ADDITIONAL POSET PROBLEMS

version of 28 November 2017

- 1. [2] Find a finite poset P with the following property, or show that no such P exists. The longest chain in P has m elements (for some $m \ge 1$). P can be written as a union of two chains C_1 and C_2 , but cannot be written in this way where $\#C_1 = m$.
- 2. (a) [2] How many nonisomorphic *n*-element posets contain an (n-1)-element antichain?
 - (b) [2+] How many nonisomorphic *n*-element posets contain an (n-1)-element chain?
 - (c) [2–] How many nonisomorphic *n*-element posets contain both an (n-1)-element antichain and an (n-1)-element chain?
- (a) [3–] Find a finite poset P with the following property. The automorphism group Aut(P) of P acts transitively on the set M of minimal elements of P. Moreover, the restriction of Aut(P) to M does not contain a full cycle of the elements of M.
 - (b) [5–] Does such a poset exist if all maximal chains have two elements?
- 4. [2+] Let $w = t_1, \ldots, t_p$ be a permutation of the elements of a finite poset P. Call a permutation w' a permissible swap of w if it is obtained from w by interchanging some t_i and t_{i+1} where $t_i < t_{i+1}$. Clearly a sequence of permissible swaps must eventually terminate in a permutation v that has no permissible swaps. Show that v is independent of the sequence of permissible swaps.
- 5. [2+] For each permutation $w \in \mathfrak{S}_n$, let σ_w be the simplex in \mathbb{R}^n defined by

$$\sigma_w = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : 0 \le x_{w(1)} \le x_{w(2)} \le \dots \le x_{w(n)} \le 1 \}.$$

For any nonempty subset $S \subseteq \mathfrak{S}_n$, define

$$X_S = \bigcup_{w \in S} \sigma_w \subset \mathbb{R}^n$$

Show that X_S is convex if and only if S is the set of linear extensions of some partial ordering of [n].

6. [2+] Let 0 ≤ p ≤ 1, and let P be a finite n-element poset with 0 and 1.
Let σ: P → [n] be a linear extension of P. Define a random digraph D on the vertex set [n] as follows. For each s < t in P, choose the edge s → t of D with probability p.

Now start at the vertex $\hat{0}$ of D. If there is an arrow from $\hat{0}$, then move to the vertex t for which $\hat{0} \to t$ is an edge of D and $\sigma(t)$ is as small as possible; otherwise stop. Continue this procedure (always moving from a vertex u to a vertex v for which $u \to v$ is an edge of D and $\sigma(v)$ is as small as possible) until unable to continue. What is the probability that we end at vertex $\hat{1}$? Try to give an elegant proof avoiding recurrence relations, linear algebra, etc.

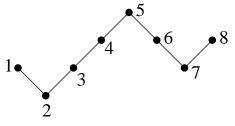
(a) [2+] Let f(n) be the average value of μ_P(0, 1), where P ranges over all (induced) subposets of the boolean algebra B_n containing 0 and 1. (The number of such P is 2^{2ⁿ-2}.) Define the Genocchi number G_n by

$$\sum_{n\ge 0} G_n \frac{x^n}{n!} = \frac{2x}{1+e^x}$$

as in Exercise 5.8(d). Show that $f(n) = 2G_{n+1}/(n+1)$.

- (b) [2] It follows from (a) that f(n) = 0 when n is even. Give a noncomputational proof.
- (c) [5–] What more can be done with this model of a random poset, i.e., each element of $B_n - \{\hat{0}, \hat{1}\}$ is chosen independently with probability 1/2 (or we could generalize to any probability $0 \le p \le 1$) to belong to P? For instance, what is the probability that P contains a maximal chain of B_n ? (This looks quite difficult to me.) What is the expected value of the rank of the top homology $H_{n-2}(\Delta(P');\mathbb{Z})$ of the order complex $\Delta(P')$ of $P' = P - \{\hat{0}, \hat{1}\}$?
- 8. (a) [2] Let U_n be the set of all lattice paths λ of length n − 1 (i.e., with n − 1 steps), starting at (0,0), with steps (1,1) and (1, −1). Thus #U_n = 2ⁿ⁻¹. Regard the n integer points on the path λ as the elements of a poset P_λ, such that λ is the Hasse diagram of P_λ. Find ∑_{λ∈U_n} e(P_λ).

