ADDITIONAL POSET PROBLEMS
version of 25 October 2017

1. [2] Find a finite poset P with the following property, or show that no such P exists. The longest chain in P has m elements (for some $m \geq 1$). P can be written as a union of two chains C_1 and C_2, but cannot be written in this way where $\#C_1 = m$.

2. (a) [2] How many nonisomorphic n-element posets contain an $(n-1)$-element antichain?
 (b) [2+] How many nonisomorphic n-element posets contain an $(n-1)$-element chain?
 (c) [2–] How many nonisomorphic n-element posets contain both an $(n-1)$-element antichain and an $(n-1)$-element chain?

3. (a) [3–] Find a finite poset P with the following property. The automorphism group $\text{Aut}(P)$ of P acts transitively on the set M of minimal elements of P. Moreover, the restriction of $\text{Aut}(P)$ to M does not contain a full cycle of the elements of M.
 (b) [5–] Does such a poset exist if all maximal chains have two elements?

4. [2+] Let $w = t_1, \ldots, t_p$ be a permutation of the elements of a finite poset P. Call a permutation w' a permissible swap of w if it is obtained from w by interchanging some t_i and t_{i+1} where $t_i < t_{i+1}$. Clearly a sequence of permissible swaps must eventually terminate in a permutation v that has no permissible swaps. Show that v is independent of the sequence of permissible swaps.

5. [2+] For each permutation $w \in \mathfrak{S}_n$, let σ_w be the simplex in \mathbb{R}^n defined by
 \[
 \sigma_w = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_{w(1)} \leq x_{w(2)} \leq \cdots \leq x_{w(n)} \leq 1\}.
 \]
 For any nonempty subset $S \subseteq \mathfrak{S}_n$, define
 \[
 X_S = \bigcup_{w \in S} \sigma_w \subset \mathbb{R}^n.
 \]
Show that X_S is convex if and only if S is the set of linear extensions of some partial ordering of $[n]$.

6. [2+] Let $0 \leq p \leq 1$, and let P be a finite n-element poset with $\hat{0}$ and $\hat{1}$. Let $\sigma: P \to [n]$ be a linear extension of P. Define a random digraph D on the vertex set $[n]$ as follows. For each $s < t$ in P, choose the edge $s \to t$ of D with probability p.

Now start at the vertex $\hat{0}$ of D. If there is an arrow from $\hat{0}$, then move to the vertex t for which $\hat{0} \to t$ is an edge of D and $\sigma(t)$ is as small as possible; otherwise stop. Continue this procedure (always moving from a vertex u to a vertex v for which $u \to v$ is an edge of D and $\sigma(v)$ is as small as possible) until unable to continue. What is the probability that we end at vertex $\hat{1}$? Try to give an elegant proof avoiding recurrence relations, linear algebra, etc.

7. (a) [2+] Let $f(n)$ be the average value of $\mu_P(\hat{0}, \hat{1})$, where P ranges over all (induced) subposets of the boolean algebra B_n containing $\hat{0}$ and $\hat{1}$. (The number of such P is $2^{2^{n-2}}$.) Define the Genocchi number G_n by

$$
\sum_{n \geq 0} G_n \frac{x^n}{n!} = \frac{2x}{1 + e^x},
$$

as in Exercise 5.8(d). Show that $f(n) = 2G_{n+1}/(n+1)$.

(b) [2] It follows from (a) that $f(n) = 0$ when n is even. Give a noncomputational proof.

(c) [5–] What more can be done with this model of a random poset, i.e., each element of $B_n - \{\hat{0}, \hat{1}\}$ is chosen independently with probability $1/2$ (or we could generalize to any probability $0 \leq p \leq 1$) to belong to P? For instance, what is the probability that P contains a maximal chain of B_n? (This looks quite difficult to me.) What is the expected value of the rank of the top homology $H_{n-2}(\Delta(P'); \mathbb{Z})$ of the order complex $\Delta(P')$ of $P' = P - \{\hat{0}, \hat{1}\}$?

8. (a) [2] Let U_n be the set of all lattice paths λ of length $n - 1$ (i.e., with $n - 1$ steps), starting at $(0,0)$, with steps $(1,1)$ and $(1,-1)$. Thus $\# U_n = 2^{n-1}$. Regard the n integer points on the path λ as the elements of a poset P_λ, such that λ is the Hasse diagram of P_λ. Find $\sum_{\lambda \in U_n} e(P_\lambda)$.
(b) [2+] Give P_λ the labeling ω_λ by writing the numbers $1, 2, \ldots, n$ along the path. For example, when $n = 8$ one possible pair $(P_\lambda, \omega_\lambda)$ is given by

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Find $\sum_{\lambda \in U_n} \Omega_{P_\lambda, \omega_\lambda}(m)$ and $\sum_{\lambda \in U_n} W_{P_\lambda, \omega_\lambda}(q)$.

