
ADDITIONAL EXERCISES

for Enumerative Combinatorics

by Richard P. Stanley

version of 15 July 2024

Here are some extra exercises for EC1 and EC2. Possibly some of them
inadvertently already appear in EC1 and EC2. A few solutions, hints, ref-
erences, etc., are included at the end of this manuscript. Some of these
problems deserve an attribution to whoever submitted or solved them, but I
have been unable to find this information.

CHAPTER 1

1. Call two permutations u, v ∈ Sn equivalent if v can be obtained from u
by sequentially interchanging adjacent elements that differ by 1 (clearly
an equivalence relation). For instance, the equivalence classes for n = 3
are {123, 213, 312} and {231, 321, 312}.

(a) [3–] Let f(n) be the number of equivalence classes in Sn, with
f(0) = 1. Find a simple formula for f(n) as a finite sum. Use this
to express the generating function F (x) =

∑

n≥0 f(n)x
n in terms

of the power series G(x) =
∑

n≥0 n! x
n.

(b) [2+] Show that the size of every equivalence class is a product of
Fibonacci numbers.

(c) [3–] Let N(n) be the number of one-element equivalance classes
in Sn. Express the generating function

∑

n≥0N(n)xn in terms of
G(x).

2. (a) [2] Let 0 ≤ k ≤ 2. Show that for n ≥ 3, the number of per-
mutations w ∈ Sn whose number of inversions is congruent to k
modulo 3 is independent of k. For instance, when n = 3 there are
two permutations with 0 or 3 inversions, two with one inversion,
and two with two inversions.

(b) [2+] Let M be the multiset {1a1 , . . . , kak}, where each ai ∈ P.
Find a simple characterization of those sequences (a1, . . . , ak) for
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which the number of permutations of M with an even number of
inversions is equal to the number with an odd number of inver-
sions. Your condition should not involve any sums.

3. [3] Let σ(n, k) be the number of surjections [n] → [k]. Regarding n
as fixed, let cn be the value of k that maximizes σ(n, k). Show that
cn ∼ n/(2 log 2) ≈ 0.7213475n.

4. [2+] Show by simple combinatorial reasoning that the Bell number
B(n) is even if and only if n ≡ 2 (mod 3).

5. (a) [2+] For id 6= w ∈ Sn, let m1(w) be the smallest element of the
descent set D(w). Set m1(id) = 0. Find the expected value E1(n)
of m1(w) over all w ∈ Sn. Express your answer as a simple sum.
Find δ1 := limn→∞E1(n).

(b) [3] Let mk(w) denote the kth smallest element of D(w). Set
mk(w) = 0 if des(w) < k. Let δk := limn→∞Ek(n), where Ek(n) is
the expected value of mk(w) for w ∈ Sn. Find an explicit formula
for the power series

∑

k≥1 δkx
k and an asymptotic formula for δk

as k → ∞.

6. [2+] Let f(n) be the number of ways to choose a permutation w ∈ Sn

and then choose an element of each cycle of w. (Set f(0) = 1.) Find a
simple formula (no infinite sums, in particular) for

∑

n≥0 f(n)
xn

n!
. (You

don’t need to find a formula for f(n).)

7. (a) [2+] Let 1 ≤ a ≤ b ≤ c ≤ d with ad = bc. Show that
(

a+d
a

)

≤
(

b+c
b

)

.

(b) [5–] Show that the polynomial
(

b+c

b

)

−
(

a+d

a

)

has nonnegative co-

efficients. Here
(

n

k

)

denotes a q-binomial coefficient.

(c) [5–] Show in fact that the coefficients of
(

b+c

b

)

−
(

a+d

a

)

are uni-
modal.

8. [3–] Let p be a prime. Find a simple description of all positive integers
d with the following property:

A(d, k) ≡ (−1)k−1

(

d− 1

k − 1

)

(mod p), for all 1 ≤ k ≤ d,

where A(d, k) is an Eulerian number.
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9. [3] For S, T ⊆ [n−1], define βn(S, T ) to be the number of permutations
w ∈ Sn satisfying D(w) = S and D(w−1) = T . Let An be the 2n−1 ×
2n−1 matrix whose rows and columns are indexed by subsets of [n−1] (in
some order), and whose (S, T )-entry is βn(S, T ). Show that rank(An) =
p(n), the number of partitions of n.

