LECTURE NOTES FOR REPRESENTATIONS DE GL,(Qp) ET
(¢,T)—-MODULES

DAVID ROE

1. ORDERED NOTES

e L (0.1, pg. 2) - a finite extension of Q,.

o G (2.1, pg. 11) - GLy(F).

LA (2.1, pg. 11) - The center of GLy(F), ie {( ) :aGF*}.

e B (2.1, pg. 11) - The standard Borel of GLy(F),ie (1 £).

e UT (2.1, pg. 11) - The subgroup of G consisting of upper triangular unipotent
matrices, ie (§4).
A (2.1, pg. 11) - The subgroup of diagonal matrices in G.

)

A (2.1, pg. 11) - The dihedral group generated by A and w.

K, (2.1, pg. 11) - The subgroup of K consisting of matrices congruent to

(§9) modulo 7", where n € Z.

e [, (2.1, pg. 11) - The subgroup of K consisting of lower tringular matrices
modulo 7™, where n > 1.

e D(a,n) (2.2, pg. 12) - An elementary open subset of P!(F), given by a+7" 0
for a € F and n € Z.

e D(oco,n) (2.2, pg. 12) - An elementary open subset of P*(F), defined as the
complement of D(0,1 —n). The image of D(0,n) under w.

e clementary open in P'(F)(2.2, pg. 12) - D(a,n) or its complement for some
a€ FandneZ.

e 7(2.2,pg. 12) - homothety classes of lattices in Fe;@® F'ey, where a homothety
is the action of a scalar matrix. Isomorphic to G/KZ.

o d(s,s') (2.2, pg. 12) - If 5,8 € # and A is a representative for s, there is
a unique A’ representing s with A’ C A and A/A’ a cyclic Op-module, ie
isomorphic to Op /7" O for some n. Define d(s, s') = n.

e 0, (2.2, pg. 12) - the homothety class of the lattice (1"ey, e3).

e 7(2.2, pg. 12) - The tree (building) of PGLy(F"). The vertices of Zare the
homothety classes of lattices in Fe; @ Fes. The oriented edges are pairs [s, '
with d(s,s") = 1.

e ((I) (2.2, pg. 12) - For an oriented segment I = [s,s'], define the length of

I to be £(I) = d(s,s’). The action of G on the oriented segments preserves

the length, is transitive on segments of a given length, and the stabilizer of

[(e1,€2), (7€, €9)] is I,,, and the G-set of oriented segments of length n is

isomorphic to G/I,,Z.
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sz (2.2, pg. 13) - Given s € 7, there is a unique lattice A, in the class of
s such that the projection of A, onto Fey parallel to Fey is Opes. Ay N Fey
will be of the form 7" 0re; and there will be a b € F', uniquely defined up
to "0k, such that A; has Op-basis {n"eq, es + be;}. Fix a choice of b. For
r € kp, define s, to be the class of the lattice (7" ey, e5 + (b+ 7"%)e;) where
& € O lifts x. Define s, to be the class of the lattice (7" ey, €5 + bey). The
edges emanating from s are the set {[s, s,| : * € P1(kp)}.

Dis.1 (2.2, pg. 13) - See s, for the definition of b. If s" = s, then define Dy, o
to be the elementary open of P!(F)given by the complement of b + 7" OF. If
s’ = s, for x € kp then set Do =b+7"T + 7" t10r. Note that there is a
typo (p in place of b in Colmez’s definition).

Fso.s1) (2.2, pg.13) - The subtree issuing from [sg, 5], the vertices of which are
the vertices s € 7 with s; € [sg, s]. Note that sg € Fs,s,) but s1 € Ty 4))-
extremity (2.2, pg. 13) - If J is a subtree of .7, we way an edge [so, s1] of
T is an extremity if J' — {so} C Fsy.01)-

T (2.2, pg. 13) - If U is an elementary open of P!(F)then it corresponds to
an edge [so, 51]. Set Ty = Fgp.51)-

ray from s (2.2, pg. 13) - If s € 7, define a ray from s to be a nested union
of oriented segments .J,, with ¢(.J,,) — oo as n — oo.

central character (2.3, pg. 13) - If II is a A-representation then we say that
w: Z — N* is a central character of II if every g € Z acts by multiplication
by w(g)-

locally constant (representation) (2.3, pg. 13) - A representation II of G is
locally constant (or lisse) if the stabilizer of each element v € II is open in G.
admissible (representation) (2.3, pg. 13) - A A-representation II of G is ad-
missible if I1%» is of finite type over A for each n € N.