(b) [2+] Give P_{λ} the labeling ω_{λ} by writing the numbers $1, 2, \ldots, n$ along the path. For example, when n = 8 one possible pair $(P_{\lambda}, \omega_{\lambda})$ is given by



Find $\sum_{\lambda \in U_n} \Omega_{P_{\lambda}, \omega_{\lambda}}(m)$ and $\sum_{\lambda \in U_n} W_{P_{\lambda}, \omega_{\lambda}}(q)$.

- (c) [5–] Let V_n consist of those $\lambda \in U_n$ which never fall below the *x*-axis. It is well-known that $V_n = \binom{n-1}{\lfloor (n-1)/2 \rfloor}$. Show that $\sum_{\lambda \in V_n} e(P_\lambda)$ is equal to the number of permutations $w \in \mathfrak{S}_n$ of odd order. A formula for this number is given in EC2, Exercise 5.10(c) (the case k = 2).
- (d) [5–] Is there a nice bijective proof or "conceptual proof" of (c)?
- (e) [5–] Are there nice expressions for $\sum_{\lambda \in V_n} \Omega_{P_{\lambda},\omega_{\lambda}}(m)$ and/or $\sum_{\lambda \in V_n} W_{P_{\lambda},\omega_{\lambda}}(q)$?
- (f) [3–] Now let W_n consist of all $\lambda \in V_{2n+1}$ that end at the *x*-axis. It is well-known that $\#W_n$ is the Catalan number $C_{n-1} = \frac{1}{n} \binom{2(n-1)}{n-1}$. Show that $\sum_{\lambda \in W_n} e(P_\lambda)$ is equal to the Eulerian-Catalan number $\mathrm{EC}_n = A(2n+1,n)/(n+1)$ of EC1, Exercise 1.53.
- 9. [2+] Let P be a finite poset with $\hat{0}$ and $\hat{1}$. For each $t \in P$ define a polynomial $f_t(x)$ with coefficients in $\mathbb{Z}(y)$ (the ring of rational functions in y with integer coefficients) as follows:

$$\begin{array}{rcl}
f_{\hat{0}}(x) &=& y \\
f_{t}(0) &=& 0, \quad t > \hat{0} \\
f_{t}(x+y) &=& \sum_{s \leq t} f_{s}(x).
\end{array}$$

Express $f_{\hat{1}}(x)$ in terms of the zeta polynomial $Z_P(n)$.

10. [2+] Let $n \ge 1$ and $d \ge 2$. Let P_{nd} be the poset with elements x_{ij} , $1 \le i \le n$ and $1 \le j \le d$, and with cover relations $x_{ij} \le x_{i+1,k}$ for all

 $1 \leq i \leq n-1, 1 \leq j \leq d$ and $1 \leq k \leq d$ except j = k. Thus P_{nd} is graded of rank n-1, and there are exactly d(d-1) cover relations between consecutive ranks. Find $e(P_{nd})$. For instance, $e(P_{2,3}) = 48$ and $e(P_{3,3}) = 384$.