10. (a) [2+] Fix n ≥ 1. Let oa(n) be the number of sets S ⊆ [n − 1] for
which αn(S) is odd. Find a simple formula for oa(n) involving
the number f(m) of ordered set partitions of an m-element set.
Note. Though irrelevant here, we have by Example 3.18.10 that
∑

m≥0 f(m)x
m

m!
= 1/(2− ex).

(b) [3] Fix n ≥ 1. Let ob(n) be the number of sets S ⊆ [n − 1] for
which βn(S) is odd. Is ob(n) always a power of 2?

Note. For some analogous problems, see Exercises 1.14(b), 1.15, 4.25,
and 7.15.

11. [2] Let f(n) be the number of partitions of n for which each part occurs
at most twice. For instance, f(5) = 5, the partitions being 5, 41, 32,
311, 221. Let g(n) be the number of partitions of n whose parts are
not divisible by three, Show that f(n) = g(n) for all n ≥ 0.

12. (a) [2+] What curious property does the following power series pos-
sess?

F (x) = x− 1

2
x+

1

4
x2 − 1

8
x5 +

13

64
x7 − 145

256
x9 +

291

128
x11

−6223

512
x13 +

1358965

16384
x15 + · · ·

(b) [5–] Is there a “reasonable” formula for the coefficients?

13. [3–] Let fn(q) be the number of pairs (A,B) of n× n matrices over Fq

satisfying AB = BA. Show that (using notation from Section 1.10)

∑

n≥0

fn(q)
xn

γn(q)
=
∏

i≥1

∏

j≥0

(1− q1−jxi)−1.

CHAPTER 2

3



1. [2+] Let f(n) be the number of permutations w ∈ S2n such that we
never have w(i) = i for 1 ≤ i ≤ n (not 1 ≤ i ≤ 2n). Find a formula for
f(n) involving a single summation symbol, and find a simple expression
(no summations) for limn→∞ f(n)/(2n)!.

CHAPTER 3

1. [2] Find a finite poset P with the following property, or show that no
such P exists. The longest chain in P hasm elements. P can be written
as a union of two chains C1 and C2, but cannot be written in this way
where #C1 = m.

2. (a) [3–] Find a finite poset P with the following property. The auto-
morphism group Aut(P ) acts transitively on the set M of minimal
elements of P . Moreover, the restriction of Aut(P ) to M does not
contain a full cycle of the elements of M .

(b) [5–] Does such a poset exist if all maximal chains have two ele-
ments?

3. [2+] Let w = t1, . . . , tp be a permutation of the elements of a finite poset
P . Call a permutation w′ a permissible swap of w if it is obtained from
w by interchanging some ti and ti+1 where ti < ti+1. Clearly a sequence
of permissible swaps must eventually terminate in a permutation v that
has no permissible swaps. Show that v is independent of the sequence
of permissible swaps.

4. [2+] Let 0 ≤ p ≤ 1, and let P be a finite n-element poset with 0̂ and
1̂. Let σ : P [n] be a linear extension of P . Define a random digraph D
on the vertex set [n] as follows. For each s < t in P , choose the edge
s → t of D with probability p.

Now start at the vertex 0̂ of D. If there is an arrow from 0̂, then move
to the vertex t for which 0̂ → t is an edge of D and σ(t) is as small as
possible; otherwise stop. Continue this procedure (always moving from
a vertex u to a vertex v for which u → v is an edge of D and σ(v) is as
small as possible) until unable to continue. What is the probability that
we end at vertex 1̂? Try to give an elegant proof avoiding recurrence
relations, linear algebra, etc.
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5. (a) [2+] Let f(n) be the average value of µP (0̂, 1̂), where P ranges
over all (induced) subposets of the boolean algebra Bn containing
0̂ and 1̂. (The number of such P is 22

n−2.) Define the Genocchi

number Gn by
∑

n≥0

Gn
xn

n!
=

2x

1 + ex
,

as in Exercise 5.8(d). Show that f(n) = 2Gn+1/(n+ 1).

