. Define a magic labeling L of G as follows. (a) L(e) 0 if e is not
an edge of G’, (b) L(e) 2 if e is a loop or edge component of G’, and (c) L(e) 1
if e is in a cycle of G’ of length greater than or equal to 3. Thus L has index two.
Since the cycle C does not possess a magic labeling of index one, we cannot
decompose nL into magic labelings of index one for any n I). Hence L is
completely fundamental, a contradiction.

(iii) (ii). Suppose (iii) holds. Let L be magic lbeling of G of index 2.
Let G" be the spanning subgraph of G whose edges e satisfy L(e) > 0. If
L(e) 2, then e is either a loop or a single edge component of G". The remaining
components of G" hve L(e) 1. Such a component must be a cycle or a path
(possibly void) with loop at each end. Any path with loop at each end
possesses a spanning subgraph whose components are loops or single edges.
Hence by assumption every cycle in G’ of length greater than or equal to 3
hs even length. It is now easy to decompose L into two magic labelings of
index one. Hence L is not completely fundamental. By Proposition 2.7;
(ii) follows.

COO,LAY 2.10. I] G is a finite pseudograph satis]ying either o] the three
(equivalent) conditions o] Proposition 2.9, then Qa(r) (as defined by Corollary, 2.8)
is O. In particular, Q((r) 0 i]G minus its loops is bipartite, since a bipartite
graph has no cycles o] odd length.

Example. Let G be any spanning subgraph of the wheel W C-1 KI
[10; p. 46], where p is even. Then G has no loops and satisfies the conditions
of Proposition 2.9. Moreover, precisely 2-1 of these spanning subgraphs G
of W are positive (including W itself) and many of these positive spanning,
subgraphs (such as W when p > 2) are not bipartite. Hence the first sentence
of Corollary 2.10 is stronger than the second sentence. The spanning subgraphs
G of W p even, have the additionul interesting property that the graded
module M corresponding to the completely fundamental (or fundamental)
magic labelings is ]ree on one generator [0]. It follows that Ha(r) o, or

H, (r) (r + m)m
where m deg P(r).

We mention that on the other extreme from W, p even, are the wheels W,
with p odd. Any spanning subgraph G of W p odd, possesses no magic
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labelings of odd index; so Pa(r) Qa(r). This is true of any pseudograph
with p odd and with no loops.
Example. This example shows that unfortunately the conditions, of Proposi-

tion 2.9 are not necessary for Qa(r) 0. Let G and G be disjoint copies of
the complete 4-graph K with one edge removed. Let G consist of G, G,., and
an edge connecting a vertex of degree two in G to a vertex of degree two ia G.
Then Ha(r)= (r +3 3) ’bu G has a completely fundamental magic labeling

of index two.
Hilbert functions. Let G be a finite pseudograph and L L, a set of

nonzero magic labelings satisfying condition (ii) of Proposition 2.2. Form the
corresponding ring R K[X X] and the module M as before so M is
finitely generated by Proposition 2.2. We have considered R and M to be
graded by the semigroup of all magic labelings, but it is possible to take less
discriminating gradings. Define an N-grading on R by letting each X be a
homogeneous element whose degree is the index of L, and define an N-grading
on M by letting [L] be a homogeneous element whose degree is the index of L
for all L . Thus a K-basis for M, the r-th homogeneous component of M,
consists of all symbols [L] such that L is magic of index r. Hence dim M,
Ha(r). Now dim M is by definition the Hilbert ]unction of M; so we see that
Ha(r) is a Hilbert function.

If each X has degree one (the classical case considered by Hilbert), then
tIilbert showed that dim M agrees with a polynomial for r sufficiently large,
the Hilbert polynomial of M. This is in accordance with Corollary 2.8 and
Corollary 2.10. Since we will prove that Ha(r) is a polynomial for all r N
(when each X has degree one), we see that Ha(r) is actually the Hilbert poly-
nomial of M. The easy generalization of Hilbert’s result to the case where
degX is an arbitrary positive integer was first observed by Serre (cf. [3; Theorem
11.1]).

3. The Elliott-MacMahon algorithm. We now wish to prove that Ha(r)
Pa(r) -}- (- 1)rQa(r) for all r @ N. We have shown that the generating function
Fa(1, 1, ..., 1, y) of (14), which we will abbreviate as Fa(y) Fa(1, 1, ’... 1, y),
has the form N(y)/(1 y)a(1 y2)b, where N(y) is a polynomial in y and
a, b @ N. By well-known properties of rational functions, the statement that
Ha(r) P(r) - (- 1)rQ(r) for all r N is then equivalent to deg Fa(y) < O,
i.e., deg N(y) a 2b < 0. (When Q(r) 0 we may tuke b 0, but this
has no effect on the argument.)
We know from (2) and (3) that magic labelings of G correspond to N-solutions

of a system P, 0, v V, of homogeneous linear equations with integral
coefficients. The algorithm of Elliott-MacMahon allows the explicit determina-
tion of the generating function F(x) of (8) corresponding to a system (4).
We shall complete our proofs by an analysis of this algorithm.
We proceed to describe the Elliott-MacMahon algorithm or the EM-algorithm
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for short. Elliott [6] defined the algorithm only for one equation P 0, while
MacMahon [14; VIII] extended it to finitely many equations and gave several
iteresting applications. In particular, MacMahon [14; Paragraph 407] verified
the nd-Dur-Gupt conjecture in the cse n 3 by showing

