
LECTURE NOTES FOR REPRÉSENTATIONS DE GL2(QP ) ET

(φ, Γ)−-MODULES

DAVID ROE

1. Ordered Notes

• L (0.1, pg. 2) - a finite extension of Qp.
• G (2.1, pg. 11) - GL2(F ).
• Z (2.1, pg. 11) - The center of GL2(F ), ie

{(
a 0
0 a

)
: a ∈ F ∗

}
.

• B (2.1, pg. 11) - The standard Borel of GL2(F ), ie
(

F ∗ F
0 F ∗

)
.

• U+ (2.1, pg. 11) - The subgroup of G consisting of upper triangular unipotent
matrices, ie

(
1 F
0 1

)
.

• A (2.1, pg. 11) - The subgroup of diagonal matrices in G.
• ∆ (2.1, pg. 11) - The dihedral group generated by A and w.
• K (2.1, pg. 11) - GL2(OF ).
• Kn (2.1, pg. 11) - The subgroup of K consisting of matrices congruent to(

1 0
0 1

)
modulo πn, where n ∈ Z.

• In (2.1, pg. 11) - The subgroup of K consisting of lower tringular matrices
modulo πn, where n ≥ 1.

• D(a, n) (2.2, pg. 12) - An elementary open subset of P1(F ), given by a+πnOF

for a ∈ F and n ∈ Z.
• D(∞, n) (2.2, pg. 12) - An elementary open subset of P1(F ), defined as the

complement of D(0, 1 − n). The image of D(0, n) under w.
• elementary open in P1(F )(2.2, pg. 12) - D(a, n) or its complement for some

a ∈ F and n ∈ Z.
• I (2.2, pg. 12) - homothety classes of lattices in Fe1⊕Fe2, where a homothety

is the action of a scalar matrix. Isomorphic to G/KZ.
• d(s, s′) (2.2, pg. 12) - If s, s′ ∈ I and Λ is a representative for s, there is

a unique Λ′ representing s′ with Λ′ ⊂ Λ and Λ/Λ′ a cyclic OF -module, ie
isomorphic to OF /πnOF for some n. Define d(s, s′) = n.

• σn (2.2, pg. 12) - the homothety class of the lattice (πne1, e2).
• T (2.2, pg. 12) - The tree (building) of PGL2(F ). The vertices of T are the

homothety classes of lattices in Fe1 ⊕Fe2. The oriented edges are pairs [s, s′]
with d(s, s′) = 1.

• ℓ(I) (2.2, pg. 12) - For an oriented segment I = [s, s′], define the length of
I to be ℓ(I) = d(s, s′). The action of G on the oriented segments preserves
the length, is transitive on segments of a given length, and the stabilizer of
[(e1, e2), (π

ne1, e2)] is In, and the G-set of oriented segments of length n is
isomorphic to G/InZ.

Date: March 5, 2008.

1



2 DAVID ROE

• sx (2.2, pg. 13) - Given s ∈ T , there is a unique lattice Λs in the class of
s such that the projection of Λs onto Fe2 parallel to Fe1 is OFe2. Λs ∩ Fe1

will be of the form πnOFe1 and there will be a b ∈ F , uniquely defined up
to πnOF , such that Λs has OF -basis {πne1, e2 + be1}. Fix a choice of b. For
x ∈ kF , define sx to be the class of the lattice (πn+1e1, e2 +(b+πnx̂)e1) where
x̂ ∈ OF lifts x. Define s∞ to be the class of the lattice (πn−1e1, e2 + be1). The
edges emanating from s are the set {[s, sx] : x ∈ P1(kF )}.

• D[s,s′] (2.2, pg. 13) - See sx for the definition of b. If s′ = s∞ then define D[s,s′]

to be the elementary open of P1(F )given by the complement of b + πnOF . If
s′ = sx for x ∈ kF then set D[s,s′] = b + πnx̂ + πn+1OF . Note that there is a
typo (p in place of b in Colmez’s definition).

• T]s0,s1) (2.2, pg.13) - The subtree issuing from [s0, s1], the vertices of which are
the vertices s ∈ T with s1 ∈ [s0, s]. Note that s0 /∈ T]s0,s1) but s1 ∈ T]s0,s1).