(b) [2] It follows from (a) that f(n) = 0 when n is even. Give a
noncomputational proof.

6. (a) [2] How many nonisomorphic n-element posets contain an (n−1)-
element chain?

(b) [2] How many nonisomorphic n-element posets contain an (n−1)-
element antichain?

(c) [2–] How many nonisomorphic n-element posets contain both an
(n− 1)-elements antichain and an (n− 1)-element chains?

7. [3] Let f(n) denote the number of partial orderings of [n], so for instance
f(1) = 1, f(2) = 3, f(3) = 19. Show that for any N ∈ P, the sequence
{f(n) (modN)}n≥1 is eventually periodic.

8. [2+] Find the number f(n) of pairs (π, σ) of partitions of [n] such that
σ covers π in the lattice Πn of partitions of [n]. Express your answer in
terms of Bell numbers. It should not involve any summation symbols
or implied summations like B(0) +B(1) + · · ·+B(n).

9. [2+] Evaluate the sum

Fn :=
∑

(−1)⌊
n−1
2

⌋−k,

where the sum is over all chains ∅ ⊂ S1 ⊂ · · · ⊂ Sk ⊂ [n] of subsets of
[n] such that #Si is even for 1 ≤ i ≤ k. The chain ∅ ⊂ [n] (the case

k = 0) contributes (−1)⌊
n−1
2

⌋ to the sum.

10. (a) [2] Let Un be the set of all lattice paths λ of length n − 1 (i.e.,
with n− 1 steps), starting at (0, 0), with steps (1, 1) and (1,−1).
Thus #Un = 2n−1. Regard the n integer points on the path λ as
the elements of a poset Pλ, such that λ is the Hasse diagram of
Pλ. Find

∑

λ∈Uλ
e(Pλ).
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(b) [2+] Give Pλ the labeling ωλ by writing the numbers 1, 2, . . . , n on
the vertices along the path from left-to-right. For example, when
n = 8 one possible pair (Pλ, ωλ) is given by

Find
∑

λ∈Uλ
ΩPλ,ωλ

(m) and
∑

λ∈Uλ
WPλ,ωλ

(q).

(c) [3–] Let Vn consist of those λ ∈ Un which never fall below the x-
axis. It is well-known that #Vn =

(

n−1
⌊(n−1)/2⌋

)

. Show that
∑

λ∈Vλ
e(Pλ)

is equal to the number of permutations w ∈ Sn of odd order. A
formula for this number is given in EC2, Exercise 5.10(c) (the case
k = 2).

(d) [5–] Is there a nice bijective proof or “conceptual proof” of (c)?

(e) [5–] Are there nice expressions for
∑

λ∈Vλ
ΩPλ,ωλ

(m) and/or
∑

λ∈Vλ
WPλ,ωλ

(q)?

(f) [3–] Now let Wn consist of all λ ∈ V2n+1 that end on the x-axis.
It is well known that #Wn = Cn−1 (a Catalan number). Show
that

∑

λ∈Wn
e(Pλ) is equal to the Eulerian-Catalan number ECn =

A(2n+ 1, n+ 1)/(n+ 1) of EC1, Exercise 1.53.

11. [2+] For each permutation w ∈ Sn, let σw be the simplex in Rn defined
by

σw = {(x1, . . . , xn) ∈ Rn : 0 ≤ xw(1) ≤ xw(2) ≤ · · · ≤ xw(n) ≤ 1.

For any nonempty subset S ⊆ Sn define

XS =
⋃

w∈S
σw ⊂ Rn.

Show that XS is convex if and only if S is the set of linear extensions
of some partial ordering of [n].
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12. [2+] Let P be a finite poset with 0̂ and 1̂. For each t ∈ P define a
polynomial ft(x) with coefficients in Z[y] as follows:

f0̂(x) = y

ft(x+ y) =
∑

s≤t

fs(x).

Express f1̂(x) in terms of the zeta polynomial ZP (n).

CHAPTER 4

1. (a) [3–] For 0 ≤ k ≤ d define a polynomial Pd,k(n) by

∑

n≥0

Pd,k(n)x
n =

(1 + x)k

(1− x)d+1
.

Show that Pd,k(n) has positive coefficients.