Suose we have a system () of linear homogeneous equations Mgh integer
eoeeiens. or each form P P(, .) of (4) associate a variable X,
and for each variable associate a new variable. orm he erude generag
feion"

(15) ff (1 X’,, ---X;’x)-
where a is the coefficient of z in P (so a can be negative). If each factor
of ff is formally expanded as a Laurent expansion in the M’s and if these s
Laurent expansions are formally multiplied, then it is easy to see that the
terms which do not involve any of the ’s are just the generating fction
F(x) of (8). In MacMahon’s notation $ F(x), where $ denotes those
terms of ff free from ’s.
We compute as follows. Suppose two factors (1 A) and (1 B) in

the denominator of ff involve a variable , one to a negative power and one to
a positive power. Apply the identity

1 1
1 1 B(a) (-- (-) (1-- e)

his breaks o hree erms. For each of hese erms apply he same pro-
eedure whenever possible, i.e., whenever in some erm some faegor eongains a
ariable X wih a positive exponen and another factor contains X Mh a
negagive exponent. Continue his process until no longer possible, i.e., ungil

is expressed he form

(17) ff (1-- A)(1--B) (1 D)

where in each term 1/(1 A)(1 B) (1 D) each variable h has
always a nonnegative exponent or nonpositive exponent (the choice dependg
on i).
To see that this process does indeed terminate in (17), i.e., does not contue

indefinitely, define the weight of a term 1/(1 A)(1 B) (1 D)
occurrg at any stage of the algorithm to be the sum of the absolute values of
the exponents of all h’s appearing in this term. Now it is easily seen that if a
monomial A has some th a nonzero exponent and another monomial B has

with a nonzero exponent of the opposite sign, then the weight of 1/(1 A)
(1 B) is strictly greater than the weight of 1/(1 AB)(1 A), 1/(1
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AB)(1 B), and 1/(1 AB). Hence after each step of the algorithm we have
replaced a term with three terms of smaller weight. Clearly a term of weight 0
cannot be reduced any further--it is free from ’s. (Of course an irreducible
term may also have positive weight.) Thus the algorithm has a tree-like struc-
ture with each node except endpoints having three successors and with no chain
of length more than the weight of as expressed in (15). Such a tree must be
finite; so the algorithm indeed terminates. A crude upper bound for the number
of steps is, 1 -k 3 35 -k -k 3w-l, where w is the weight of as expressed
in (15), i.e., w is the sum of the absolute values of the coefficients of the forms
P1, P of (4).
We can now read off the generating function F(x) directly from (17). In any

term q-l/(1 A)(1 B) (1 D) retain only those factors 1 X which
are free from the M’s. Thus F(x) is expressed in the form

(18)
+/-1

z2,(1 X)(1 Y) (1 Z)

where X, Y, Z ’are monomials 1.. .x, and each / ll.
The reader who may be mystified by our sketchy description will benefit

considerably by examining the examples worked out by Elliott and MacMahon.
The following simple result will be useful in what follows.

LEMM_ 3.1. Suppose at any stage o] the EM-algorithn applied to the system (4).... " Then or all isome denominator has a ]actor 1 h , x x,
1, 2, p we have P(a a.) a

Proo]. The proof is by induction on the steps of the ElI-algorithm. At the

beginning we have (15), and P(0, 0, 1, 0, 0) ai is .clear. It
suffices to show that if the lemma holds for the factors 1 ),’ x" and
1 ’ ,’x, then it holds for 1 x’+’,. /x"/. But this follows
from the linearity property P, (a ) P, (a) q- P, ().
We now wish to analyze the EYl-algorithm in further detail. We first require

some preliminary discussion. In general, standard notation and terminology
from combinatorial topology will be employed; confer, e.g., [8]. We shall also
use, however, some terminology of our own, as follows.
By a nonnegative integral polyhedral cone or NIP-cone, for short, in R’ we mean

a set of nonnegative integer vectors in R’, including the origin, such that the
convex hull of is a polyhedral cone (in the usual sense) for which every
integer vector in is in . Observe that the ll-solutions of a system (4) of
linear homogeneous equations with integer coefficients form an NIP-cone in

is said to be t-dimensional if the vector space over R spanned by has dimen-
sion t (equivalently, the rank of the free abelian group generated by is t).
A boundary ]ace of consists of the intersection of with some boundary
face ’ of of dimension greater than or equal to 0. Thus the origin is always
a boundary face of , while the null set is not. If a boundary face ’ of