• extremity (2.2, pg. 13) - If T ′ is a subtree of T , we way an edge [s0, s1] of
T ′ is an extremity if T ′ − {s0} ⊂ T]s0,s1).

• TU (2.2, pg. 13) - If U is an elementary open of P1(F )then it corresponds to
an edge [s0, s1]. Set TU = T]s0,s1).

• ray from s (2.2, pg. 13) - If s ∈ T , define a ray from s to be a nested union
of oriented segments Jn with ℓ(Jn) → ∞ as n → ∞.

• central character (2.3, pg. 13) - If Π is a Λ-representation then we say that
ω : Z → Λ∗ is a central character of Π if every g ∈ Z acts by multiplication
by ω(g).

• locally constant (representation) (2.3, pg. 13) - A representation Π of G is
locally constant (or lisse) if the stabilizer of each element v ∈ Π is open in G.

• admissible (representation) (2.3, pg. 13) - A Λ-representation Π of G is ad-
missible if ΠKn is of finite type over Λ for each n ∈ N.

• RepOL
G(2.3, pg. 13) - The category of locally constant, admissible, finite

length OL-representations of G admitting a central character.
• Π (2.3, pg. 13) - For a ring Λ, a Λ-representation Π of G is a Λ-module

equipped with a left, Λ-linear action of G. We often implicitly set Λ = OL.
•

Lemma (2.4). If Π ∈ RepOL
G then there exists W ⊂ Π of finite type over

OLthat is stable under KZ and generates Π as a G-module.

• W (Π)(2.4, pg. 14) - For Π ∈ RepOL
G, denote by W (Π)the set of finite type

sub-OL-modules of Π that are stable under KZ and generate Π as a G-module.
• I(W ) (2.4, pg. 14) - For W ∈ W (Π), set I(W ) = IndG

KZW .
• R(W, Π) (2.4, pg. 14) - The kernel of the morphism of G-modules from I(W )

to W defined by φ 7→
∑

g∈G/KZ g · φ(g−1).

• [g, v] (2.4, pg. 14) - If W ∈ W (Π), v ∈ W and g ∈ G let [g, v] be the element
of I(W ) defined by

[g, v](h) =

{
hg · v if hg ∈ KZ,
0 if hg /∈ KZ.

• [g, W ] (2.4, pg. 14) - If W ∈ W (Π) and g ∈ G, set [g, W ] = {[g, v] : v ∈ W}.
This is a submodule of I(W ) depending only on the class of g in G/KZ ∼= T .
It’s image under the map to Π is the translate g · W .
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• [s, W ] (2.4, pg. 14) - Since [g, W ] depends only on the class of g in G/KZ ∼= T

we can define [s, W ] in the natural way.
• supported on T ′ (2.4, pg. 14) - Since I(W ) =

⊕
s∈T

[s, W ], so we can write
x ∈ I(W ) as x =

∑
s∈T

xs with xs ∈ [s, W ]. If T ′ is a subtree of T , then we
say that x is supported on T ′ if xs = 0 for s /∈ T ′.

• support of x (2.4, pg. 15) - The smallest subtree T ′ of T such that x is
supported on T ′.

• W [n] (2.4, pg. 15) - If W ⊂ Π is stable under K and n ∈ N, set W [n] to be
the image in Π of the submodule

∑
d(s,σ0)≤n[s, W ] ⊂ I(W ).

• standard presentation (2.4, pg. 15) - We say that I(W )/R(W, Π) is a standard
presentation of Π if R(W, Π) is generated as an OL[G]-module by W∩

(
π 0
0 1

)
·W .

Equivalently, R(W, Π) is generated by R(0)(W, Π).
• R(0)(W, Π) (2.4, pg. 15) - For W ∈ W (Π), define

R(0)(W, Π) = {[
(

1 0
0 1

)
, x] − [

(
π 0
0 1

)
, y] : y ∈ W ∩

(
π−1 0
0 1

)
· W, x =

(
π 0
0 1

)
· y}

• R(n)(W, Π) (2.4, pg. 15) - The kernel of the natural map
⊕

d(s,σ0)≤n[s, W ] →

W [n].
• complexity ≤ n (2.4, pg. 15) - If n ∈ N we say that Π is of complexity ≤ n

if there is a W ∈ W (Π) such that R(n)(W, Π) generates the OL[G]-module
R(W, Π).