Rep,, G(2.3, pg. 13) - The category of locally constant, admissible, finite
length & -representations of G admitting a central character.

IT (2.3, pg. 13) - For a ring A, a A-representation II of G is a A-module
equipped with a left, A-linear action of G. We often implicitly set A = 0.

Lemma (2.4). If Il € Rep,, G then there exists W C 1L of finite type over
O'that is stable under KZ and generates 11 as a G-module.

W (I11)(2.4, pg. 14) - For I € Rep,, G, denote by # (Il)the set of finite type
sub-0'r-modules of I that are stable under K Z and generate II as a G-module.
o I(W) (2.4, pg. 14) - For W € #/(IT), set [(W) = Ind% ,W.

R(W.1I) (2.4, pg. 14) - The kernel of the morphism of G-modules from (W)
to W defined by ¢ — > k79 é(g™h).

lg,v] (2.4, pg. 14) -IE W e #(II), v € W and g € G let [g,v] be the element
of I(W) defined by

| hg-v ifhge KZ,
[9’”](h)_{ 0  ifhg¢ KZ.

(g, W] (2.4, pg. 14) - U W € #(II) and g € G, set [g, W] = {[g,v] : v € W}.
This is a submodule of I(W) depending only on the class of g in G/KZ = 7.
It’s image under the map to II is the translate g - W.
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o [s, W] (2.4, pg. 14) - Since [g, W] depends only on the class of g in G/KZ = 7

we can define [s, W] in the natural way.

supported on .7’ (2.4, pg. 14) - Since I(W) = @, ,[s, W], so we can write

velW)asx =), with z, € [s, W]. If T is a subtree of .7, then we

say that x is supported on I if z;, =0 for s ¢ 7.

support of x (2.4, pg. 15) - The smallest subtree .7/ of Jsuch that x is

supported on .7’.

Wl (2.4, pg. 15) - If W C II is stable under K and n € N, set W to be

the image in II of the submodule ., . .,.[s, W] C I(W).

standard presentation (2.4, pg. 15) - We say that [(W)/R(W,II) is a standard

presentation of IT if R(W, II) is generated as an &;,[G]-module by WN (5 {)-W.

Equivalently, R(W,II) is generated by R©® (W, 1I).

o RO(W,II) (2.4, pg. 15) - For W € #/(II), define

RO = ([(59),2] - (5D y € W (757 ) - Wi = (59) -0}

e RC(W,II) (2.4, pg. 15) - The kernel of the natural map Das.oo)<nls: Wl —
wil,

e complexity < n (2.4, pg. 15) - If n € N we say that II is of complexity < n
if there is a W € #/(II) such that R™ (W, II) generates the ¢y [G]-module
R(W,1I).

o W ™W(I) (2.4, pg. 15) - For n € N, denote by # (™ (II) the set of W € %/ (I)
such that R™ (W, II) generates the ¢'[G]-module R(W,II).

Proposition (2.7). Given the following data:
— A finite type O-module W with action of KZ,
— A sub-Op-module W' of W stable under I*(1) and
— Anisomorphismv: W' — (9 §)-W’ such that L(g x)
for allz € W' and g € I™(1), and such that ((9})
allve W',

and making the following definitions:
— R(W, W', 1) as the sub-O1[G]-module of I(W) generated by the [( ), v]—
[(49),0(0)] forve W,
— = I(W)/R(W, W', 1),
— W and W the images of W and W' in II,
then I(W)/R(W 11) is a standard presentation of Il and W' = wn(="9)-W.
e ¢ (2.5, pg. 15) - Define t: W — (§9) - W by o(v) = (§59) - v.
[ ]
Lemma (2.6). Let Il € Rep,, G, suppose W € W (II), and set W' = W N
(”81 (f) W. Then
1) (98)-W'=(39) W' in particular, (§9) - W' is contained in W.
(i) W’ is stablized by IT(1) and (2}).
.5, pg. 16) - The subgroup of G generated by Z, I~(1) and the matrix



DAVID ROE

Lemma (2.8). If a system of representatives for G/H is fized, then every
element R of R(W, W' 1) can be expressed uniquely as

R = Z g- ([(6(1))7%]7[((1)(1))’L(Ug)])‘

geG/H
Lemma (2.11). If W € w/O(T1), then W € /(O (11).