MAGIC LABELINGS OF GRAPHS 621

there exist integer vectors a

is a d-dimensional cone, then ’ is a d-dimensional NIP-cone. The boundary
of , denoted 0 (, consists of the union of all boundary faces of .
A lattice cone 2 consists of all N-combinations ala -t- at of some

set a, of linearly independent vectors with integer coordinates (called
integer vectors for short) such that every integer vector in the convex hull 2 of .
is in .C. We then write (al, a ). It is easily seen that the generating
set {a, is uniquely determined by 2. In order for a set of integer

a’ to generate a lattice cone, it is necessary and sufficient thatvectors a,
a’ such that the determinant

(19)

For the absolute value of the above determinant is simply the volume of the
fundamental parallelopiped spanned by the vectors a1, a, a’. (See a text
on the geometry of numbers for further details.) Note that if S generates a
lattice cone 2, then the boundary faces of are lattice cones generated by the
subsets of S.

If ( is an NIP-cone, we define a triangulation of ( to be a finite collection
A {} of lattice cones such that (a) if A, then every boundary face
of 2 is in A, (b) if and ; are in A, then their intersection 2i (% .C; is a
common boundary face 2 of 2i and ., and (c) L) 2 . Hence the convex
hulls 2. of the ’s form a triangulation of . in the usual sense.

LEMyI. 3.2. Let r be a triangulation o] a (t 1)-dimensional cell 5) (so 5) is
homeomorphic to a solid (t 1)-sphere), 1. Let ] be the number o] (i 1)-
dimensional simplices in F not contained entirely in 05). Then ]o, ]_ +
(--1)’-’I 1.

Proo]. Let f be the total number of (i 1)-simplices in r, and let be the
total number of (i 1)-simplices in 1 contained in 05). Thus ] 1, ]
Let x(5)) (respectively x(05))) denote the Euler characteristic of 5) (respectively
05)). Now 5) since >_ 1. Thus as is well known x(5)) I1 1. + -(-- 1)’-1], 1 and x(05)) ][ ] q- q- (-- 1)t-] 1 (-- 1)’-’. Hence
] 1’_ + + (--1)’-1 (--1)-111 (1 (--1)-)] 1.

Remartc. The assumption in Lemmu 3,2 that >_ 1 (or equivalently that
5) ) is not merely a matter of pedantic rigor. We shall see in the proof of
Corollary 3.10 that ,the failure of the Euler characteristic formula for 5)

explains the failure of Theorem 1.1 when G has no edges.

LE 3.3. Let 17 be a rectilinear triangulation o] a (t 1)-dimensional
convex polytope 5) R’. For any a 5 let F(a) r consist o] (a) every simplex
$ in F containing a and (b) every boundary ]ace o] these simplices . Let st (a)
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Jer (,) $. Then st (a) is a (t 1)-cell, i.e., homeomorphic to a solid (t 1)-
sphere, and F(a) is a triangulation o] st (a).

Sketch o] proo]. Since each $ F is rectilinear, it follows that st (a) is
star-shaped with respect to a. Since is convex, we can "expand" st (a) along
the rys from a to construct a homeomorphism between st (a) and . Since
F triangulates , F(a) triangulates st (a).

LEMMX 3.4. Let A be a triangulation o] a t-dimensional NIP-cone , 1.
I] a , let ](a) be the number of i-dimensional lattice cones in A containing a
and not contained entirely in 0 . Then

Proo]. First suppose a (0, 0, 0). Let (, Z) denote the triangulation
of the convex hull of obtained by taking the convex hull of each element
of h. Let e be a cross section of containing a (e.g., can be taken as the
intersection of with the hyperplane of all satisfying a. a. a). Then
is a convex polytope, and induces a rectilinear triangulation r of . Moreover,
an /-dimensional lattice cone in A corresponds to an (i 1)-simplex in r.

Define r(& and st (& as in Lemma 3.3. Thus by Lemma 3.3, r(& triangulates
the cell st (a). Now a lattice cone A corresponds to some simplex $ r(a)
which is not contaed in 0 st (a) if and only if a and is not contained in
0 . Hence the number of (i 1)-dimensional simplices F(a) which are not
contained in 0 st (a) is just ] (a). Equation (20) now follows from Lemma 3.2.

If a (0, 0, 0), then every 2 A contains a. Let be any nondegen-
erate cross section of , and let F be the triangulation of e induced by . Then
if ] is the total number of (i 1)-simplices in F which are not contained in 0e,
we have ] ](a). Thus Equation (20) for a (0, 0, 0) also follows
from Lemma 3.2.

