LECTURE NOTES FOR *REPRÉSENTATIONS DE* $GL_2(\mathbb{Q}_P)$ *ET* $(\phi, \Gamma)-MODULES$

DAVID ROE

1. Outline

In this section I outline Colmez's arguments without any of the proofs.

- **2. Representations of GL_2(F).** In this section Colmez defines a bunch of subgroups of G. See the Definitions section.
- 2.1. $GL_2(F)$ and its subgroups.

Proposition (2.1). (i) The subgroup of G generated by $\begin{pmatrix} 1 & \mathcal{O}_F \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ \mathcal{O}_F & 1 \end{pmatrix}$ is $\mathbf{SL}_2\mathcal{O}_F$. (ii) The subgroup of G generated by $\begin{pmatrix} 1 & \mathcal{O}_F \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ \pi^{-1}\mathcal{O}_F & 1 \end{pmatrix}$ is $\mathbf{SL}_2(F)$.

- **2.2.** The tree of $\operatorname{PGL}_2(F)$. Colmez defines the "tree" of $\operatorname{PGL}_2(F)$, whose vertices are homothety classes of lattices in $Fe_1 \oplus Fe_2$, and with oriented edges between lattices of index index p in some scaling of the other. See $\mathscr{T}, D(a, n), \mathscr{I}, d(s, s'), \sigma_n, \ell(I), \mathscr{T}_{|s_0, s_1|}$, and s_x in the Definitions section for more details.
- 2.3. Representations of G.

Lemma (2.2). If M is an \mathcal{O}_L -module of finite length with a continuous action of U^+ then U^+ acts trivially on M.

Lemma (2.3). Let $\Pi \in \operatorname{Rep}_{\mathscr{O}_L} G$. If $M \subset \Pi$ is a sub- \mathscr{O}_L -module of finite length stable under Δ then M is stable under G and fixed by $\operatorname{SL}_2(F)$.

2.4. The presentation of a representation of G.

Lemma (2.4). If $\Pi \in \operatorname{Rep}_{\mathscr{O}_L}G$ then there exists $W \subset \Pi$ of finite type over \mathscr{O}_L that is stable under KZ and generates Π as a G-module.

2.5. Representations admitting a standard presentation.

Lemma (2.6). Let $\Pi \in \operatorname{Rep}_{\mathscr{O}_L} G$, suppose $W \in \mathscr{W}(\Pi)$, and set $W' = W \cap \begin{pmatrix} \pi^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot W$. Then

- (i) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot W' = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot W'$; in particular, $\begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot W'$ is contained in W.
- (ii) W' is stablized by $I^+(1)$ and $\begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$.

Proposition (2.7). Given the following data:

- A finite type \mathcal{O}_L -module W with action of KZ,
- A sub- \mathcal{O}_L -module W' of W stable under $I^+(1)$ and $\begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$,
- An isomorphism $\iota: W' \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot W'$ such that $\iota(g \cdot x) = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} g \begin{pmatrix} \pi^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot \iota(x)$ for all $x \in W'$ and $g \in I^+(1)$, and such that $\iota(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \iota(v)) = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot v$ for all $v \in W'$;

Date: March 5, 2008.

and making the following definitions:

- $R(W, W', \iota)$ as the sub- $\mathcal{O}_L[G]$ -module of I(W) generated by the $\begin{bmatrix} \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}, v \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \iota(v) \end{bmatrix}$ for $v \in W'$.
- $\Pi = I(W)/R(W, W', \iota),$
- \overline{W} and \overline{W}' the images of W and W' in Π ,

then $I(\overline{W})/R(\overline{W},\Pi)$ is a standard presentation of Π and $\overline{W}' = \overline{W} \cap \begin{pmatrix} \pi^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot \overline{W}$.

Lemma (2.8). If a system of representatives for G/H is fixed, then every element R of $R(W, W', \iota)$ can be expressed uniquely as

$$R = \sum_{g \in G/H} g \cdot \left(\left[\left(\begin{smallmatrix} \pi & 0 \\ 0 & 1 \end{smallmatrix} \right), v_g \right], \left[\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right), \iota(v_g) \right] \right).$$

Lemma (2.10). If $W \in \mathcal{W}(\Pi)$, the following conditions are equivalent:

- (i) $W \in \mathcal{W}^{(0)}(\Pi)$;
- (ii) Given any subtree \mathscr{T}' of \mathscr{T} , extremity $[s_0, s_1]$ of \mathscr{T}' , and $R = \sum_{s \in \mathscr{T}'} [s, x_s] \in R(W, \Pi)$ with support included in \mathscr{T}' , we have $s_1 \cdot x_{s_1} \in s_0 \cdot W$.

Lemma (2.11). If $W \in \mathcal{W}^{(0)}(\Pi)$, then $W^{[1]} \in \mathcal{W}^{(0)}(\Pi)$.

Corollary (2.12). If Π admits a standard presentation, then for all $W' \in \mathcal{W}(\Pi)$, there exists $W'' \in \mathcal{W}^{(0)}(\Pi)$ containing W'.

Proposition (2.13). Let $0 \to \Pi_1 \to \Pi \to \Pi_2 \to 0$ be an exact sequence of objects in $\operatorname{Rep}_{\mathscr{O}_L}G$.

- (i) If Π admits a standard presentation, then so do Π_1 and Π_2 .
- (ii) If Π_1 and Π_2 admit standard presentations, then so does Π .

2.6. Representations of complexity ≤ 1 .

Lemma (2.14). If $W \in \mathcal{W}(\Pi)$, the following conditions are equivalent.

- (i) $W \in \mathcal{W}^{(1)}(\Pi)$;
- (ii) Given any subtree \mathscr{T}' of \mathscr{T} , extremity $[s_0, s_1]$ of \mathscr{T}' , and $R \in R(W, \Pi)$ with support included in \mathscr{T}' , there exists $R_0 \in R^{(1)}(W, \Pi)$ such that $R s_1 \cdot R_0$ has support in $\mathscr{T}' \{s_0\}$.