Proposition (2.13). Let 0 — II; — Il — Il — 0 be an exact sequence of
objects in Rep,, G.

(i) If 11 admits a standard presentation, then so do 11; and Ils.

(i) If 11y and Ty admit standard presentations, then so does I1.

Lemma (2.16). If W € # V(1) then W € o (I(10).

Proposition (2.18). Let 0 — II; — II — Il — 0 be an exact sequence of
objects in Rep,, G. If 11y and 11y are of complerity < 1, then so is II. More
precisely, if Wy € W (O (Ily), and if W, is a finite type sub-Op-module of T1;
then there exists W € W W(I1), containing Wy, with image Wy in Il,.

ITY (2.7, pg. 21) - If IT is an & -representation of G, define the dual of II by
1TV = Hom(II, L/ 0). 1t is given the structure of a G module by (g - p)(v) =
p(g™t - v). IV is given the weak convergence topology, making it a compact
O'r-module.

(p,v) (2.7, pg. 21) - If p € IIY and v € II then (u,v) is the result of applying
u to v.

07,7 (W,II)) (2.7, pg. 21) - If IT is of complexity < 1 and W € # (I (1I)
then define I'(.7”, (W, II)) to be the set of u € [[,c5[s, W]¥ such that
{p,x) = 0 for all z € G - RY (W, II) supported on 7.

zero on U (2.7, pg. 21) - We say that p € I'(.7, . #(W,11)) is zero on U if the
restriction to [s, W] is identically zero for all s € 9. Equivalently, if gy € G
sends Orto U then we require (i, gyh - v) = 0.

B(s,N) (2.7, pg. 22) - For s € 7 and N € N define B(s, N) to be the set of
vertices of 7 of distance at most N from s. Colmez doesn’t explicitly define
this notation on page 22.

compact support (2.7, pg. 22) - We say that p € I'(7, % (W, 11)) is compactly
supported in F' if there exists a € N such that u is zero on D(oco,a), and
compactly supported on F* if it’s zero on D(0,a) and D(oco,a). It turns out
that this notion is independent of W: p € IIV is compactly supported in F
if there is a W € #(U(II) such that p, as an element of I'(.7,.% (W, 1)), is
compactly supported in F', and similarly for F™.

ITY (2.7, pg. 22) - The set of elements of TV compactly suppported in F*. See
compact support.

e X (3.1, pg. 25) - a character Q; — kj.

e W,, (3.1, pg. 25) - the KZ-module (Sym"k?) ® x o det, where the action of
K factors through GLy(F)).
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e P (3.1, pg. 25) - used to represent an element of Sym"k? thought of as a
polynomial in X of degree < r.

o P(00) (3.1, pg. 26) - if P € W, ,, then P(c0) is the coefficient of X",

o T, (3.1, pg. 26) - If 0 < r < p—1, Barthel and Livné construct T,,: I(W,,) —
I(W, ), commuting with the action of G and such that, if g € G and P € W, ,,

p—1

P(=i)lg(§1).1] + Poo)la(39). X"

o II(r, A\, x) (3.1, pg. 26) -For A € k,, 0 <r <p—1and x: Qy — kj define
1(r, A x) = [(Won) (T, = A) - (I(Wy).

o LC.(Qp, k1)(3.2, pg. 26) - The kpvectors space of locally constant functions
with compact support in Q,and values in k.

o LC.(01 ® 02)(3.2, pg. 26) - LC.(Qy, kr)equipped with left and (and corre-
sponding right) actions of B,

(54) “nes 6(x) = Br(@)(d)o( T

)7

6500, (54) (@) = 67 (@)55 (Do (“0).

e ¢; (3.2, pg. 27) - For i € Z,/pZy, set ¢; = liyyz, € LC(Qy, ki)
Y (é1,02) (3.2, pg. 27) - The kpvector space €D,cy 1,7, ki - ¢; with the action

of ZB(Z,) obtained by restriction from LC,(d; ® d2).
o Rs, 5,0(3.2, pg. 27 and 3.3, pg. 28) - Define

Ry, 500 = [(§9), 0] — Z [(B9).01(p) " i].