LEMMA 3.5. Let be a lattice cone in R" generated by the vectors a, , .
Then

x 1/(1 x")(1 x) (1 x)

where the sum is over all integer vectors in the convex hull o] 2.

Proo]. By definition of a lattice cone, the vectors simply range over the
elements a.a W a W a of 2, a N. But

1 (o x")(x) (x)(X xa)(1-- x) (1--x)

LEMMX 3.6. Let h be a triangulation o] a t-dimensional NIP-cone , 1.
Define F(x) x, where ranges over all elements o] a. Then
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F(x)
,=, x )

where ]or a given value o] i the inner sum ranges over all i-dimensional lattice cones
(a, ) in/x which are not contained in 0 e.

Prool. If oa e, then clearly the coefficient of x in the fight-hand side
of (21) is 0, since the lattice cones {, 6) lie in e.
Now suppose that e. Suppose o lies in 1] (w) /-dimensional lattice cones

a3 in A which are not contained in 0 e. Thus using Lemma 3.5, we see that the
coefficient of x in the right-hand side of (21) is ](w) ],_l(w + +
(-1)’-1/(). Hence by Lemma 3.4, the coefficient of x is 1.
We are now ready to reconsider the EM-algorithm. The steps of the algorithm

are of course not uniquely determined, since at any stage one is free to choose
in any term any two factors 1 A and 1 B in applying (16) so long as the
exponent of some , is positive in either A or B and negative in the other. In
particular, the algorithm may be performed in accordance with the following
rule.

(R) Choose any appropriate pair 1 A and 1 B and apply the reduction
(16) simultaneously to every term for which (1 A)(1 B) appears in the
denominator.
Use of the rule (R) leads to a simple geometric interpretation of the EM-

algorithm, which we now explain. Suppose that T 4-1/(1 A)(1 B)
(1 D) is a term appearing at any stage of the EM-algorithm. When we set
each 1 in the term T, we get an expression 4-1/(1 x")(1 x) (1
x). If the vectors a,/3, 6 happen to generate a lattice cone , we say that

is the lattice cone corresponding to T.

LEMMA 3.7. I] T is any term appearing at any stage o] the EM-algorithm,
then T corresponds to some lattice cone .

Proof. The proof is by induction on the steps of the EM-algorithm. At the
beginning of the algorithm we have a single term (15), which clearly corresponds
to the lattice cone eo of all nonnegative integer vectors in R (generated by the s
"unit coordinate vectors"). Suppose now that the term

T +/-1/(1 A)(1 B)(1 C) (1 D)

has been obtained corresponding to the lattice cone (a, /3, ,, 6). If the
reduction (16) is applied to T, say to the factors 1 A and 1 B, we obtain
three new terms, vi.,

T 4-1/(1 A)(1 AB)(1 C) (1 D)

T= 4-1/(1 AB)(1 B)(1 C) (1 D)

Ta q::l/(1 AB)(1 C).." (1 n).
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When we set each 1 in these three terms, we obtain

4-1/(1 x)(1 x+)(1 xu) (1

4-1/(1 x+e)(1 x)(1 x) (1 x)
q=l/(1 x+)(1 x’) (1 x).

Thus we need to show that if , 5, % generates lattice cone, then so do
{oe, o + 5, % }, {o + 5, 5, % }, nd { -k S, % "",}. But this
is an elementary fact which can easily be proved directly or from (19) and the
determinantal identity

I-Ienee the proof follows by induction.

Lmt a.8. Sppoe a ome age oJ he EM-alorihm, perJormed ie ac-
cordance wih he rle (R), we hve

(22) fi; 4- 1/(1 A)(1 B) (1 D).

Let 131 22 2 be tle s-dimensional lattice cones corresponding to the terms
in (22) with s Jactors (with s as in (15)). Then 21, 22 2 together with all
their boundary ]aces ]orm a triangulation A o] the NIP-cone eo o] all nonnegative
integer vectors in R8. Moreover, any term 4-1/(1 A)(1 B) (1 D)o] (22)
corresponds to some lattice cone in k. (Conversely, an i-dimensional lattice cone
in A corresponds to some term T 4-1/(1 A)(1 B) (1 D)
and only i] 2. is not contained in 0 eo in which case the correct sign o] T is (- 1)-.)

Proof. As in the previous lemma, the proof is by induction on the steps of
the EM-algorithm. At the beginning of the algorithm the lemma is clear, since
here A consists of the single s-dimensional lattice cone eo together with its
boundary faces. Suppose now that we have reached the expression (22) and
that the lemma holds in this case. Suppose that the rule (R) is now applied
to factors 1 A1 and 1 A2, where when we set each X 1, A1 becomes
x" and A,. becomes x. Note that the following holds by Lemma 3.1.