Corollary (2.15). If $W \in \mathcal{W}^{(1)}(\Pi)$ and if $R \in R(W, \Pi)$ has support \mathcal{T}' , then there is a finite family of pairs $\{(g_i, R_i) : i \in I\}$ with $g_i \in G$ and $R_i \in R^{(1)}(W, \Pi)$ such that

- for all $i \in I$, $g_i \cdot R_i$ is supported in \mathscr{T}' , and
- $R = \sum_{i \in I} g_i \cdot R_i$.

Lemma (2.16). If $W \in \mathcal{W}^{(1)}(\Pi)$ then $W^{[1]} \in \mathcal{W}^{(1)}(\Pi)$.

Corollary (2.17). If Π is of complexity ≤ 1 , then for all $W' \in \mathcal{W}(\Pi)$, there exists $W'' \in \mathcal{W}^{(1)}(\Pi)$ containing W'.

Proposition (2.18). Let $0 \to \Pi_1 \to \Pi \to \Pi_2 \to 0$ be an exact sequence of objects in $\operatorname{Rep}_{\mathscr{O}_L}G$. If Π_1 and Π_2 are of complexity ≤ 1 , then so is Π . More precisely, if $W_2 \in \mathscr{W}^{(1)}(\Pi_2)$, and if W_1 is a finite type sub- \mathscr{O}_L -module of Π_1 then there exists $W \in \mathscr{W}^{(1)}(\Pi)$, containing W_1 , with image W_2 in Π_2 .

2.7. Duals.

Lemma (2.19). If \mathcal{T}' is a subtree of \mathcal{T} , then

$$\left(\sum_{s\in\mathscr{T}'} s\cdot W\right)^{\vee} = \Gamma((\mathscr{F}(W,\Pi))\mathscr{T}').$$

Lemma (2.20). If $g \in G$ and if $\mu \in \Pi^{\vee}$ then μ is zero on \mathscr{T}_U if and only if $g \cdot \mu$ is zero on $\mathscr{T}_{q \cdot U}$.

Lemma (2.21). Let \mathscr{T}' be a subtree of \mathscr{T} , $\{[s_{i,0},s_{i,1}]:i\in I\}$ the extremities of \mathscr{T}' and suppose the restriction of $\mu\in\left(\sum_{s\in\mathscr{T}'}s\cdot W\right)^{\vee}$ to $s_{i,0}\cdot W+s_{i,1}\cdot W$ is zero for all $i\in I$. Then there exists $\tilde{\mu}\in\Pi^{\vee}$ such that $\tilde{\mu}$ restricted to $\sum_{s\in\mathscr{T}'}s\cdot W$ is μ and $\tilde{\mu}$ is identically zero on $\mathscr{T}_{]s_{i,1},s_{i,0})}$.

Lemma (2.22). If $W, W' \in \mathcal{W}^{(1)}(\Pi)$ and $\mu \in \Pi^{\vee}$ then the following conditions are equivalent.

- (i) There exists $a \in \mathbb{N}$ such that μ , considered as an element of $\Gamma(\mathcal{T}, \mathcal{F}(W, \Pi))$, is zero on D(0, a).
- (ii) There exists $a' \in \mathbb{N}$ such that μ , considered as an element of $\Gamma(\mathcal{T}, \mathcal{F}(W', \Pi))$, is zero on D(0, a').

Corollary (2.23). Let $W, W' \in \mathcal{W}^{(1)}(\Pi)$ and $\mu \in \Pi^{\vee}$. Then μ is compactly supported in F (resp. F^*) as an element of $\Gamma(\mathcal{T}, \mathcal{F}(W, \Pi))$ if and only if it is compactly supported as an element of $\Gamma(\mathcal{T}, \mathcal{F}(W', \Pi))$.

Proposition (2.24). If $\Pi \in \text{Rep}_{\mathcal{O}_{I}}G$ is of complexity ≤ 1 , the following conditions are equivalent.

- (i) $\Pi^{\mathbf{SL}_2(F)} = 0$,
- (ii) Π_c^{\vee} is dense in Π^{\vee} .

Lemma (2.25). If $\Pi^{\mathbf{SL}_2(F)} = 0$ then for all finite type sub- \mathcal{O}_L -modules M, M' of Π , there exists $n \in \mathbb{N}$ with

$$M' \cap \left(\sum_{m \ge n} {m \choose 0} {m \choose 1} \cdot M\right) = 0 \quad and \quad M' \cap \left(\sum_{m \ge n} {m \choose 0} {m \choose 1} \cdot M\right) = 0$$

2.8. The Jacquet functor $\Pi \mapsto J(\Pi)$.

3. Representations of $GL_2(\mathbb{Q}_p)$.

Theorem (3.1). Every object of $\operatorname{Rep}_{\mathcal{O}_L}G$ admits a standard presentation.

The irreducible objects of $\operatorname{Rep}_{\mathscr{O}_L}G$.

- **Theorem** (3.2). (i) The representation $\Pi(r, \lambda, \chi)$ is irreducible unless r = 0 and $\lambda = \pm 1$, in which case $\Pi(r, \lambda, \chi)$ is an extension of the infinite-dimensional irreducible representation $\operatorname{St} \otimes \chi \mu_{\lambda} \circ \det$ by the character $\chi \mu_{\lambda} \circ \det$; or r = p 1 and $\lambda = \pm 1$, in which case $\Pi(r, \lambda, \chi)$ is an extension of $\chi \mu_{\lambda} \circ \det$ by $\operatorname{St} \otimes \chi \mu_{\lambda} \circ \det$.
 - $(ii) \ \textit{Every irreducible object in } \mathbf{Rep}_{k_L}G \textit{ is isomorphic to a Jordan-H\"{o}lder factor of some } \Pi(r,\lambda,\chi).$

Proposition (3.4). (i) The only isomorphisms between supersingulars are

$$\Pi(r, 0, \chi) \cong \Pi(r, 0, \chi \mu_{-1}) \cong \Pi(p - 1 - r, 0, \chi \omega^r) \cong \Pi(p - 1 - r, 0, \chi \omega^r \mu_{-1})$$

(ii) There are no isomorphisms between supersingulars and subobjects of principal series, or between Jordan-Hölder factors of $\operatorname{Ind}_B^G \delta_1 \otimes \delta_2$ and $\operatorname{Ind}_B^G \delta_1' \otimes \delta_2'$ for $(\delta_1, \delta_2) \neq (\delta_1', \delta_2')$.