• W (n)(Π) (2.4, pg. 15) - For n ∈ N, denote by W (n)(Π) the set of W ∈ W (Π)
such that R(n)(W, Π) generates the OL[G]-module R(W, Π).

•

Proposition (2.7). Given the following data:

– A finite type OL-module W with action of KZ,

– A sub-OL-module W ′ of W stable under I+(1) and
(

0 1
π 0

)
,

– An isomorphism ι : W ′ →
(

0 1
1 0

)
·W ′ such that ι(g·x) =

(
π 0
0 1

)
g
(

π−1 0
0 1

)
·ι(x)

for all x ∈ W ′ and g ∈ I+(1), and such that ι(
(

0 1
1 0

)
· ι(v)) =

(
0 π
π 0

)
· v for

all v ∈ W ′;

and making the following definitions:

– R(W, W ′, ι) as the sub-OL[G]-module of I(W ) generated by the [
(

π 0
0 1

)
, v]−

[
(

1 0
0 1

)
, ι(v)] for v ∈ W ′,

– Π = I(W )/R(W, W ′, ι),

– W and W
′
the images of W and W ′ in Π,

then I(W )/R(W, Π) is a standard presentation of Π and W
′
= W∩

(
π−1 0
0 1

)
·W .

• ι (2.5, pg. 15) - Define ι : W →
(

π 0
0 1

)
· W by ι(v) =

(
π 0
0 1

)
· v.

•

Lemma (2.6). Let Π ∈ RepOL
G, suppose W ∈ W (Π), and set W ′ = W ∩(

π−1 0
0 1

)
· W . Then

(i)
(

0 1
1 0

)
· W ′ =

(
π 0
0 1

)
· W ′; in particular,

(
π 0
0 1

)
· W ′ is contained in W .

(ii) W ′ is stablized by I+(1) and
(

0 1
π 0

)
.

• H (2.5, pg. 16) - The subgroup of G generated by Z, I−(1) and the matrix(
0 π
1 0

)
.

•
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Lemma (2.8). If a system of representatives for G/H is fixed, then every

element R of R(W, W ′, ι) can be expressed uniquely as

R =
∑

g∈G/H

g ·
(
[
(

π 0
0 1

)
, vg], [

(
1 0
0 1

)
, ι(vg)]

)
.

•

Lemma (2.11). If W ∈ W (0)(Π), then W [1] ∈ W (0)(Π).
•

Proposition (2.13). Let 0 → Π1 → Π → Π2 → 0 be an exact sequence of

objects in RepOL
G.

(i) If Π admits a standard presentation, then so do Π1 and Π2.

(ii) If Π1 and Π2 admit standard presentations, then so does Π.

•

Lemma (2.16). If W ∈ W (1)(Π) then W [1] ∈ W (1)(Π).
•

Proposition (2.18). Let 0 → Π1 → Π → Π2 → 0 be an exact sequence of

objects in RepOL
G. If Π1 and Π2 are of complexity ≤ 1, then so is Π. More

precisely, if W2 ∈ W (1)(Π2), and if W1 is a finite type sub-OL-module of Π1

then there exists W ∈ W (1)(Π), containing W1, with image W2 in Π2.

• Π∨ (2.7, pg. 21) - If Π is an OL-representation of G, define the dual of Π by
Π∨ = Hom(Π, L/OL). It is given the structure of a G module by (g · µ)(v) =
µ(g−1 · v). Π∨ is given the weak convergence topology, making it a compact
OL-module.

• 〈µ, v〉 (2.7, pg. 21) - If µ ∈ Π∨ and v ∈ Π then 〈µ, v〉 is the result of applying
µ to v.

• Γ(T ′, F (W, Π)) (2.7, pg. 21) - If Π is of complexity ≤ 1 and W ∈ W (1)(Π)
then define Γ(T ′, F (W, Π)) to be the set of µ ∈

∏
s∈T ′[s, W ]∨ such that

〈µ, x〉 = 0 for all x ∈ G · R(1)(W, Π) supported on T ′.
• zero on U (2.7, pg. 21) - We say that µ ∈ Γ(T , F (W, Π)) is zero on U if the

restriction to [s, W ] is identically zero for all s ∈ TU . Equivalently, if gU ∈ G
sends OF to U then we require 〈µ, gUh · v〉 = 0.

