
ADDITIONAL POSET PROBLEMS

version of 28 November 2017

1. [2] Find a finite poset P with the following property, or show that no
such P exists. The longest chain in P hasm elements (for somem ≥ 1).
P can be written as a union of two chains C1 and C2, but cannot be
written in this way where #C1 = m.

2. (a) [2] How many nonisomorphic n-element posets contain an (n−1)-
element antichain?

(b) [2+] How many nonisomorphic n-element posets contain an (n−
1)-element chain?

(c) [2–] How many nonisomorphic n-element posets contain both an
(n− 1)-element antichain and an (n− 1)-element chain?

3. (a) [3–] Find a finite poset P with the following property. The au-
tomorphism group Aut(P ) of P acts transitively on the set M of
minimal elements of P . Moreover, the restriction of Aut(P ) to M
does not contain a full cycle of the elements of M .

(b) [5–] Does such a poset exist if all maximal chains have two ele-
ments?

4. [2+] Let w = t1, . . . , tp be a permutation of the elements of a finite poset
P . Call a permutation w′ a permissible swap of w if it is obtained from
w by interchanging some ti and ti+1 where ti < ti+1. Clearly a sequence
of permissible swaps must eventually terminate in a permutation v that
has no permissible swaps. Show that v is independent of the sequence
of permissible swaps.

5. [2+] For each permutation w ∈ Sn, let σw be the simplex in Rn defined
by

σw = {(x1, . . . , xn) ∈ R
n : 0 ≤ xw(1) ≤ xw(2) ≤ · · · ≤ xw(n) ≤ 1}.

For any nonempty subset S ⊆ Sn, define

XS =
⋃

w∈S

σw ⊂ R
n.
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Show that XS is convex if and only if S is the set of linear extensions
of some partial ordering of [n].

6. [2+] Let 0 ≤ p ≤ 1, and let P be a finite n-element poset with 0̂ and 1̂.
Let σ : P → [n] be a linear extension of P . Define a random digraph
D on the vertex set [n] as follows. For each s < t in P , choose the edge
s → t of D with probability p.

Now start at the vertex 0̂ of D. If there is an arrow from 0̂, then move
to the vertex t for which 0̂ → t is an edge of D and σ(t) is as small as
possible; otherwise stop. Continue this procedure (always moving from
a vertex u to a vertex v for which u → v is an edge of D and σ(v) is as
small as possible) until unable to continue. What is the probability that
we end at vertex 1̂? Try to give an elegant proof avoiding recurrence
relations, linear algebra, etc.

7. (a) [2+] Let f(n) be the average value of µP (0̂, 1̂), where P ranges
over all (induced) subposets of the boolean algebra Bn containing
0̂ and 1̂. (The number of such P is 22

n−2.) Define the Genocchi

number Gn by
∑

n≥0

Gn
xn

n!
=

2x

1 + ex
,

as in Exercise 5.8(d). Show that f(n) = 2Gn+1/(n+ 1).

(b) [2] It follows from (a) that f(n) = 0 when n is even. Give a
noncomputational proof.

(c) [5–] What more can be done with this model of a random poset,
i.e., each element of Bn − {0̂, 1̂} is chosen independently with
probability 1/2 (or we could generalize to any probability 0 ≤
p ≤ 1) to belong to P ? For instance, what is the probability that
P contains a maximal chain of Bn? (This looks quite difficult to
me.) What is the expected value of the rank of the top homology
Hn−2(∆(P ′);Z) of the order complex ∆(P ′) of P ′ = P − {0̂, 1̂}?

8. (a) [2] Let Un be the set of all lattice paths λ of length n − 1 (i.e.,
with n− 1 steps), starting at (0, 0), with steps (1, 1) and (1,−1).
Thus #Un = 2n−1. Regard the n integer points on the path λ as
the elements of a poset Pλ, such that λ is the Hasse diagram of
Pλ. Find

∑

λ∈Un
e(Pλ).
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(b) [2+] Give Pλ the labeling ωλ by writing the numbers 1, 2, . . . , n
along the path. For example, when n = 8 one possible pair
(Pλ, ωλ) is given by

1
3

4

5

6

7

8

2

Find
∑

λ∈Un
ΩPλ,ωλ

(m) and
∑

λ∈Un
WPλ,ωλ

(q).

(c) [5–] Let Vn consist of those λ ∈ Un which never fall below the x-
axis. It is well-known that Vn =

(

n−1
⌊(n−1)/2⌋

)

. Show that
∑

λ∈Vn
e(Pλ)

is equal to the number of permutations w ∈ Sn of odd order. A
formula for this number is given in EC2, Exercise 5.10(c) (the case
k = 2).