3.2. Representations of the Borel.

Proposition (3.5). The $k_L[B]$ -module $LC_c(\delta_1 \otimes \delta_2)$ is the quotient of $Ind_{ZB(\mathbb{Z}_p)}^B Y(\delta_1, \delta_2)$ by the sub $k_L[B]$ -module generated by $R_{\delta_1,\delta_2,0}$.

3.3. The principal series in characteristic p.

Proposition (3.6).

- (i) $B(\delta_1, \delta_2)$ is an object of $\operatorname{Rep}_{\mathcal{O}_L} G$ with central character $\omega^{-1} \delta_1 \delta_2$.
- (ii) $LC_c(\mathbb{Q}_p, k_L)$ is stable under the action of B, and there is an exact sequence of $k_L[B]$ -modules

$$0 \to \mathbf{LC}_c(\delta_1 \omega^{-1} \otimes \delta_2) \to B(\delta_1, \delta_2) \to \delta_2 \otimes \delta_1 \omega^{-1} \to 0$$

Proposition (3.7). $W(\delta_1, \delta_2) \in \mathcal{W}(B(\delta_1, \delta_2))$ and $R(W(\delta_1, \delta_2), B(\delta_1, \delta_2))$ is generated as an $\mathcal{O}_L[G]$ module by $R_{\delta_1,\delta_2,0}$ and $R_{\delta_1,\delta_2,\infty}$.

Corollary (3.8). $I(W(\delta_1, \delta_2))/R(W(\delta_1, \delta_2), B(\delta_1, \delta_2))$ is a standard presentation of $B(\delta_1, \delta_2)$.

3.4. The Steinberg.

Proposition (3.10). The representation St admits a standard presentation and, more precisely, $W_0(\omega, 1) \in \mathcal{W}^{(0)}(\operatorname{St})$ and $R(W_0(\omega, 1), \operatorname{St})$ is generated by $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \phi_0 = \sum_{i=0}^{p-1} \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}, \phi_i$.

3.5. The Supersingulars.

Proposition (3.11). If $0 \le r \le p-1$, and if $\chi: \mathbb{Q}_p^* \to k_L^*$, then we have the isomorphisms of representations of G,

$$\Pi(r,0,\chi) \cong \frac{I(W_{r,\chi}) \oplus I(W_{p-1-r,\chi\omega^r})}{(R_0,R_1)} \cong \Pi(p-1-r,0,\chi\omega^r).$$

2. Proofs

Proof of Proposition 3.5. Let J be a system of representatives for $\mathbb{Q}_p/\mathbb{Z}_p$. Then

- The matrices $\binom{p^n}{0} \binom{p^nc}{1}$ for $n \in \mathbb{Z}$ and $c \in J$ for a family of representatives for G/KZ. $\binom{p^n}{0} \binom{p^nc}{1} \cdot \phi_i = \delta_1(p)^n \mathbf{1}_{p^n(i+c)+p^{n+1}\mathbb{Z}_p}$. The $p^n(i+c)$, where $c \in J$ and $i \in \{0,1,\ldots,p-1\}$ form a system of representatives for $\mathbb{Q}_p/p^{n+1}\mathbb{Z}_p$.
- Considered as a k_L -vector space, we have

$$LC_c(\mathbb{Q}_p, k_L) = \left(\bigoplus_{n \in \mathbb{Z}} \bigoplus_{b \in \mathbb{Q}_p/p^{n+1}\mathbb{Z}_p} k_L \cdot \mathbf{1}_{b+p^{n+1}\mathbb{Z}_p}\right) / \left(\bigoplus_{n \in \mathbb{Z}} \bigoplus_{b \in \mathbb{Q}_p/p^n\mathbb{Z}_p} k_L \cdot (\mathbf{1}_{b+p^n\mathbb{Z}_p} - \sum_{i=0}^{p-1} \mathbf{1}_{b+p^ni+p^{n+1}\mathbb{Z}_p})\right).$$

•
$$\mathbf{1}_{b+p^n\mathbb{Z}_p} - \sum_{i=0}^{p-1} \mathbf{1}_{b+p^ni+p^{n+1}\mathbb{Z}_p} = \delta_1(p)^{1-n} \binom{p^{n-1}}{0} \cdot R_{\delta_1,\delta_2,0}$$
.

Proof of Proposition 3.6. The map $v \mapsto \phi_v$ defines a G-equivariant isomorphism of $\operatorname{Ind}_B^G \delta_1 \otimes \delta_2$ to $B(\delta_2\omega, \delta_1)$, and therefore $B(\delta_1, \delta_2) \cong \operatorname{Ind}_B^G \delta_2 \otimes \delta_1\omega^{-1}$. Moreover, evaluation on $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ defines a B-equivariant, surjective map $\operatorname{Ind}_B^G \delta_2 \otimes \delta_1 \omega^{-1} \to \delta_2 \otimes \delta_1 \omega^{-1}$. After applying the aforementioned isomorphism, the kernel of the map $B(\delta_1, \delta_2) \to \delta_2 \otimes \delta_1 \omega^{-1}$ is $LC_c(\delta_2 \otimes \delta_1 \omega^{-1})$.