• B(s, N) (2.7, pg. 22) - For s ∈ T and N ∈ N define B(s, N) to be the set of
vertices of T of distance at most N from s. Colmez doesn’t explicitly define
this notation on page 22.

• compact support (2.7, pg. 22) - We say that µ ∈ Γ(T , F (W, Π)) is compactly
supported in F if there exists a ∈ N such that µ is zero on D(∞, a), and
compactly supported on F ∗ if it’s zero on D(0, a) and D(∞, a). It turns out
that this notion is independent of W : µ ∈ Π∨ is compactly supported in F
if there is a W ∈ W (1)(Π) such that µ, as an element of Γ(T , F (W, Π)), is
compactly supported in F , and similarly for F ∗.

• Π∨
c (2.7, pg. 22) - The set of elements of Π∨ compactly suppported in F ∗. See

compact support.
• χ (3.1, pg. 25) - a character Q∗

p → k∗
L.

• Wr,χ (3.1, pg. 25) - the KZ-module (Symrk2
L) ⊗ χ ◦ det, where the action of

K factors through GL2(Fp).
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• P (3.1, pg. 25) - used to represent an element of Symrk2
L thought of as a

polynomial in X of degree ≤ r.
• P (∞) (3.1, pg. 26) - if P ∈ Wr,χ then P (∞) is the coefficient of Xr.
• Tp (3.1, pg. 26) - If 0 ≤ r ≤ p−1, Barthel and Livné construct Tp : I(Wr,χ) →

I(Wr,χ), commuting with the action of G and such that, if g ∈ G and P ∈ Wr,χ,

Tp([g, P ]) =

p−1∑

i=0

P (−i)[g
(

p i
0 1

)
, 1] + P (∞)[g

(
1 0
0 p

)
, Xr].

• Π(r, λ, χ) (3.1, pg. 26) - For λ ∈ kL, 0 ≤ r ≤ p − 1 and χ : Q∗
p → k∗

L define
Π(r, λ, χ) = I(Wr,χ)/(Tp − λ) · (I(Wr,χ)).

• LCc(Qp, kL)(3.2, pg. 26) - The kLvectors space of locally constant functions
with compact support in Qpand values in kL.

• LCc(δ1 ⊗ δ2)(3.2, pg. 26) - LCc(Qp, kL)equipped with left and (and corre-
sponding right) actions of B,

(
a b
0 d

)
·δ1⊗δ2 φ(x) = δ1(a)δ2(d)φ(

dx − b

a
),

φ ⋆δ1⊗δ2

(
a b
0 d

)
(x) = δ−1

1 (a)δ−1
2 (d)φ(

ax + b

d
).

• φi (3.2, pg. 27) - For i ∈ Zp/pZp, set φi = 1i+pZp
∈ LCc(Qp, kL).

• Y (δ1, δ2) (3.2, pg. 27) - The kLvector space
⊕

i∈Zp/pZp
kL · φi with the action

of ZB(Zp) obtained by restriction from LCc(δ1 ⊗ δ2).
• Rδ1,δ2,0(3.2, pg. 27 and 3.3, pg. 28) - Define

Rδ1,δ2,0 = [
(

1 0
0 1

)
, φ0] −

∑

i∈Zp/pZp

[
(

p 0
0 1

)
, δ1(p)−1φi].

•

Proposition (3.5). The kL[B]-module LCc(δ1⊗δ2)is the quotient of IndB
ZB(Zp)Y (δ1, δ2)

by the sub-kL[B]-module generated by Rδ1,δ2,0.

Proof. Let J be a system of representatives for Qp/Zp. Then
– The matrices

(
pn pnc
0 1

)
for n ∈ Z and c ∈ J for a family of representatives

for G/KZ.
–

(
pn pnc
0 1

)
· φi = δ1(p)n1pn(i+c)+pn+1Zp

.
– The pn(i + c), where c ∈ J and i ∈ {0, 1, . . . , p − 1} form a system of

representatives for Qp/p
n+1Zp.