(c) [3–] Let V_n consist of those $\lambda \in U_n$ which never fall below the x-axis. It is well-known that $V_n = (\lfloor \frac{n-1}{2} \rfloor)$. Show that $\sum_{\lambda \in V_n} e(P_\lambda)$ is equal to the number of permutations $w \in S_n$ of odd order. A formula for this number is given in EC2, Exercise 5.10(c) (the case $k = 2$).

(d) [5–] Is there a nice bijective proof or “conceptual proof” of (c)?

(e) [5–] Are there nice expressions for $\sum_{\lambda \in V_n} \Omega_{P_\lambda, \omega_\lambda}(m)$ and/or $\sum_{\lambda \in V_n} W_{P_\lambda, \omega_\lambda}(q)$?

(f) [3–] Now let W_n consist of all $\lambda \in V_{2n+1}$ that end at the x-axis. It is well-known that $\#W_n$ is the Catalan number $C_{n-1} = \frac{1}{n} \binom{2n}{n-1}$. Show that $\sum_{\lambda \in W_n} e(P_\lambda)$ is equal to the Eulerian-Catalan number $EC_n = A(2n+1, n)/(n+1)$ of EC1, Exercise 1.53.

9. [2+] Let P be a finite poset with $\hat{0}$ and $\hat{1}$. For each $t \in P$ define a polynomial $f_t(x)$ with coefficients in $\mathbb{Z}[y]$ as follows:

\[
\begin{align*}
\hat{0}(x) & = y \\
f_t(x+y) & = \sum_{s \leq t} f_s(x).
\end{align*}
\]

Express $f_1(x)$ in terms of the zeta polynomial $Z_P(n)$.

10. [2+] Let $n \geq 1$ and $d \geq 2$. Let P_{nd} be the poset with elements x_{ij}, $1 \leq i \leq n$ and $1 \leq j \leq d$, and with cover relations $x_{ij} \leq x_{i+1,k}$ for all $1 \leq i \leq n-1$, $1 \leq j \leq d$ and $1 \leq k \leq d$ except $j = k$. Thus P_{nd} is graded of rank $n-1$, and there are exactly $d(d-1)$ cover relations between consecutive ranks. Find $e(P_{nd})$. For instance, $e(P_{2,3}) = 48$ and $e(P_{3,3}) = 384$.

3
11. [3–] Let U_k denote an ordinal sum of k 2-element antichains, so $\#U_k = 2k$. Show that when $k = 2j$, the real parts of the zeros of the order polynomial $\Omega_{U_k}(m)$ are $0, -1, -2, \ldots, -(k - 1)$ (each occurring once), and $-(j - \frac{1}{2})$ (occurring k times). Similarly when $k = 2j + 1$ the zeros of $\Omega_{U_k}(m)$ have real parts $0, -1, \ldots, -(k - 1)$, each occurring once, except that $-j$ occurs $k + 1$ times.

12. (a) [3–] Let $f(n)$ be the number of nonisomorphic n-element posets for which $\beta_{J(P)}(S) \leq 1$ for all $S \subseteq [n-1]$. Find a simple formula for the generating function $\sum_{n \geq 0} f(n) x^n$.

(b) [3–] Among the $f(n)$ posets P of (a), find the maximum value of $e(P)$. How many posets (up to isomorphism) achieve this maximum?

13. (a) [2+] Define two labelings $\omega, \omega' : P \to [p]$ of the p-element poset P to be equivalent if $A_{P,\omega} = A_{P,\omega'}$. For instance, one equivalence class consists of the natural labelings. Let $[\omega]$ denote the equivalence class containing ω. Define a partial ordering L_P on the equivalence classes by $[\omega] \leq [\omega']$ if $A_{P,\omega} \subseteq A_{P,\omega'}$. Show that L is a self-dual graded poset with $\hat{0}$ and $\hat{1}$. What is the rank (length of the longest chain) of L_P? (For the number of elements of L_P, see Exercise 3.160.)

(b) [3] Find the Möbius function of L_P. In particular, for any $s \leq t$ we have $\mu(s, t) = 0, \pm 1$.

(c) [5–] What else can be said about the poset L_P?

14. [2+] Let (P, ω) be a labelled p-element poset. Show that there is some $S \subseteq [p-1]$ for which exactly one permutation $w \in \mathcal{L}(P, \omega)$ has descent set S.

Further problems may be forthcoming.