- 11. [3–] Let U_k denote an ordinal sum of k 2-element antichains, so $\#U_k = 2k$. Show that when k = 2j, the real parts of the zeros of the order polynomial $\Omega_{U_k}(m)$ are $0, -1, -2, \ldots, -(k-1)$ (each occurring once), and $-(j-\frac{1}{2})$ (occuring k times). Similarly when k = 2j+1 the zeros of $\Omega_{U_k}(m)$ have real parts $0, -1, \ldots, -(k-1)$, each occurring once, except that -j occurs k+1 times.
- 12. (a) [3–] Let f(n) be the number of nonisomorphic *n*-element posets for which $\beta_{J(P)}(S) \leq 1$ for all $S \subseteq [n-1]$. Find a simple formula for the generating function $\sum_{n>0} f(n)x^n$.
 - (b) [3–] Among the f(n) posets P of (a), find the maximum value of e(P). How many posets (up to isomorphism) achieve this maximum?
- 13. (a) [2+] Define two labelings $\omega, \omega' \colon P \to [p]$ of the *p*-element poset P to be equivalent if $\mathcal{A}_{P,\omega} = \mathcal{A}_{P,\omega'}$. For instance, one equivalence class consists of the natural labelings. Let $[\omega]$ denote the equivalence class containing ω . Define a partial ordering L_P on the equivalence classes by $[\omega] \leq [\omega']$ if $\mathcal{A}_{P,\omega} \subseteq \mathcal{A}_{P,\omega'}$. Show that L_P is a self-dual graded poset with $\hat{0}$ and $\hat{1}$. What is the rank (length of the longest chain) of L_P ? (For the number of elements of L_P , see Exercise 3.160.)
 - (b) [3] Find the Möbius function of L_P . In particular, for any $s \leq t$ we have $\mu(s,t) = 0, \pm 1$.
 - (c) [5–] What else can be said about the poset L_P ?
- 14. [2+] Let (P, ω) be a labelled *p*-element poset. Show that there is some $S \subseteq [p-1]$ for which exactly one permutation $w \in \mathcal{L}(P, \omega)$ has descent set *S*.
- 15. (a) [2] Let P be an Eulerian poset with more than one element. Show that #P is even.

(b) [2+] Let P be an Eulerian poset of rank n, and let $0 \le i \le n-1$. Define

$$h_i = \sum_{\substack{S \subseteq [n-1] \\ \#S = i}} \beta_P(S)$$

Show that $h_i \equiv \binom{n-1}{i} \pmod{2}$.

- 16. (a) [2+] Give an example of a graded poset P, say with 0 and 1, such that the flag h-vector β_P is nonnegative, but some interval of P fails to have this property.
 - (b) [5–] Is there a finite graded poset P with 0, 1 such that the flag h-vector is nonnegative for every interval of P but P is not Rlabellable? It seems likely that such a P exists, but it is difficult to show that some poset is not R-labellable.
- 17. (a) [2] Show that for any M > 0 there exists a finite graded poset P, say of rank n, such that $\beta_P(S) < 0$ for at least M subsets $S \subseteq [0, n]$.
 - (b) [5–] What can one say about the sign distribution of flag *h*-vectors of graded posets of rank *n*? In other words, define $\rho_P \colon P \to \{+, -, 0\}$ by

$$\rho_P(S) = \begin{cases} +, & \text{if } \beta_P(S) > 0 \\ -, & \text{if } \beta_P(S) < 0 \\ 0, & \text{if } \beta_P(S) = 0. \end{cases}$$

What can be said about the possible functions ρ_P ? E.g., what is the maximum number of S for which $\beta_P(S) < 0$ (as a function of n)?

18. [2+] Let P be a finite graded poset of rank n with $\hat{0}, \hat{1}$. Fix $j \in \mathbb{P}$. Suppose that for every interval [s, t], the number of elements of rank j(where rank is computed with respect to the interval [s, t]) is equal to the number of elements of corank j. Show that

$$\sum_{\substack{t\in P\\ \mathrm{rank}(t)=j}} Z_{[t,\hat{1}]}(m) = \sum_{\substack{t\in P\\ \mathrm{rank}(t)=n-j}} Z_{[\hat{0},t]}(m).$$

Here $Z_{[u,v]}(m)$ denotes the zeta polynomial of the interval [u, v]. Try to find an elegant proof.