(*) If after setting each X 1 some monomial B becomes x" (respectively
some monomial C becomes x), then B A1 (respectively C A2).

Let 2[, 2, 2 be the s-dimensional lattice cones corresponding to the
s-factor terms in the new expression for ft. It is clear that a lattice cone 13 is
one of the 13,’. if and only if either (a) 13 is some 13 not containing both a and in
its set of generators or (b) for some 13 (a, 5, % 8), 13 is either
% } or (a q- ,/, % i} (since by (*) such an 13, can always be reduced



MAGIC LABELINGS OF GRAPHS 625

via (16)). Hence the 2 are simply the s-dimensional lttice cones of sub-
division zX’ of zX, viz., the subdivision "induced" by the vector a - . (A is
the unique subdivision of A with the propery that the one-dimensional lttice
cones in A’ consist of the one-dimensional lttice cones in A together with

<a -t- 6>.) Thus the together with their boundary fces form new triangula-
tion A’ of o.

Similarly, it is esily seen by induction that every term in the new expression
for corresponds to some lttice cone in zX’.

(The converse statement in prentheses follows esily from Lemm 3.6.
Although we hve no need of this fct, nevertheless it is of use in cutting down
the mount of work which needs to be done in crrving out the EM-lgorithm
in specific cses.)

We re now redy for our min result connected with the EM-lgorithm.

THEOREM 3.9. Le P P P be a sysiem o] homogeneous linear ]orms
wih integer coeciens in ihe variables z z2 z. Le be he NIP-cone
in R o] all Ig-soluions o P, P P O. Then has a riangulation
A inio laiice cones.
Moreover, define F(x) x, where o ranges over all elements o/ a. Then

(23) F(x)
,--,

(-- 1)’-’
(1 x) (1 x)

where ]or each i the inner sum ranges over all i-dimensional lattice cones J3

<a, i> in A which are not contained in 0 and where is the dimensional o] .
Proo]. When the crude generating function of (15) is reduced to (17)

using the rule (R), we obtain F(x) by picking out the fctors of each term
4-1/(1 A)(1 B) (1 D) free from the ’s. By Lemm 3.8 these
fctors correspond to boundary fce of some 2 A and hence to some ’ A,
where A is the triangulation of eo obtained t the termination of the EM-
lgorithm vi Lemm 3.8.
Now since A is triangulation of o, the lttice cones 2’ A obtained s

above together with their boundary faces must form triangulation A of their
union 1. Moreover, if a is generator of one of these 2’, then it ws obtained
from fctor 1 x free from ’s in the denominator of the reduced form (17)
of Y. Then by Lemm 3.1, P() 0 for i 1, 2, p, i.e., is an lg-solution

to the system (4). Since lg-combintions of N-solutions re lg-soluUons, 5:) is
certainly subset of ll N-solutions. But by construction of the EM-lgorithm
we obtain F(x) ee x t the finish; on the other hand, we can only obtain
nonzero coefficients of the terms x with a 55. Hence e 5); so A triangu-
lates e into lattice cones.

Equation (23) is simply an instance of Lemma 3.6, and so the proof is com-
plete.
We at lasg return to magic labelings of pseudographs.
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COROLLARY 3.10. Let G be a finite positive pseudograph with at least one edge.
I Pa(r) and Qa(r) are as in Corollary 2.8, then Ha(r) Pa(r) -b (-1)rQa(r)
lor all r N.

ProoI. Letel, ,ebetheedgesofG, andletFa(xl, x y) be the
generating function given by (13). Theorem 3.9 now allows Fa(x, x, y)
to be expressed in the form (23), provided the NIP-cone of magic labelings of G
does not consist only of the zero labeling (accounting for our hypothesis that G is
positive with at least one edge). (This explains the anomaly that if the only
magic labeling of G is the zero labeling, then Ha(r) =tior which does not
satisfy Theorem 1.1.) But Fa(y) Fa(1, 1, y);so from (23) we obtain.an
expression for F((y) of the form

(24) Fa(y) (-1)’-’ E (1 yC)-i
i.-1

Now in (24) each c 0 since each vector , appearing in (23) is a nonzero
solution to the system P P2 P 0, and every nonzero magic
labeling of G has index strictly greater than 0. Thus (24) expresses Fa(y) as a
linear combination of rational functions of degree strictly less than 0; so F((y)
has degree strictly less than 0. As remarked at the beginning of this section,
this gives the desired result. (Note that from (18) alone we can conclude
deg Fa(y)

_
O, i.e., H((r) Pa(r) -b (-1)rQa(r) for all r > 0. However, it

does not seem a priori evident that the +/- 1 terms in (18), corresponding to void
products (1 X)(1 Y) (1 Z), cancel out.)
We have therefore completed the proofs of the statements in Theorems 1.1

and 1.2 about Ha(r). The statements about/o(r) then follow trivially from
Theorem 1.3 and the formulas Ha(0) 1, /a(0) 0; so it remains only to
prove Theorem 1.3.