(b) [5–] Is there a nice combinatorial interpretation of the coefficients
of d!Pd,k(n)? The case k = d is especially interesting.

2. [2+] Let g(n) be the number of ways to tile a 2×n rectangle with a× b
rectangles for any integers a, b ≥ 1. (Set g(0) = 1.) Show that

∑

m≥0

g(n)xn =
(1− x)(1− 3x)

1− 6x+ 7x2
.

3. (a) [2+] Let fk(n) be the middle coefficient (i.e., the coefficient of
q⌊kn/2⌋) of the q-binomial coefficient

(

n+k

k

)

. Find a simple formula
for the generating function

∑

n≥0 f3(n)x
n.

(b) [3–] Show that for any k ∈ P, fk(n) is a quasipolynomial.

4. Let fk(n) denote the number of odd coefficients in the q-binomial co-
efficient

(

n

k

)

.

(a) [2+] Show that

∑

n≥2

f2(n)x
n =

x2(1 + x)

(1− x)2(1 + x2)
.
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(b) [5–] Show that

∑

n≥3

f3(n)x
n =

P3(x)

φ2
1φ

2
2φ3φ2

4φ6φ12
,

where P3(x) has coefficients (beginning with the coefficient of x3)

1, 4, 4, 8, 6, 4, 8, 4, 6, 8, 4, 4, 1,

and where φk is the kth cyclotomic polynomial.

(c) [3] Show that fk(n) is a quasipolynomial for fixed k. More gener-
ally, if fk,p,j(n) is the number of coefficients of

(

n

k

)

congruent to j
modulo the prime p, then for fixed k, p, j the function fk,p,j(n) is
a quasipolynomial in n.

5. [2+] Let f(n) be the number of sequences a1a2 · · · an with terms 1, 2, 3
such that no two “cyclically consecutive” elements are equal, i.e., we
cannot have ai = ai+1 (subscripts taken modulo n), and such that we
cannot have 3 cyclically followed by 1. Give a simple formula for f(n)
in terms of the Lucas numbers Ln. Use the transfer-matrix method.

6. [3–] Fix integers d ≥ 0 and N ≥ 1. Let f(n) be an integer-valued

quasipolynomial of degree d and quasiperiod N . Suppose that f(n) =
cnd +O(nd−1) for some constant c > 0. Write

∑

n≥0

f(n)xn =
P (x)

Q(x)
,

where P and Q are relatively prime polynomials. What is the smallest
possible value of c? What is the least possible degree of Q(x) for which
this value of c is achieved?

CHAPTER 5

1. [2] Let h(n) be the number of ways to choose a partition π of [n] and
then arrange the blocks of π in a cycle. (Set f(0) = 0.) Show that

Ef (x) = − log(2− ex).
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2. [2] Let h(n) be the number of ways n children can divide into groups,
where each group consists of a nonempty subset of children standing
in a circle, with some children (at least one) inside the circle. This is
just like Example 5.2.3, except that the circles can contain any positive
number of children, not just one (perhaps not very physically realistic).
As usual set h(0) = 1. For instance, h(1) = 0, h(2) = 2, h(3) = 6,
h(4) = 30. Find Eh(x) =

∑

n≥0
xn

n!
. Your answer should not involve

logarithms.

3. (a) [2+] Let h(n) be the number of ways n children can form a collec-
tion of concentric circles by holding hands. Any two of the circles
either have the same center (i.e., they are concentric) or their in-
teriors are disjoint, an (unlabeled) example with twelve children
being

Show that

Eh(x) = (1− x)−1/(1+log(1−x))

= 1 + x+ 4
x2

2!
+ 24

x3

3!
+ 190

x4

4!
+ 1860

x5

5!
+ · · · .

(b) [2+] Now the children can arrange themselves into circles in any

way. That is, inside any circle C is a disjoint union (possibly
empty) of circles with a similar structure inside each of them.
Show that

Eh(x) = 1 + (1− (1 + x)1/(1+x))〈−1〉

= 1 + x+ 4
x2

2!
+ 27

x3

3!
+ 260

x4

4!
+ 3280

x5

5!
+ · · · .