(d) [5–] Is there a nice bijective proof or “conceptual proof” of (c)?

(e) [5–] Are there nice expressions for
∑

λ∈Vn
ΩPλ,ωλ

(m) and/or
∑

λ∈Vn
WPλ,ωλ

(q)?

(f) [3–] Now let Wn consist of all λ ∈ V2n+1 that end at the x-axis. It
is well-known that #Wn is the Catalan number Cn−1 =

1
n

(

2(n−1)
n−1

)

.
Show that

∑

λ∈Wn
e(Pλ) is equal to the Eulerian-Catalan number

ECn = A(2n+ 1, n)/(n+ 1) of EC1, Exercise 1.53.

9. [2+] Let P be a finite poset with 0̂ and 1̂. For each t ∈ P define a
polynomial ft(x) with coefficients in Z(y) (the ring of rational functions
in y with integer coefficients) as follows:

f0̂(x) = y

ft(0) = 0, t > 0̂

ft(x+ y) =
∑

s≤t

fs(x).

Express f1̂(x) in terms of the zeta polynomial ZP (n).

10. [2+] Let n ≥ 1 and d ≥ 2. Let Pnd be the poset with elements xij ,
1 ≤ i ≤ n and 1 ≤ j ≤ d, and with cover relations xij ⋖ xi+1,k for all
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1 ≤ i ≤ n − 1, 1 ≤ j ≤ d and 1 ≤ k ≤ d except j = k. Thus Pnd

is graded of rank n− 1, and there are exactly d(d − 1) cover relations
between consecutive ranks. Find e(Pnd). For instance, e(P2,3) = 48
and e(P3,3) = 384.

11. [3–] Let Uk denote an ordinal sum of k 2-element antichains, so #Uk =
2k. Show that when k = 2j, the real parts of the zeros of the order
polynomial ΩUk

(m) are 0,−1,−2, . . . ,−(k − 1) (each occurring once),
and −(j− 1

2
) (occuring k times). Similarly when k = 2j+1 the zeros of

ΩUk
(m) have real parts 0,−1, . . . ,−(k−1), each occurring once, except

that −j occurs k + 1 times.

12. (a) [3–] Let f(n) be the number of nonisomorphic n-element posets
for which βJ(P )(S) ≤ 1 for all S ⊆ [n− 1]. Find a simple formula
for the generating function

∑

n≥0 f(n)x
n.

(b) [3–] Among the f(n) posets P of (a), find the maximum value of
e(P ). How many posets (up to isomorphism) achieve this maxi-
mum?

13. (a) [2+] Define two labelings ω, ω′ : P → [p] of the p-element poset
P to be equivalent if AP,ω = AP,ω′. For instance, one equivalence
class consists of the natural labelings. Let [ω] denote the equiv-
alence class containing ω. Define a partial ordering LP on the
equivalence classes by [ω] ≤ [ω′] if AP,ω ⊆ AP,ω′. Show that LP is
a self-dual graded poset with 0̂ and 1̂. What is the rank (length
of the longest chain) of LP ? (For the number of elements of LP ,
see Exercise 3.160.)

(b) [3] Find the Möbius function of LP . In particular, for any s ≤ t
we have µ(s, t) = 0,±1.

(c) [5–] What else can be said about the poset LP ?

14. [2+] Let (P, ω) be a labelled p-element poset. Show that there is some
S ⊆ [p−1] for which exactly one permutation w ∈ L(P, ω) has descent
set S.

15. (a) [2] Let P be an Eulerian poset with more than one element. Show
that #P is even.
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(b) [2+] Let P be an Eulerian poset of rank n, and let 0 ≤ i ≤ n− 1.
Define

hi =
∑

S⊆[n−1]
#S=i

βP (S).

Show that hi ≡
(

n−1
i

)

(mod 2).

16. (a) [2+] Give an example of a graded poset P , say with 0̂ and 1̂, such
that the flag h-vector βP is nonnegative, but some interval of P
fails to have this property.

(b) [5–] Is there a finite graded poset P with 0̂, 1̂ such that the flag
h-vector is nonnegative for every interval of P but P is not R-
labellable? It seems likely that such a P exists, but it is difficult
to show that some poset is not R-labellable.

17. (a) [2] Show that for any M > 0 there exists a finite graded poset
P , say of rank n, such that βP (S) < 0 for at least M subsets
S ⊆ [0, n].

(b) [5–] What can one say about the sign distribution of flag h-vectors
of graded posets of rank n? In other words, define ρP : P →
{+,−, 0} by

ρP (S) =







+, if βP (S) > 0
−, if βP (S) < 0
0, if βP (S) = 0.