Conjecture. If A is a triangulation into lattice cones of the NIP-c0ne C of all
N-solutions to the system (4), it is easy to see that every fundamentalsolution
a to (4) is a generator of some 2 A (otherwise x" would not appear in the
expansion of the right-hand side of (23)). We conjecture that A can, be chosen
so that every generator of every 2 A is a fundamental solution to (4)., The
reader can check that although this conjecture is valid for the equation 2x q-
3x 6x, no such triangulation can be obtained via the EM-algorithm. Hence
it appears that a proof of this conjecture (if true) would require new techniques.
One consequence of this conjecture is the following. Suppose the conjecture

is true for the magic labelings of the complete bipartite graph K.. (the Anand-
Dumir-Gupta case). (One can show that the conjecture is indeed true here
when n

_
3.) Let A be a triangulation into lattice cones of the NIP-cone C of

all magic labelings of K.. such that every generator of every lattice cone in A
has index one. Let be the number of /-faces of the triangulated convex
polytope ((P, F) given by a nondegenerate cross section of (, ). Then. H,(r-1)

’-.2)o f)or, equivalently, A’H.(1) f,. Thus the numbers AH(1)
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(assuming the validity of the conjecture) have a geometric interpretation.
Moreover, the equalities Hn(-1) Hn(-2) H,(-n + 1) 0 and
H,(r) (-1)’-lH,(-n r) impose a kind of Dehn-Sommerville relation on
the I’s [8; Chapter 9]. For reference we record

12

and

H4(r 1)- 24 258(;) -[- 1468() -{- 4945() + 10532() 14620()

4. A reciprocity theorem. Using Theorem 3.9, we will prove a general
"reciprocity theorem" concerning integer solutions to linear equations. From
this reciprocity theorem, Theorem 1.3 will follow easily.

THEOREM 4.1. Let P1, P, be a system o homogeneous linear iorms, with
integer coecients in the variaSles zl z. Suppose that the equations P

P 0 have at least one solution in positive integers. Define generating
lunctions F(x) F(xl x.) and/(x) (x x.) by E(x) x
and/(x) x, where ranges over all solutions to PI P 0
in nonnegative integers while ranges over all solutions in positive integers. Then
F(x) and/(x) are rational ]unctions o] the x,’s related by (x x,)
(-1)’E(1/x 1/x.), where is the dimension o] the NIP-cone e o] solutions
to P P 0 in nonnegative integers.

Proo]. The assumption that there is a positive solution to P P. 0
is equivalent to the statement that the positive solutions consist of the interior
points (nonboundary points) of e. Let A be a triangulation of into lattice
cones as guaranteed by Theorem 3.9. Then an interior point of is an interior
point of a unique A not contained in 0. Conversely, if A is not
contained in 0, then an interior point of is an interior poin of e. Hence

where ranges over all lattice cones in h not contained in O and i" ranges over
all points in the interior of . If (a, ), then it is clear that the inner
sum in (25) is given by

Xa+ ...+

SO

(26)

x")... x

(1 x") x
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where now for each i the inner sum ranges over all/-dimensional lattice cones
(a, i) in h which are not contained in 0. Comparing (26) with (23),
we obtain the desired result.
The proof of Theorem 1.3 now depends on the following simple lemma, whose

straightforward proof using partial fractions we omit.

LEMX 4.2. Let {H(i)}, i Z, be a doubly-infinite sequence o] complex
numbers satisfying for all N Z the recurrence

(27) H(N + n) + a._IH(N + n 1) + + soU(N) 0

where n is a fixed nonnegative integer and Co al a._ are fixed complex
numbers. Define F(y) .-o H(r)Y and #(y) ., H(-r)y. Then F(y)
and (y) are rational ]unctions o] y related by (y) F(1/y).

Proo] o] Theorem 1.3. Suppose P and Q are polynomials and H(r) P(r)
(-1)rQ(r). Let F(y) o H(r)Y. Now it is a basic fact from the theory of
linear difference equations with constant coefficients that a sequence H’(r),
r Z, satisfies a recursion of the form (27) if and only if there are complex
numbers # /3t and polynomials P(r), P,(r) such that H(r)

P,(r)# for all r Z. In particular, H(r) satisfies a recursion of the form
(27), with fll 1,/3,. -1, P,(r) P(r), and P2(r) q(r). Thus by Lemma
4.2,

(28) H(-r)y --F(1/y).