€Ly [ PLy

Proposition (3.5). The ki[B]-module LC.(6;®0,)is the quotient ofInng(Zp)Y((Sl, 92)
by the sub-kr|B]-module generated by Rs, s,.0-

Proof. Let J be a system of representatives for Q,/Z,. Then
— The matrices (po p C) forn € Z and c € J for a famﬂy of representatives
for G/KZ.

- (p b C) ¢i = d1(p ) p(ite)+pnT1Zy-

— The p"(i + ¢), where c € Jandi € {0,1,...,p — 1} form a system of
representatives for Q,/p" " Z,.

— Considered as a kp-vector space, we have

p—1
Ce(Qp, k1) = @ @ kr - Lyypnirz, |/ @ @ ki - (Logpnz, — Z Lo prigpntiz,)
i—0

ne€Z beQp/pnt1Zy ne€Z beQyp/p"Zy

— Logprz, — Do 1b+p nippriiz, = 01(p)! ”(pno ' b) Rs, 55,0
O

w (3.3, pg. 27) - Define w: Q; — T, to be the reduction modulo p of the
character x — z|x|.
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e B(61,09)(3.3, pg. 27) - For 61,0, € T (kr), define B(d1,d2)to be the vector
space of functions with values in £y, locally constant on Q,, such that z —

(w816, 1)(x) - (1 /) extends to 0 and defines a locally constant function on
Q,. Equal to LC.(Q,, kL) ® kL - ¢oo. Define a right action of G by

_ _ _ ar + b
(0 %s0.5, (25))(@) = (wor ") (ad — be) (w6105 ") (cx + d)o( );
cr+d
and a right action by g 5,5, ¢ = @ *s,5, 9
® 0 (3.3, pg. 27) - The function on Q,defined by:
(w66 Y (2) ifx ¢ Z,,
Poo(2) = { 0 if © € Z,.
e ¢, (3.3, pg. 27) - For v € Ind%s, ® &y, define ¢,: Q, — kr by ¢,(z) =

v( ( O ))

o W(dy,09)(3.3, pg. 28) - The kr-subspace of B(d;, Js)generated by ¢, and the
¢; for i inZ,/pZ,.

o Rs, 5,.00(3.3, pg. 28) Define

Ry spoo = [(59),00(0) ") = [(39)00) = D 1(59), (w018, 1) (D).
1€(Zp /PLp)*

o LC.(Q, kL)(3.3, pg. 29) - the vector space of locally constant functions on
Qpwith values in krand compactly supported in Qj.

e LC(PY(Q,),kr)(3.4, pg. 29) - B(w,1), the vector space of locally constant
functions on P'(Q,)with a left action of G defined by g-¢ = ¢+ g~! and
o (24)(@) = o(2£23).

e St (3.4, pg. 29) - The quotient of LC(P*(Q,), k1 )by the subspace of constant
functions.

o Wo(w,1) (3.4, pg. 29) - Defined by W(w,1)/kz - 1p1(g,).-

e Ry (3.5, pg. 30) - Define Ry as a submodule of I(W,.,) & I(Wy_1_ywr) by

Ro=1[(89), (0,y" ") = [(§7), (1,0)].
e 1R (3.5, pg. 30) - Define Ry as a submodule of I(W,.,) & I(W,_1_yur) by

RO = [(g ?)7 (Oa 1)] - (_1)TX(p)2[((1) (1)>’ (XT’O)]'

P, (3.5, pg. 30) - The polynomial of degree r given by M

[ ]

e f(r,x) (3.5, pg. 30) - The vector (g (1)) -1 e II(r,0, x).

o W (3.5, pg. 30) - W,,, & W,_1_,,wr- Represent an element as (P, Q) where
P is a polynomial in X of degree < r and () a polynomial in Y of degree
<p—1-—r.