4. [2+] Let f(n) be the number of distinct graphs G (allowing multiple
edges) on the vertex set [2n] such that the edges of G can be partitioned
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into two complete matchings. Thus G has 2n edges. Find a simple
formula for the generating function

F (x) =
∑

n≥0

f(n)
xn

(2n)!
= 1 +

x

2!
+ 6

x2

4!
+ · · · .

5. [2+] Let H(x) =
∑

n≥0 h(n)
xn

n!
, where h(n) is the number of certain

structures that can be put on an n-set as in Section 5.1. (Thus each
structure is uniquely a disjoint union of connected structures.) Let
r(n) (respectively, s(n)) be the number of ways of putting a structure
counted by h(n) on an n-set and then putting connected components
into a cycle (respectively, linearly ordering them). Express Er(x) and
Es(x) in terms of H(x). Use this to express Es(x) in terms of Er(x).
Then give a simple explanation for this last formula.

6. [3–] Let T (x) =
∑

n≥0 n
n−1 xn

n!
and U(x) =

∑

n≥0 n
n xn

n!
. Show that

U(x)3 − U(x)2 =
T (x)

(1− T (x))3
=
∑

n≥0

nn+1x
n

n!
.

7. [2+] Fix k ≥ 1. Choose an unrooted tree T on the vertex set [n]
uniformly at random (so a given T has probability n−(n−2) of being
chosen). What is the probability pk(n) that vertex 1 has degree k (i.e.,
has exactly k neighbors)? Find limn→∞ pk(n).

8. (a) [2+] Let f(n) be the number of ways to choose a rooted tree T on
[n] and then for each vertex v of T , either do nothing or choose
a child of v. (Thus if v is an endpoint then we have only one
choice—do nothing.) For instance, f(1) = 1, f(2) = 4, f(3) = 33.
Find a formula for f(n) as a simple sum.

(b) [3–] Give a simple combinatorial proof.

9. (a) [2] Let f(n) denote the number of rooted trees on the vertex set
[n] whose endpoints (leaves) are colored either red or blue. Find
a functional equation (analogous to the equation y = xey satisfied
by the exponential generating function for rooted trees) satisfied
by the exponential generating function

y = Ef(x) = 2x+ 4
x2

2!
+ 24

x3

3!
+ 224

x4

4!
+ · · · .
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(b) [2] Use the Lagrange inversion formula and (a) to deduce that

f(n) =

n
∑

k=0

(

n

k

)

kn−1.

(When n = 1 and k = 0 in the above sum, set 00 = 1.)

(c) [2+] Give a direct combinatorial proof of (b), analogous to either
the first or second proof of Proposition 5.3.2.

10. (a) [2+] Let Ln denote the complete graph Kn with an n-cycle re-
moved (so Ln has

(

n
2

)

− n edges). Let f(n) denote the number of
spanning trees of Ln, so f(3) = f(4) = 0, f(5) = 5, f(6) = 75,
etc. Use the Matrix-Tree theorem to show that

f(n) =
1

n

n−1
∏

k=1

(

n− 2 + 2 cos
2πk

n

)

.

You will need to use standard results on eigenvalues of circulant
matrices.

(b) [3–] Define polynomials Vn(x) by V1(x) = 1, V2(x) = x− 2, and

Vn(x) = xVn−1(x)− Vn−2(x)− 2(−1)n if n ≥ 3.

Show that f(n) = 1
n
Vn(n− 2).

(c) [2] Deduce from (b) (using formulas for solving linear recurrences
with constant coefficients) the formula

f(n) =
1

n2

[

2(−1)n+1 +

(

n

2
− 1 +

√

n2

4
− n

)n

+

(

n

2
− 1−

√

n2

4
− n

)n]

(d) [2+] Deduce from (c) the asymptotic formula

f(n) ∼ e−2nn−2,

i.e., limn→∞ f(n)/e−2nn−2 = 1. Obtain further terms of the asymp-
totic expansion of f(n).

11



11. [2] Let En be the cube graph Cn (Example 5.6.10) with an additional
edge between each antipodal pair of vertices, i.e., between α and α +
(1, 1, . . . , 1) for all α ∈ (Z/2Z)n. Thus every vertex of En has degree
n+1. Show that the number c(En) of spanning trees of En is given by

c(En) = 22
n+1−n−2

⌊(n+1)/2⌋
∏

k=1

k(
n+1
2k ).