The assumption that G is a positive pseudograph implies the existence of a
positive integer solution to (3); so Theorem 4.1 applies to the generating function
Fo(xl x, y) of (13). Thus with fo(xl x y) as in Theorem 4.1,

(29) fo(x x, y) (-1)’F --,
\Xx Xq

If we let Fo(y) o go(r)Y and fa(y) a(r)y, then Fo(y)
Fa(1, 1, y) and #(y) re(l, 1, y). Hence by (29), #a(y)
(- 1)’Fa(1/y). Comparing with (28) gives

(3o) B.(r) (-a)’-H(-r), r > O.

Theorem 1.1 now implies that (30) also holds for r < 0. Finally, it is easily
seen that deg Pa(r) 1 (see the proof of Proposition 5.2); so the proof is
complete.
A remark on magic hypercubes. Let Hn.(r) denote the number of n X n X
X n (d times) d-dimensional hypercubes of nonnegative integers summing

to r on all dn- "lines". If follows from Theorem 3.9 that we can write

(31) Ha.(r) P,(r)’,
i,l
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where i* is a p-th root of unity for some positive integer p and where each P(r)
is a polynomial in r (depending on d and n). Hence H(-r) can be defined.
It now follows from Theorem 4.1 and Lemma 4.2, in the same way that Corollary
1.4 follows from Theorem 1.3, that H(-r) 0, r 1, 2, n 1, and
H,(.-n r) (-1)’-H(r). When d 3 this establishes a conjecture of
Gupta and Nath [9], who compute H(r). The problem of finding the least
possible value of p in (31) (as a function of d and n) appears very difficult,
though of course by Theorem 1.2 we know p 1 when d 2.

$. Miscellaneous. We have succeeded in our aim of proving Theorems
1.1-1.3. If, however, one wishes to compute Pe(r) and Q(r) for a given pseudo-
graph G, it is convenient to be able to determine deg Pq and deg Qa, since then
one needs only compute H(r) for sufficiently many values of r. Note that
Theorems 1.2 and 1.3 and Corollary 1.4 frequently reduce the number of values
of He(r) that need to be computed. An example of such a computation is
provided later. We begin with a simple result concerning linear homogeneous
equations.

PROPOSITION 5.1. Let (4) be a system o] linear homogeneous equations with
integer coecients possessing a solution in positive integers. Then the dimension
o] the NIP-cone o] all N-solutions to (4) is equal to the coran o] the system (4),
i.e., s p, where s is the number o] variables and p is the rank o] (4).

Proof. By elementary linear algebra the vector space V of all rational solu-
tions to (4) has dimension (without any hypothesis on positivity). Since every
N-solution is a rational solution, we have _< . Let be a P-solution to (4),
and let be any rational solution. For some integer m 0, m is an integer
vector. For sufficiently large n P, na mf is an N-vector % Thus
(1/m)(no .) so _> , and the proof is complete.
The hypothesis in Proposition 5.1 that (4) has a P-solution cannot be removed.

For instance, the equation x - x 0 has corank 1 but 0.
Remark. Let M be the R K[X, Xo]-module corresponding to a set

a, of nonzero N-solutions to (4) satisfying Proposition 2.2 (ii) (so M is
finitely-generated). Then it is not hard to see that the dimension of M, i.e.,
the Krull dimension of the ring R/Ann(M), where Ann(M) is the ideal of R
which annihilates M, is equal to the dimension of the NIP-cone of all N-
solutions to (4). In particular, if (4) has a P-solution, then by Proposition 5.1
we have dim (M) .

If a pseudograph G is not connected, say G K - L, then it is clear that
Ha(r) H:(r)H(r). Hence we consider only connected pseudographs in
the next proposition.

PROPOSiTiON 5.2. Let G be a finite connected positive pseudograph with
p vertices and q 1 edges. Then

deg Pv(r) q p - 1 i]G is bipartite

!q p i] G is not bipartite.
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Moreover, deg Qa(r)

_
deg Pe(r).

Proo]. By, e.g., partial fractions, deg P is one less than the highest order to
which 1 is a pole of the rational function F(y) o H(r)Yr. From Equation
(24) we get deg P 1, where is the dimension of the NIP-cone e of all
magic labelings of G. Now by Proposition 5.1, is equal to the dimension of
the vector space Vz of all rational solutions to (3). Following, Stewart [20],
we call an element of V a semi-magic labeling of G.