What can be said about the possible functions ρP ? E.g., what is
the maximum number of S for which βP (S) < 0 (as a function of
n)?

18. [2+] Let P be a finite graded poset of rank n with 0̂, 1̂. Fix j ∈ P.
Suppose that for every interval [s, t], the number of elements of rank j
(where rank is computed with respect to the interval [s, t]) is equal to
the number of elements of corank j. Show that

∑

t∈P
rank(t)=j

Z[t,1̂](m) =
∑

t∈P
rank(t)=n−j

Z[0̂,t](m).

Here Z[u,v](m) denotes the zeta polynomial of the interval [u, v]. Try
to find an elegant proof.
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19. [2+] True or false? A supersolvable Eulerian lattice is a boolean alge-
bra.

20. [2+] Show that every interval of a supersolvable lattice is supersolvable.

21. [2] Let n ≥ 1. How many nonisomorphic Eulerian posets are there of
rank three with n atoms? How many are lattices? State your answers
in terms of the number of partitions p(m) of m for certain nonnegative
integers m. Optional: how many are Cohen-Macaulay? If you have
some familiarity with Cohen-Macaulay posets then this is very easy.

22. (a) [2+] Find the smallest positive integer n for which there exists
an Eulerian poset P of rank n whose rank-generating function
F (P, x) is not unimodal. Note. A real polynomial

∑n
i=0 aix

i is
unimodal if for some j we have

a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ aj+2 ≥ · · · ≥ an.

(b) [3] Does there exist an Eulerian lattice whose rank-generating
function is not unimodal?

23. [2++] Give an example of an Eulerian P poset with the following prop-
erties: (i) for some d ≥ 2, P has d atoms and rank d+ 1, (ii) P − {1̂}
is simplicial, and (iii) the rank-generating function of P is not equal to
(1 + x)d + xd + xd+1.

24. [2] Let P0 ∪ P1 ∪ · · · ∪ P8 be an Eulerian poset of rank eight with the
following properties: (i) P −{1̂} is simplicial, and (ii) P0∪P1∪P2∪P3

agrees with the the boolean algebra B11 truncated above rank 3. Find
the rank-generating function of P . Bonus (not needed to receive full
credit). Does P actually exist? Could it be a lattice?

25. [2+] Let P be a locally finite graded poset with 0̂ and containing an
infinite chain, satisfying the two conditions:

• All intervals [0̂, t] of rank n have the same number D(n) of maxi-
mal chains.

• All intervals [s, t] of rank n with s > 0̂ have the same number
B(n) of maximal chains.
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An example is an obvious limit as m → ∞ of the face lattice of an
m-cube. Here D(n) = 2n−1(n − 1)! (n > 0) and B(n) = n!. Find
a generalization of Theorem 3.18.4 for these posets. It should involve
generating functions

F (x) =
∑

n≥0

f(n)
xn

B(n)

G(x) =
∑

n≥1

g(n)
xn

D(n)
.

26. (a) [2] Let 1 = A(1) ≤ A(2) ≤ A(3). Show that there exists a bi-
nomial poset P (except for the axiom of containing an infinite
chain) of rank three with these “atom numbers,” i.e., B(m) =
A(1)A(2) · · ·A(m) for 1 ≤ m ≤ 3.

(b) [5–] Let n ≥ 1 and 1 = A(1) ≤ A(2) ≤ · · · ≤ A(n). Define B(m) =
A(1)A(2) · · ·A(m) for 1 ≤ m ≤ n. Set B(0) = 1. Suppose that

B(m)
B(k)B(m−k)

∈ Z for all 0 ≤ k ≤ m ≤ n. Does there exist a binomial

poset P (except for the axiom of containing an infinite chain) of
rank n with factorial function B? (This seems unlikely to me. As
mentioned in class and in the text, an open case is A(m) = Fm+1,
a Fibonacci number.)

(c) [5] For which positive integers q does there exist a binomial lattice
P (except for the axiom of containing an infinite chain) of rank
three with A(1) = 1, A(2) = q + 1, A(3) = q2 + q + 1?

(d) (Bonus : does not count for pset credit.) For which positive in-
tegers q does there exist a binomial lattice P (except for the ax-
iom of containing an infinite chain) of rank four with A(1) = 1,
A(2) = q + 1, A(3) = q2 + q + 1, A(4) = q3 + q2 + q + 1? (Rating
[3] or even [3+] from scratch, but if you know a certain fact it is
much easier.)

27. [2+] Give an example of a differential poset whose automorphism group
is trivial.
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