12. [3–]

(a) Let f(n) for n ≥ 2 be the number of Eulerian digraphs on the
vertex set [n] with no loops and with exactly one Eulerian tour
(up to cyclic shift). For instance, f(3) = 5; two such digraphs are
triangles, and three consist of two 2-cycles with a common vertex.
Show that f(n) = 1

2
(n− 1)!Cn = (2n− 1)n−2, where Cn denotes a

Catalan number.

(b) Now suppose that loops are allowed, and let g(n) be the number
of digraphs on [n] with exactly one Eulerian tour. Show that
g(n) = (n − 1)!(sn−1 + sn), where sn denotes a Schröder number
as on page 178 of EC2. For instance, g(3) = 2!(3 + 11) = 28.
Equivalently,

∑

n≥1

g(n)
xn

(n− 1)!
=

(1− x)2 − (1 + x)
√
1− 6x+ x2

4x
.

CHAPTER 6

1. [3+] Show that the four power series

F1(x) =
∑

n≥0

(6n)!n!

(3n)! (2n)!2
xn

F3(x) =
∑

n≥0

(10n)!n!

(5n)! (4n)! (2n)!
xn

F3(x) =
∑

n≥0

(20n)!n!

(10n)! (7n)! (4n)!
xn

F4(x) =
∑

n≥0

(30n)!n!

(15n)! (10n)! (6n)!
xn
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are algebraic. What are their (minimal) degrees?

2. (a) [2+] Let f(n) be the number of plane trees with n vertices such
that if a vertex u has exactly one child v, then v is an endpoint.
Let

F (x) =
∑

n≥1

f(n)xn = x+ x2 + x3 + 3x4 + · · · .

Find an explicit formula for F (x) and F (x)〈−1〉.

(b) [5–] Is there some simple combinatorial explanation for the rela-
tionship between these two generating functions? Can this phe-
nomenon be generalized?

3. (a) [2+] Let t be an indeterminate. Find the coefficients of the gen-
erating function F (x, y) = 1/(1− x− y)t.

(b) [3–] Find a simple formula (involving a single finite sum) for the
diagonal D(z) = DF (x, y) when t ∈ P.

4. [5–] Let f(n) be an integer-valued unbounded P -recursive function.
Show that f(n) is composite for infinitely many positive integers n.
(This surely must be true, since otherwise there is a simple recurrence
for generating arbitrarily large primes.) Perhaps the result is already
known, but I have been unable to find it in the literature.

5. (a) [2+] Let fd(n) be the number of walks in the first quadrant of Zd

(i.e., all coordinates nonnegative) starting at the origin and with
steps ±ei, where ei is the ith unit coordinate vector. Show that
for fixed d, the function fd(n) is P -recursive.

(b) [3–] Find a simple formula for f2(n) and a three-term recurrence
relation with polynomial coefficients satisfied by f2(n).

6. [2] Let f : N → Q be P -recursive, and let d be the least integer for
which there is a recurrence

Pd(n)f(n+ d) + Pd−1(n)f(n + d− 1) + · · ·+ P0(n)f(n) = 0, n ≥ 0,

with Pi(n) ∈ C[n] and Pd(n) 6= 0. Show that there exists such a
recurrence (of the same degree d) with Pi(n) ∈ Z[n] for 0 ≤ i ≤ d.

7. (a) [3–] Show that f(n) = nn is not P -recursive.
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(b) [2+] Does there exist a P -recursive function f : N → R such that

f(n) ∼ nn, i.e., limn→∞
f(n)
nn = 1?

(c) [3–] Same as (b), except f : N → Q.

8. [2] Let f : N → C be P -recursive. Show that log f(n)
n logn

is bounded as

n → ∞. Thus for instance 2n
2
is not P -recursive.

9. (a) [3–] Show that for α ∈ R there exists a P -recursive function
f : N → R satisfying f(n) ∼ nα.

(b) [2–] Let A be the set of all α ∈ R for which there exists a P -
recursive function f : N → Z satisfying f(n) ∼ nα. Show that A
is a submonoid of the additive reals.