Stewart [20; Corollary 2.4] has shown that if G is not bipartite, then dim V
q p - 1. (Although Stewart does not allow loops and multiple edges, his
proof does not depend on this fact.) Thus when G is not bipartite, deg P
dim Va 1 q p. Suppose G is bipartite, say with every edge connecting
a vertex in V1 to one in V., where V1 L; V2 V, V V2 . It is evident
that the positivity of G implies IVi IV], say V {v, v} and V
{v,’ v’}. Let G’ be the pseudograph obtained from G by adding a loop
eo at vl. Then G is not bipartite; so by Stewart’s result dim V, q p 2,
where q is the number of edges of G (so G’ has q 1 edges). Suppose S is a
semi-magic labeling of G’ of index r. Now , S(e) ,, S(e’) nr, where
e ranges over all e E incident to some v V1 and e’ ranges over all e’ E
incident to some v’ V. But every edge except the loop eo is incident to some
v V1 and some v’ V. Thus 0 , S(e) _,,, S(e’) S(eo). Therefore
dimVa, dimVa ;sodegPa dimV- 1 q- p + 1.

Finally, if deg Qa > deg Pa, then for sufficiently large r of the appropriate
parity Ha(r) would be negative, which is absurd.
That deg Pa deg Qq is possible follows, for example, from taking G to be an

odd cycle. Here Pa(r) Qe(r) 1/2. A further example is the wheel W,
p odd, discussed after Corollary 2.10.

Problem. Find a better upper bound (in terms of the structure of G) on
deg Qa(r) than the one given in Proposition 5.2. In view of the second example
following Corollary 2.10, it seems unlikely that a simple explicit expression for
deg Qa(r) exists.
Example. In the Anand-Dumir-Gupta conjecture, G is bipartite with

p 2n, q n. HencedegH(r) q- p 1 (n- 1). In theCarlitz

eonieeture, G is not bipartite and p n, I-Ienee deg Po(r)

p (). (There is a misprint in [], where Carlit makes a eonieeture

Nample. We illustrate the application of our results to computing a specific
example. Let T(r) be the number of 4: 4: matrices of nonnegaive integers
summing to r in every row and column, with ero raee. This corresponds to
taking G to be the complete bipartite graph K. with a matching (1-factor)
removed. (G is also isomorphic to the 1-skeleton of a cube.) By Theorem 1.2,
T(r) is a polynomial ia r. Since p 8 and q 12, by Proposition 5.2 we have
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deg T(r) q p -t- 1 5. Since G is regular of degree 3, by Corollary 1.4
we have T(- 1) T(- 2) 0 and T(r) T(-3 r). Of course also
T(0) 1. Thus if we know the value T(1), we then know T(r) for --4
r _< 1, and these six values determine T(r) uniquely. Now T(1) is easily
computed to be 9 (the number of permutations without fixed points on 4 objects),
from which we quickly obtain

T4(r) (r .5)-t-3(r 5 4) 3(r5 3) (r 5 2).
We list some additional functions Ha(r) which we have computed in terms

of the generating function F(r) _,r.o Ha(r)y.
(a) The Petersen graph [10; Figure 9.6]"

F(y) (1 + y + 6y + y + y)/(1 y)(1 + y).

(b) The product C X K (first graph on the cover of [10])"

Fa(y) (1 + 6y - lly + 6y + y4)/(1 y)(1 - y).

(c) The 1-skeleton of the octahedron"

Fa(y) (1 -t- 2y - 6y - 2y - y)/(1 y)7(1 + y).

(d) The 4 X 4 checkerboard (the vertices of G are the squares, and edges
connect two squares with a line in common so p 16, q 24)"

Fa(y) (1 + 26y -{- 131y -t- 212y -t- 131y’ -{- 26y -t- y)/(1 y),O.

Is there n a priori theoretical reason why the numerator is divisible by (1 -{- y)
(e) A triangle with two loops at each vertex (corresponds to 3 X 3 symmetric

matrices with line sums less than or equal to r)"

Fq(y) (1 - 8y + 15y + 8y - y’)/(1 y)7(1 + y).

(f) The wheel W "F(y) (1

(g) The wheel W "F(y) (1 - 12y + 21y - 4y6)/(1 y2)6.

(h) The wheel W9 "F(y) (1 + 24y + 92y + 64y -{- 6y8)/(1 y.)8.

In general, if G is positive, then the degree of the rational function Fa(y) is
-m, where m is the least positive integer for which a positive magic labeling of
G of index m exists. The leading coefficient of the numerator of Fa(y) (reduced
to lowest terms) is then equal to the number/a(m) of positive magic labelings
of indexm. For example, if G is the wheel W/I, then the numerator of Fa(y)
has degree 2i and leading coefficient 2i 2.

Addendum. I am grateful to K. Baclawski for calling my attention to the
work of Eugene Ehrhart, which is closely related to the results of this paper.
The following papers in particular are significant.
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Sur un problme de g$om$trie diophantine lin$aire, I, II, J. Reine Angew.
Math., Voh 226(1967), pp. 1-29 and Voh 227(1967), pp. 25-49.

D$monstration de la loi de r$ciprocitd du polydre rationnel, C. R. Acad. Sci.
Paris, Voh 265A(1967), pp. 91-94.
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