– Considered as a kL-vector space, we have

LCc(Qp, kL) =




⊕

n∈Z

⊕

b∈Qp/pn+1Zp

kL · 1b+pn+1Zp



 /




⊕

n∈Z

⊕

b∈Qp/pnZp

kL · (1b+pnZp
−

p−1∑

i=0

1b+pni+pn+1Zp
)



 .

– 1b+pnZp
−

∑p−1
i=0 1b+pni+pn+1Zp

= δ1(p)1−n
(

pn−1 b
0 1

)
· Rδ1,δ2,0.

�

• ω (3.3, pg. 27) - Define ω : Q∗
p → F∗

p to be the reduction modulo p of the
character x 7→ x|x|.
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• B(δ1, δ2)(3.3, pg. 27) - For δ1, δ2 ∈ T̂ (kL), define B(δ1, δ2)to be the vector
space of functions with values in kL, locally constant on Qp, such that x 7→
(ω−1δ1δ

−1
2 )(x) · φ(1/x) extends to 0 and defines a locally constant function on

Qp. Equal to LCc(Qp, kL) ⊕ kL · φ∞. Define a right action of G by

(φ ⋆δ1,δ2

(
a b
c d

)
)(x) = (ωδ−1

1 )(ad − bc)(ω−1δ1δ
−1
2 )(cx + d)φ(

ax + b

cx + d
),

and a right action by g ·δ1,δ2 φ = φ ⋆δ1,δ2 g−1.
• φ∞ (3.3, pg. 27) - The function on Qpdefined by:

φ∞(x) =

{
(ω−1δ1δ

−1
2 )(x) if x /∈ Zp,

0 if x ∈ Zp.

• φv (3.3, pg. 27) - For v ∈ IndG
Bδ1 ⊗ δ2, define φv : Qp → kL by φv(x) =

v(
(

0 1
−1 x

)
).

• W (δ1, δ2)(3.3, pg. 28) - The kL-subspace of B(δ1, δ2)generated by φ∞ and the
φi for i inZp/pZp.

• Rδ1,δ2,∞(3.3, pg. 28) Define

Rδ1,δ2,∞ = [
(

p 0
0 1

)
, δ1(p)−1φ∞] − [

(
1 0
0 1

)
, φ∞] −

∑

i∈(Zp/pZp)∗

[
(

1 0
0 1

)
, (ω−1δ1δ

−1
2 )(i)φi].

• LCc(Q
∗
p, kL)(3.3, pg. 29) - the vector space of locally constant functions on

Qpwith values in kLand compactly supported in Q∗
p.

• LC(P1(Qp), kL)(3.4, pg. 29) - B(ω, 1), the vector space of locally constant
functions on P1(Qp)with a left action of G defined by g · φ = φ ⋆ g−1 and
φ ⋆

(
a b
c d

)
(x) = φ(ax+b

cx+d
).

• St (3.4, pg. 29) - The quotient of LC(P1(Qp), kL)by the subspace of constant
functions.

• W0(ω, 1) (3.4, pg. 29) - Defined by W (ω, 1)/kL · 1P1(Qp).
• R0 (3.5, pg. 30) - Define R0 as a submodule of I(Wr,χ) ⊕ I(Wp−1−r,χωr) by

R0 = [
(

1 0
0 1

)
, (0, Y p−1−r)] − [

(
p 0
0 1

)
, (1, 0)].

• R1 (3.5, pg. 30) - Define R1 as a submodule of I(Wr,χ) ⊕ I(Wp−1−r,χωr) by

R0 = [
(

p 0
0 1

)
, (0, 1)] − (−1)rχ(p)2[

(
1 0
0 1

)
, (Xr, 0)].

• Pr (3.5, pg. 30) - The polynomial of degree r given by (−X+1)···(−X+r)
r!

.

• f(r, χ) (3.5, pg. 30) - The vector
(

p 0
0 1

)
· 1 ∈ Π(r, 0, χ).

• W (3.5, pg. 30) - Wr,χ ⊕ Wp−1−r,χωr . Represent an element as (P, Q) where
P is a polynomial in X of degree ≤ r and Q a polynomial in Y of degree
≤ p − 1 − r.