(c) [3] Show that 2−k ∈ A for all k ∈ N and that
√
17 ∈ A.

(d) [5–] What more can be said about the monoid A?

10. [2+] Let f(n) = n!+ 1
n!
. Using just hand computation, find a nontrivial

linear recurrence with polynomial coefficients satisfied by f(n).

11. [2] Let u ∈ K[[x]] be D-finite, say

pd(x)u
(d) + pd−1(x)u

(d−1) + · · ·+ p1(x)u
′ + p0(x)u = 0.

Find a nontrivial homogeneous linear differential equation with poly-
nomial coefficients satsified by u+1. (You can write the coefficients in
any form that makes it clear that they are polynomials in x.)

12. (a) [2] Let 1 ≤ n1 < n2 < n3 < · · · (ni ∈ P), and let

F (x) =
∑

i≥0

aix
ni ∈ K[[x]],

where char(K) = 0 and ai 6= 0 for all i ≥ 0. Show that if

lim sup
i→∞

(ni+1 − ni) = ∞,

then F (x) is not D-finite. For instance,
∑

n≥0 x
(n2) is not D-finite.

(b) [2] Show that (a) need not be true if char(K) > 0. Show in fact
that (a) can fail for algebraic F (x).
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(c) [5–] Suppose that lim supi→∞ n
1/i
i = ∞ Is it true that then F (x)

is not D-finite for any field K? (Perhaps this is already known.)

13. [3+] Fix a subset F of Sk, and let Avn(F) denote the number of per-
mutations w ∈ Sn that avoid the patterns in F (in the sense the second
paragraph of EC1, page 43, or en.wikipedia.org/wiki/Permutation pattern).
Show that Av(F) need not be D-finite.

CHAPTER 7

1. Define symmetric functions Pn by the formula

2Pn =
n
∑

k=0

ekhn−k.

(a) [2–] Show that

1 + 2
∑

n≥1

Pn(x)t
n =

∏

i

1 + xit

1− xit
.

(b) [2] Recall the notation f(1m) = f(x1 = · · · = xm = 1, xi =
0 for i > m). Show that 2

n+1
Pn(1

n+1) is equal to the Schröder
number rn.

(c) [2+] Let A = P1t+ P3t
3 + P5t

5 + · · · . Show that

P2t
2 + P4t

4 + P6t
6 + · · · = −1 +

√
1 + 4A2

2
.

2. Let d ≥ 1, and write Tn,d = {w ∈ Sn : wd = 1}. Let Lλ be the Lyndon
symmetric function of Supplementary Problem 127.

(a) [2+] Show that

∑

m,n,e≥1
me|d

1

mne
µ(e)pmne =

∑

j≥1

1

j
p
gcd(j,d)
j/gcd(j,d),

where µ denotes the usual number-theoretic Möbius function.
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(b) [3–] Deduce that

∑

λ⊢n
λi|d

Lλ =
1

n!

∑

w∈Sn

pρ(wd).

(c) [2+] Fix n, and let d(T ) denote the number of descents of the SYT
T . Using the notation of Corollary 7.23.8, show that

∑

T is an SYT
of shape λ⊢n

qd(T )sλ =
∑

S⊆[n−1]

q#SsBS
.

(d) [3–] Show that

1

n!

∑

w∈Sn

q−1Aκ(wd)(q)(1− q)n−κ(wd) =
∑

w∈Tn,d

qdes(w). (1)

Here κ(wd) denotes the number of cycles of wd, and Am(q) is an
Eulerian polynomial.

(e) [2] Deduce that if d is even, then

#{w ∈ Tn,d : des(w) = i} = #{w ∈ Tn,d : des(w) = n− 1− i}.

(f) [2+] Let E(n, d) =
∑

w∈Tn,d
des(w). Show that if d is odd then

E(n, d) =
n− 1

2
#Tn,d,

while if n is even then

E(n, d) =
n− 1

2
#Tn,d −

1

n
#{w ∈ Sn : κ(wd) = n− 1}.

(g) [2+] Strengthen (e) by showing that for S ⊆ [n− 1] and d even,

#{w ∈ Tn,d : D(w) = S} = #{w ∈ Tn,d : D(w) = [n− 1]− S},

where D(w) denotes the descent set of w.
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Hints, Solutions, References, Etc.