Proof of Proposition 3.7. To simplify notation, let $\Pi = B(\delta_1, \delta_2)$, $W = W(\delta_1, \delta_2)$ and $\delta = \omega^{-1} \delta_1 \delta_2^{-1}$ for the duration of this proof. Quick calculations show that

Therefore W is stable under $ZG(\mathbb{Z}_p)$ and thus $W \in \mathcal{W}(\Pi)$.

We now have $\delta_1(p)^{-1}\binom{p}{0}\binom{p}{1}\cdot\phi_i=\mathbf{1}_{pi+p^2\mathbb{Z}_p}$, and

$$\delta_1(p)^{-1} \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \cdot \phi_{\infty}(x) = \phi_{\infty}(x/p) = \begin{cases} \delta(x) & \text{if } x \notin p\mathbb{Z}_p, \\ 0 & \text{if } x \in \mathbb{Z}_p, \end{cases} = \phi_{\infty}(x) + \sum_{i \in (\mathbb{Z}_p/p\mathbb{Z}_p)^*} \delta(i)\phi_i(x).$$

One deduces that $R_0 = R_{\delta_1, \delta_2, 0}$ and $R_{\infty} = R_{\delta_1, \delta_2, \infty}$ are contained in $R(W, \Pi)$.

If one considers Π modulo $LC_c(\delta_2 \otimes \delta_1 \omega^{-1})$, then it is generated as a B-module by $\overline{\phi_{\infty}}$, and R_{∞} is generated by $\begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}$, $\delta_1(p)^{-1}\overline{\phi_{\infty}} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\overline{\phi_{\infty}}$. Let $R'(W, \Pi)$ be the sub- $k_L[B]$ -module of $R(W, \Pi)$ generated by R_0 and R_{∞} . The quotient of I(W) by $R'(W, \Pi)$, by Proposition 3.5, fits into the exact sequence of $k_L[B]$ -modules

$$0 \to LC_c(\delta_2 \otimes \delta_1 \omega^{-1}) \to I(W)/R'(W,\Pi) \to k_L \cdot \overline{\phi_\infty} \to 0.$$

Since $\Pi = I(W)/R(W,\Pi)$ is a quotient of $I(W)/R'(W,\Pi)$ which, by virtue of Proposition 3.6, embeds in an exact sequence of $k_L[B]$ -modules, we deduce that the natural map of $I(W)/R'(W,\Pi)$ to Π is an isomorphism, and thus $R(W,\Pi) = R'(W,\Pi)$.

Proof of Proposition 3.10. We have that $W_0(\omega, 1) = \bigoplus_{i \in \mathbb{Z}_p/p\mathbb{Z}_p} k_L \cdot \phi_o$, where the action of Z is trivial and

$$\begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \phi_i = \phi_{i+1} \text{ if } i \in \mathbb{Z}_p/p\mathbb{Z}_p, \\ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot \phi_i = \phi_{ai} \text{ if } a \in \mathbb{Z}_p^* \text{ and } i \in \mathbb{Z}_p/p\mathbb{Z}_p, \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \phi_i = \phi_{i-1} \text{ if } i \in (\mathbb{Z}_p/p\mathbb{Z}_p)^*, \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \phi_0 = -\sum_{i \in \mathbb{Z}_p/p\mathbb{Z}_p} \phi_i.$$

This gives the desired result.

Proof of Proposition 3.11.

Lemma (3.12). In \mathbb{F}_p we have $P_r(\infty) = \frac{(-1)^r}{r!}$ and

$$P_r(-i) = \begin{cases} (-1)^i \binom{p-1-r}{i} & \text{if } 0 \le i \le p-1-r, \\ 0 & \text{if } p-r \le i \le p-1. \end{cases}$$

Proof. Both sides are clearly zero if $p-r \le i \le p-1$. Moreover, if $0 \le i \le p-1-r$ then modulo p one has

$$\binom{p-1-r}{i} = \frac{(p-1-r)\cdots(p-i-r)}{i!} = (-1)^i \frac{(r+1)\cdots(r+i)}{i!} = (-1)^i \frac{(r+i)!}{r!\cdot i!} = (-1)^i P_r(-i).$$

Lemma (3.13). The sub-KZ-module of $\Pi(r,0,\chi)$ generated by $f(r,\chi)$ is isomorphic to $W_{p-1-r,\chi\omega^r}$.

Proof. Since $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot 1$ is invariant under $\begin{pmatrix} 1+p\mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & 1+p\mathbb{Z}_p \end{pmatrix}$, the vector $f(r,\chi)$ is invariant under $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1+p\mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & 1+p\mathbb{Z}_p \end{pmatrix} \begin{pmatrix} p^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^{-1} & 0 \\ 0 & 1 \end{pmatrix}$. Moreover, we have

where the last equality is by Wilson's theorem,

$$r!(p-1-r)! = (-1)^{p-1-r}(p-1)! = -(-1)^{p-1-r} = -(-1)^r.$$

Lemma (3.14). The k_L vector space $R(W, \Pi(r, 0, \chi))$ contains the relations R_0 and R_1 .

Lemma (3.15). The $\mathcal{O}_L[G]$ -module generated by the relations R_0, R_1 contains the sub- \mathcal{O}_L -module $(T_p \cdot I(W_{r,\chi}), 0) \oplus (0, T_p \cdot I(W_{p-1-r,\chi\omega^r}))$ as a strict submodule.

3. Definitions

I collect in this section definitions that Colmez uses, together with references to where they first appear.