- 19. [2+] True or false? A supersolvable Eulerian lattice is a boolean algebra.
- 20. [2+] Show that every interval of a supersolvable lattice is supersolvable.
- 21. [2] Let $n \ge 1$. How many nonisomorphic Eulerian posets are there of rank three with n atoms? How many are lattices? State your answers in terms of the number of partitions p(m) of m for certain nonnegative integers m. Optional: how many are Cohen-Macaulay? If you have some familiarity with Cohen-Macaulay posets then this is very easy.
- 22. (a) [2+] Find the smallest positive integer n for which there exists an Eulerian poset P of rank n whose rank-generating function F(P, x) is not unimodal. NOTE. A real polynomial $\sum_{i=0}^{n} a_i x^i$ is unimodal if for some j we have

$$a_0 \le a_1 \le \dots \le a_j \ge a_{j+1} \ge a_{j+2} \ge \dots \ge a_n.$$

- (b) [3] Does there exist an Eulerian lattice whose rank-generating function is not unimodal?
- 23. [2++] Give an example of an Eulerian P poset with the following properties: (i) for some $d \ge 2$, P has d atoms and rank d + 1, (ii) $P \{\hat{1}\}$ is simplicial, and (iii) the rank-generating function of P is not equal to $(1+x)^d + x^d + x^{d+1}$.
- 24. [2] Let $P_0 \cup P_1 \cup \cdots \cup P_8$ be an Eulerian poset of rank eight with the following properties: (i) $P \{\hat{1}\}$ is simplicial, and (ii) $P_0 \cup P_1 \cup P_2 \cup P_3$ agrees with the the boolean algebra B_{11} truncated above rank 3. Find the rank-generating function of P. Bonus (not needed to receive full credit). Does P actually exist? Could it be a lattice?
- 25. [2+] Let P be a locally finite graded poset with $\hat{0}$ and containing an infinite chain, satisfying the two conditions:
 - All intervals $[\hat{0}, t]$ of rank *n* have the same number D(n) of maximal chains.
 - All intervals [s, t] of rank n with $s > \hat{0}$ have the same number B(n) of maximal chains.

An example is an obvious limit as $m \to \infty$ of the face lattice of an *m*-cube. Here $D(n) = 2^{n-1}(n-1)!$ (n > 0) and B(n) = n!. Find a generalization of Theorem 3.18.4 for these posets. It should involve generating functions

$$F(x) = \sum_{n \ge 0} f(n) \frac{x^n}{B(n)}$$
$$G(x) = \sum_{n \ge 1} g(n) \frac{x^n}{D(n)}$$

- 26. (a) [2] Let $1 = A(1) \le A(2) \le A(3)$. Show that there exists a binomial poset P (except for the axiom of containing an infinite chain) of rank three with these "atom numbers," i.e., $B(m) = A(1)A(2)\cdots A(m)$ for $1 \le m \le 3$.
 - (b) [5-] Let $n \ge 1$ and $1 = A(1) \le A(2) \le \dots \le A(n)$. Define $B(m) = A(1)A(2) \cdots A(m)$ for $1 \le m \le n$. Set B(0) = 1. Suppose that $\frac{B(m)}{B(k)B(m-k)} \in \mathbb{Z}$ for all $0 \le k \le m \le n$. Does there exist a binomial poset P (except for the axiom of containing an infinite chain) of rank n with factorial function B? (This seems unlikely to me. As mentioned in class and in the text, an open case is $A(m) = F_{m+1}$, a Fibonacci number.)
 - (c) [5] For which positive integers q does there exist a binomial *lattice* P (except for the axiom of containing an infinite chain) of rank three with A(1) = 1, A(2) = q + 1, $A(3) = q^2 + q + 1$?
 - (d) (Bonus: does not count for pset credit.) For which positive integers q does there exist a binomial lattice P (except for the axiom of containing an infinite chain) of rank four with A(1) = 1, A(2) = q + 1, $A(3) = q^2 + q + 1$, $A(4) = q^3 + q^2 + q + 1$? (Rating [3] or even [3+] from scratch, but if you know a certain fact it is much easier.)
- 27. [2+] Give an example of a differential poset whose automorphism group is trivial.