CHAPTER 1

1. See R. Stanley, J. Combinatorics 3 (2012), 277–298; arXiv:1208.3540.

3. See mathoverflow.net/questions/29490.

7. See F. Zanello, Electronic J. Comb. 25 (2018), P2.17.

12. Hint: consider F (x)〈−1〉.

13. See W. Feit and N. J. Fine, Duke Math. J. 27 (1960), 91–94. A general-
ization is due to Y. Huang, Algebraic Combinatorics 5 (2022), 583–592;
arXiv:2110.15570.

CHAPTER 3

5. (a) Use Philip Hall’s theorem (Proposition 3.8.5).

7. ForN prime or the square of a prime, see mathoverflow.net/questions/40390.
This site seems to say the result is true for all N , but I don’t see
a proof there. There is a broken link to a proof by Borevich. At
link.springer.com/article/10.1007/BF01094365 there is a proof
for topologies (=preposets) on a finite set. Presumably this proof tech-
nique works also for posets.

CHAPTER 4

3. See R. Stanley and F. Zanello, Ann. Comb. 20 (2016), 623–634; arXiv:1503.06367.
The answer to (a) is

1− x+ x2

(1− x)2(1− x4)
.

CHAPTER 5
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12. This exercise first appeared as an exercise in R. Stanley, Algebraic Com-

binatorics, second ed., Springer, New York, 2018 (Exercise 10.6).

CHAPTER 6

1. See page 781 of M. Kontsevich and D. Zagier, Periods, in Mathemat-

ics Unlimited—2001 and Beyond (B. Engquist and W. Schmid, eds),
Springer, Berlin, 2001. See also OEIS A211417. The degree of F4(x) is
483840.

7. (a) This result appears as Exercise 1.6.2 in M. Kauers, D-Finite Func-
tions, Springer, Cham, Switzerland, 2023.

(b) One example is 1√
2

(

e
4

)n (2n)!
n!

.

(c) A negative answer was provided by Fedor Petrov, MathOverflow
474664.

13. See I. Pak and S. Gallabrant, arXiv:1505.06508.

CHAPTER 7

1. See R. Stanley, arXiv:2405.02164.

2. (b) By EC2, equation (7.174), we have

∑

n

1

n!

∑

w∈Sn

pρ(wd) =
∑

j≥1

1

j
p
gcd(j,d)
j/gcd(j,d).

On the other hand, in Supplementary Problem 128(b) apply the
homomorphism taking pi(y) = 1 if i|d and pi(y) = 0 if i6 |d. We get

∑

n

∑

λ⊢n
λi|d

Lλ = exp
∑

j≥1

1

j
p
gcd(j,d)
j/gcd(j,d), (2)

and the proof follows.
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(d) By Exercise 7.110 and part (c) of this problem we have

∑

S⊆[n−1]

q#SsBS
=
∑

λ

z−1
λ q−1(1− q)n−ℓAℓ(q) pλ. (3)

Take the scalar product of equation (3) with 1
n!

∑

w∈Sn
pρ(wd) and

apply Supplementary Exercise 127(a). The proof follows from the
orthogonality relation 〈pλ, pµ〉 = zλδλµ (Proposition 7.9.3).

Is there a simpler proof avoiding symmetric functions?

(e) Use the fact that qm+1Am(1/q) = Am(q) and that n − κ(wd) is
even when d is even.

(f) Differentiate equation (1) with respect to q, set q = 1, and simplify.

(g) A permutation w ∈ Sn satisfies wd = 1 if and only if every cycle
of w has length dividing d. Set

gnd =
∑

λ⊢n
λi|d

Lλ.

Since ωsBS
= sB[n−1]−S

, it follows from Supplementary Problem 127(a)
that we need to show that ωgnd = gnd. Now from (a), (b), and
equation (2),

∑

n≥0

gnd = exp
∑

j≥1

1

j
p
gcd(j,d)
j/gcd(j,d).

Since p
gcd(j,d)
j/gcd(j,d) is ω-invariant when d is even, the proof follows.

Is there a combinatorial proof?
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