- A (2.1, pg. 11) The subgroup of diagonal matrices in G.
- A^+ (2.1, pg. 11) The subgroup $\begin{pmatrix} F^* & 0 \\ 0 & 1 \end{pmatrix}$ of G.
- A^- (2.1, pg. 11) The subgroup $\begin{pmatrix} 1 & 0 \\ 0 & F^* \end{pmatrix}$ of G.
- admissible (representation) (2.3, pg. 13) A Λ -representation Π of G is admissible if Π^{K_n} is of finite type over Λ for each $n \in \mathbb{N}$.
- B (2.1, pg. 11) The standard Borel of $\mathbf{GL}_2(F)$, ie $\begin{pmatrix} F^* & F \\ 0 & F^* \end{pmatrix}$.
- B(s, N) (2.7, pg. 22) For $s \in \mathcal{T}$ and $N \in \mathbb{N}$ define B(s, N) to be the set of vertices of \mathcal{T} of distance at most N from s. Colmez doesn't explicitly define this notation on page 22.
- $B(\mathbb{Z}_p)$ (3.2, pg. 27) The Borel with entries in \mathbb{Z}_p .
- $B(\delta_1, \delta_2)(3.3, \text{ pg. } 27)$ For $\delta_1, \delta_2 \in \widehat{\mathcal{T}}(k_L)$, define $B(\delta_1, \delta_2)$ to be the vector space of functions with values in k_L , locally constant on \mathbb{Q}_p , such that $x \mapsto (\omega^{-1}\delta_1\delta_2^{-1})(x) \cdot \phi(1/x)$ extends to 0 and defines a locally constant function on \mathbb{Q}_p . Equal to $LC_c(\mathbb{Q}_p, k_L) \oplus k_L \cdot \phi_{\infty}$. Define a right action of G by

$$(\phi \star_{\delta_1,\delta_2} \begin{pmatrix} a & b \\ c & d \end{pmatrix})(x) = (\omega \delta_1^{-1})(ad - bc)(\omega^{-1}\delta_1\delta_2^{-1})(cx + d)\phi(\frac{ax + b}{cx + d}),$$

- and a left action by $g \cdot_{\delta_1, \delta_2} \phi = \phi \star_{\delta_1, \delta_2} g^{-1}$.
- central character (2.3, pg. 13) If Π is a Λ -representation then we say that $\omega \colon Z \to \Lambda^*$ is a central character of Π if every $g \in Z$ acts by multiplication by $\omega(g)$.
- compact support (2.7, pg. 22) We say that $\mu \in \Gamma(\mathcal{T}, \mathcal{F}(W, \Pi))$ is compactly supported in F if there exists $a \in \mathbb{N}$ such that μ is zero on $D(\infty, a)$, and compactly supported on F^* if it's zero on D(0, a) and $D(\infty, a)$. It turns out that this notion is independent of W: $\mu \in \Pi^{\vee}$ is compactly supported in F if there is a $W \in \mathcal{W}^{(1)}(\Pi)$ such that μ , as an element of $\Gamma(\mathcal{T}, \mathcal{F}(W, \Pi))$, is compactly supported in F, and similarly for F^* .
- complexity $\leq n$ (2.4, pg. 15) If $n \in \mathbb{N}$ we say that Π is of complexity $\leq n$ if there is a $W \in \mathcal{W}(\Pi)$ such that $R^{(n)}(W,\Pi)$ generates the $\mathcal{O}_L[G]$ -module $R(W,\Pi)$.
- d(s, s') (2.2, pg. 12) If $s, s' \in \mathscr{I}$ and Λ is a representative for s, there is a unique Λ' representing s' with $\Lambda' \subset \Lambda$ and Λ/Λ' a cyclic \mathscr{O}_F -module, ie isomorphic to $\mathscr{O}_F/\pi^n\mathscr{O}_F$ for some n. Define d(s, s') = n.
- D(a,n) (2.2, pg. 12) An elementary open subset of $\mathbf{P}^1(F)$, given by $a + \pi^n \mathcal{O}_F$ for $a \in F$ and $n \in \mathbb{Z}$.
- $D(\infty, n)$ (2.2, pg. 12) An elementary open subset of $\mathbf{P}^1(F)$, defined as the complement of D(0, 1-n). The image of D(0, n) under w.
- $D_{[s,s']}$ (2.2, pg. 13) See s_x for the definition of b. If $s' = s_\infty$ then define $D_{[s,s']}$ to be the elementary open of $\mathbf{P}^1(F)$ given by the complement of $b + \pi^n \mathcal{O}_F$. If $s' = s_x$ for $x \in k_F$ then set $D_{[s,s']} = b + \pi^n \hat{x} + \pi^{n+1} \mathcal{O}_F$. Note that there is a typo (p in place of b in Colmez's definition).
- elementary open in $\mathbf{P}^1(F)(2.2, \text{ pg. } 12)$ D(a, n) or its complement for some $a \in F$ and $n \in \mathbb{Z}$.
- extremity (2.2, pg. 13) If \mathscr{T}' is a subtree of \mathscr{T} , we say an edge $[s_0, s_1]$ of \mathscr{T}' is an extremity if $\mathscr{T}' \{s_0\} \subset \mathscr{T}_{[s_0, s_1)}$.
- F (2.1, pg. 11) a complete nonarchimedian local field. In section 3, F is set to be equal to \mathbb{Q}_p .
- $f(r,\chi)$ (3.5, pg. 30) The vector $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \cdot 1 \in \Pi(r,0,\chi)$.
- G (2.1, pg. 11) $GL_2(F)$.
- $\Gamma(\mathcal{T}', \mathcal{F}(W,\Pi))$ (2.7, pg. 21) If Π is of complexity ≤ 1 and $W \in \mathcal{W}^{(1)}(\Pi)$ then define $\Gamma(\mathcal{T}', \mathcal{F}(W,\Pi))$ to be the set of $\mu \in \prod_{s \in \mathcal{T}'} [s, W]^{\vee}$ such that $\langle \mu, x \rangle = 0$ for all $x \in G \cdot R^{(1)}(W,\Pi)$ supported on \mathcal{T}' .
- H (2.5, pg. 16) The subgroup of G generated by Z, $I^-(1)$ and the matrix $\begin{pmatrix} 0 & \pi \\ 1 & 0 \end{pmatrix}$.
- $\mathscr{I}(2.2, \text{ pg. } 12)$ homothety classes of lattices in $Fe_1 \oplus Fe_2$, where a homothety is the action of a scalar matrix. Isomorphic to G/KZ.
- I_n (2.1, pg. 11) The subgroup of K consisting of lower tringular matrices modulo π^n , where n > 1.
- $I^-(n)$ (2.5, pg. 16 (implicitly)) The subgroup of K consisting of lower triangular matrices modulo π^n , where $n \ge 1$.
- $I^+(n)$ (2.5, pg. 15) The subgroup of K consisting of upper triangular matrices modulo π^n , where $n \ge 1$.
- I(W) (2.4, pg. 14) For $W \in \mathcal{W}(\Pi)$, set $I(W) = \operatorname{Ind}_{KZ}^G W$.
- K (2.1, pg. 11) $\mathbf{GL}_2(\mathscr{O}_F)$.
- K_n (2.1, pg. 11) The subgroup of K consisting of matrices congruent to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ modulo π^n , where $n \in \mathbb{Z}$.

- L (0.1, pg. 2) a finite extension of \mathbb{Q}_p .
- $\ell(I)$ (2.2, pg. 12) For an oriented segment I = [s, s'], define the length of I to be $\ell(I) =$ d(s,s'). The action of G on the oriented segments preserves the length, is transitive on segments of a given length, and the stabilizer of $[(e_1, e_2), (\pi^n e_1, e_2)]$ is I_n , and the G-set of oriented segments of length n is isomorphic to G/I_nZ .
- LC_c(\mathbb{Q}_p, k_L)(3.2, pg. 26) The k_L vectors space of locally constant functions with compact support in \mathbb{Q}_p and values in k_L .
- $LC_c(\delta_1 \otimes \delta_2)(3.2, \text{ pg. } 26)$ $LC_c(\mathbb{Q}_p, k_L)$ equipped with left and (and corresponding right) actions of B,

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot_{\delta_1 \otimes \delta_2} \phi(x) = \delta_1(a)\delta_2(d)\phi(\frac{dx - b}{a}),$$

$$\phi \star_{\delta_1 \otimes \delta_2} \left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix} \right) (x) = \delta_1^{-1}(a) \delta_2^{-1}(d) \phi \left(\frac{ax+b}{d} \right).$$

- LC_c(\mathbb{Q}_p^*, k_L)(3.3, pg. 29) the vector space of locally constant functions on \mathbb{Q}_p with values in k_L and compactly supported in \mathbb{Q}_p^* .
- LC($\mathbf{P}^1(\mathbb{Q}_p), k_L$)(3.4, pg. 29) $B(\omega, 1)$, the vector space of locally constant functions on $\mathbf{P}^1(\mathbb{Q}_p)$ with a left action of G defined by $g \cdot \phi = \phi \star g^{-1}$ and $\phi \star \begin{pmatrix} a & b \\ c & d \end{pmatrix}(x) = \phi(\frac{ax+b}{cx+d})$.
- locally constant (representation) (2.3, pg. 13) A representation Π of G is locally constant (or lisse) if the stabilizer of each element $v \in \Pi$ is open in G.
- $M_{\delta_1 \otimes \delta_2}$ (2.8, pg. 24) If M is a $k_L[B]$ -module of finite length over k_L with central character ω_M and $\delta_1 \otimes \delta_2$ a character of A then denote by $M_{\delta_1 \otimes \delta_2}$ the set of $x \in M$ such that there is a $k(x) \in \mathbb{N}$ with $(g - \delta_1 \otimes \delta_2(g))^{k(x)} \cdot x = 0$ for all $g \in B$. Note that $M_{\delta_1 \otimes \delta_2} = 0$ if $\delta_1 \delta_2 \neq \omega_M$.
- P (2.1, pg. 11) The mirabolic subgroup of $GL_2(F)$, ie $\begin{pmatrix} F^* & F \\ 0 & 1 \end{pmatrix}$.
- P (3.1, pg. 25) used to represent an element of Sym^r k_L^2 thought of as a polynomial in X
- $P(\infty)$ (3.1, pg. 26) if $P \in W_{r,\chi}$ then $P(\infty)$ is the coefficient of X^r . P^+ (2.1, pg. 11; 2.7, pg. 21) Defined on page 11 as the monoid $\begin{pmatrix} \mathscr{O}_F \{0\} & \mathscr{O}_F \\ 0 & 1 \end{pmatrix}$. Redefined on page 21 as the monoid $\begin{pmatrix} \pi^{\mathbb{N}} & \mathcal{O}_F \\ 0 & 1 \end{pmatrix}$.
- P_r (3.5, pg. 30) The polynomial of degree r given by $\frac{(-X+1)\cdots(-X+r)}{r!}$
- principal series (3.1, pg. 26) A representation of the form $\operatorname{Ind}_B^G \delta_1 \otimes \delta_2$ is called a principal series.
- $R(W,\Pi)$ (2.4, pg. 14) The kernel of the morphism of G-modules from I(W) to W defined by $\phi \mapsto \sum_{g \in G/KZ} g \cdot \phi(g^{-1})$.
- $R^{(0)}(W,\Pi)$ (2.4, pg. 15) For $W \in \mathcal{W}(\Pi)$, define

$$R^{(0)}(W,\Pi) = \{ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, x \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}, y \end{bmatrix} : y \in W \cap \begin{pmatrix} \pi^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot W, x = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot y \}$$

- $R^{(n)}(W,\Pi)$ (2.4, pg. 15) For $n \geq 1$, the kernel of the natural map $\bigoplus_{d(s,\sigma_0)\leq n}[s,W] \to W^{[n]}$.
- $R(W,W',\iota)$ (2.5, pg. 16) If W is a finite type \mathscr{O}_L -module with an action of $KZ,\,W'$ a sub- \mathcal{O}_L -module stable under $I^+(1)$ and $\begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$, and ι is an isomorphism $W' \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot W'$ with the property that $\iota(g \cdot x) = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} g \begin{pmatrix} \pi^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot \iota(x)$ for all $x \in W'$ and $g \in I^+(1)$ and the property that $\iota(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}) \cdot \iota(v) = \begin{pmatrix} 0 & \pi \\ \pi & 0 \end{pmatrix} \cdot v$ for all $v \in W'$, then define $R(W, W', \iota)$ to be the sub- $\mathcal{O}_L[G]$ -module generated by $\begin{bmatrix} \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}, v \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \iota(v) \end{bmatrix}$ as v ranges over W'.

• $R_{\delta_1,\delta_2,0}(3.2, \text{ pg. } 27 \text{ and } 3.3, \text{ pg. } 28)$ - Define

$$R_{\delta_1,\delta_2,0} = \left[\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right), \phi_0 \right] - \sum_{i \in \mathbb{Z}_p/p\mathbb{Z}_p} \left[\left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix} \right), \delta_1(p)^{-1} \phi_i \right].$$

• $R_{\delta_1,\delta_2,\infty}(3.3, \text{ pg. } 28)$ Define

$$R_{\delta_1,\delta_2,\infty} = \left[\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, \delta_1(p)^{-1}\phi_{\infty} \right] - \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \phi_{\infty} \right] - \sum_{i \in (\mathbb{Z}_p/p\mathbb{Z}_p)^*} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (\omega^{-1}\delta_1\delta_2^{-1})(i)\phi_i \right].$$

• R_0 (3.5, pg. 30) - R_0 is the element of $I(W_{r,\chi}) \oplus I(W_{p-1-r,\chi\omega^r})$ given by

$$R_0 = \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (0, Y^{p-1-r}) \right] - \left[\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, (1, 0) \right].$$

• R_1 (3.5, pg. 30) - R_1 is the element of $I(W_{r,\chi}) \oplus I(W_{p-1-r,\chi\omega^r})$ given by

$$R_0 = \left[\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, (0, 1) \right] - (-1)^r \chi(p)^2 \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (X^r, 0) \right].$$

- ray from s (2.2, pg. 13) If $s \in \mathcal{T}$, define a ray from s to be a nested union of oriented segments J_n with $\ell(J_n) \to \infty$ as $n \to \infty$.
- $\operatorname{Rep}_{\mathscr{O}_L}G(2.3, \operatorname{pg.} 13)$ The category of locally constant, admissible, finite length \mathscr{O}_L representations of G admitting a central character.
- s, s', s_0, s_1 (2.2, pg. 12) usually represent elements of \mathcal{T} .
- s_x (2.2, pg. 13) Given $s \in \mathscr{T}$, there is a unique lattice Λ_s in the class of s such that the projection of Λ_s onto Fe_2 parallel to Fe_1 is $\mathscr{O}_F e_2$. $\Lambda_s \cap Fe_1$ will be of the form $\pi^n \mathscr{O}_F e_1$ and there will be a $b \in F$, uniquely defined up to $\pi^n \mathscr{O}_F$, such that Λ_s has \mathscr{O}_F -basis $\{\pi^n e_1, e_2 + be_1\}$. Fix a choice of b. For $x \in k_F$, define s_x to be the class of the lattice $(\pi^{n+1}e_1, e_2 + (b+\pi^n\hat{x})e_1)$ where $\hat{x} \in \mathscr{O}_F$ lifts x. Define s_∞ to be the class of the lattice $(\pi^{n-1}e_1, e_2 + be_1)$. The edges emanating from s are the set $\{[s, s_x] : x \in \mathbf{P}^1(k_F)\}$.
- St (3.4, pg. 29) The quotient of $LC(\mathbf{P}^1(\mathbb{Q}_p), k_L)$ by the subspace of constant functions.
- standard presentation (2.4, pg. 15) We say that $I(W)/R(W,\Pi)$ is a standard presentation of Π if $R(W,\Pi)$ is generated as an $\mathscr{O}_L[G]$ -module by $W \cap \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot W$. Equivalently, $R(W,\Pi)$ is generated by $R^{(0)}(W,\Pi)$.
- supersingular (3.1, pg. 26) A representation $\Pi(r,0,\chi)$ is called a supersingular.
- support of x (2.4, pg. 15) The smallest subtree \mathscr{T}' of \mathscr{T} such that x is supported on \mathscr{T}' .
- supported on \mathscr{T}' (2.4, pg. 14) Since $I(W) = \bigoplus_{s \in \mathscr{T}} [s, W]$, so we can write $x \in I(W)$ as $x = \sum_{s \in \mathscr{T}} x_s$ with $x_s \in [s, W]$. If \mathscr{T}' is a subtree of \mathscr{T} , then we say that x is supported on \mathscr{T}' if $x_s = 0$ for $s \notin \mathscr{T}'$.
- T_p (3.1, pg. 26) If $0 \le r \le p-1$, Barthel and Livné construct $T_p: I(W_{r,\chi}) \to I(W_{r,\chi})$, commuting with the action of G and such that, if $g \in G$ and $P \in W_{r,\chi}$,

$$T_p([g,P]) = \sum_{i=0}^{p-1} P(-i)[g\binom{p}{0}, 1] + P(\infty)[g\binom{1}{0}, 0], X^r].$$

- $\mathcal{T}(2.2, \text{ pg. } 12)$ The tree (building) of $\mathbf{PGL}_2(F)$. The vertices of \mathcal{T} are the homothety classes of lattices in $Fe_1 \oplus Fe_2$. The oriented edges are pairs [s, s'] with d(s, s') = 1.
- $\widehat{\mathscr{T}}(\Lambda)$ (0.1, pg. 2) the ring of continuous characters $\mathbb{Q}_p^* \to \Lambda^*$, where Λ is a topological ring.
- \mathscr{T}_U (2.2, pg. 13) If U is an elementary open of $\mathbf{P}^1(F)$ then it corresponds to an edge $[s_0, s_1]$. Set $\mathscr{T}_U = \mathscr{T}_{[s_0, s_1)}$.

- $\mathcal{I}_{[s_0,s_1)}$ (2.2, pg.13) The subtree issuing from $[s_0,s_1]$, the vertices of which are the vertices $s \in \mathscr{T}$ with $s_1 \in [s_0, s]$. Note that $s_0 \notin \mathscr{T}_{[s_0, s_1)}$ but $s_1 \in \mathscr{T}_{[s_0, s_1)}$.
- U^+ (2.1, pg. 11) The subgroup of G consisting of upper triangular unipotent matrices, ie $\begin{pmatrix} 1 & F \\ 0 & 1 \end{pmatrix}$.
- U^- (2.1, pg. 11) The subgroup of G consisting of lower triangular unipotent matrices, ie
- $U^+(\pi^n\mathscr{O}_F)$ (2.1, pg. 11) The subgroup $\begin{pmatrix} 1 & \pi^n\mathscr{O}_F \\ 0 & 1 \end{pmatrix}$ of G, where $n \in \mathbb{Z}$. $U^-(\pi^n\mathscr{O}_F)$ (2.1, pg. 11) The subgroup $\begin{pmatrix} 1 & 0 \\ \pi^n\mathscr{O}_F & 1 \end{pmatrix}$ of G, where $n \in \mathbb{Z}$.
- W (2.4, pg. 14) Through much of chapter 2, W is the symbol used for an element of $\mathcal{W}(\Pi)$ or $\mathcal{W}^{(n)}(\Pi)$.
- W (3.5, pg. 30) $W_{r,\chi} \oplus W_{p-1-r,\chi\omega^r}$. Represent an element as (P,Q) where P is a polynomial in X of degree $\leq r$ and Q a polynomial in Y of degree $\leq p-1-r$.
- w (2.1, pg. 11) The matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- $\mathcal{W}(\Pi)(2.4, \text{ pg. } 14)$ For $\Pi \in \text{Rep}_{\mathcal{O}_L}G$, denote by $\mathcal{W}(\Pi)$ the set of finite type sub- \mathcal{O}_L -modules of Π that are stable under KZ and generate Π as a G-module.
- $\mathcal{W}^{(n)}(\Pi)$ (2.4, pg. 15) For $n \in \mathbb{N}$, denote by $\mathcal{W}^{(n)}(\Pi)$ the set of $W \in \mathcal{W}(\Pi)$ such that $R^{(n)}(W,\Pi)$ generates the $\mathscr{O}_L[G]$ -module $R(W,\Pi)$.
- $W^{[n]}$ (2.4, pg. 15) If $W \subset \Pi$ is stable under K and $n \in \mathbb{N}$, set $W^{[n]}$ to be the image in Π of the submodule $\sum_{d(s,\sigma_0) < n} [s,W] \subset I(W)$.
- $W_{r,\chi}$ (3.1, pg. 25) the KZ-module (Sym^r k_L^2) $\otimes \chi \circ \det$, where the action of K factors through $\mathbf{GL}_2(\mathbb{F}_p)$.
- $W_0(\omega, 1)$ (3.4, pg. 29) Defined by $W(\omega, 1)/k_L \cdot \mathbf{1}_{\mathbf{P}^1(\mathbb{Q}_p)}$.
- $W(\delta_1, \delta_2)(3.3, \text{ pg. } 28)$ The k_L -subspace of $B(\delta_1, \delta_2)$ generated by ϕ_{∞} and the ϕ_i for $i \in$ $\mathbb{Z}_p/p\mathbb{Z}_p$.
- $Y(\delta_1, \delta_2)$ (3.2, pg. 27) The k_L vector space $\bigoplus_{i \in \mathbb{Z}_p/p\mathbb{Z}_p} k_L \cdot \phi_i$ with the action of $ZB(\mathbb{Z}_p)$ obtained by restriction from $LC_c(\delta_1 \otimes \delta_2)$.
- Z (2.1, pg. 11) The center of $GL_2(F)$, ie $\{\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in F^* \}$.
- zero on U (2.7, pg. 21) We say that $\mu \in \Gamma(\mathcal{T}, \mathcal{F}(W,\Pi))$ is zero on U if the restriction to [s, W] is identically zero for all $s \in \mathcal{T}_U$. Equivalently, if $g_U \in G$ sends \mathscr{O}_F to U then we require $\langle \mu, g_U h \cdot v \rangle = 0$.
- Δ (2.1, pg. 11) The dihedral group generated by A and w.
- χ (3.1, pg. 25) a character $\mathbb{Q}_p^* \to k_L^*$.
- ι (2.5, pg. 15) Define ι : $W \to \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot W$ by $\iota(v) = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix} \cdot v$.
- σ_n (2.2, pg. 12) the homothety class of the lattice $(\pi^n e_1, e_2)$.
- ϕ_v (3.3, pg. 27) For $v \in \operatorname{Ind}_B^G \delta_1 \otimes \delta_2$, define $\phi_v \colon \mathbb{Q}_p \to k_L$ by $\phi_v(x) = v(\begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix})$.
- ϕ_{∞} (3.3, pg. 27) The function on \mathbb{Q}_p defined by:

$$\phi_{\infty}(x) = \begin{cases} (\omega^{-1}\delta_1 \delta_2^{-1})(x) & \text{if } x \notin \mathbb{Z}_p, \\ 0 & \text{if } x \in \mathbb{Z}_p. \end{cases}$$

- ϕ_i (3.2, pg. 27) For $i \in \mathbb{Z}_p/p\mathbb{Z}_p$, set $\phi_i = \mathbf{1}_{i+p\mathbb{Z}_p} \in \mathrm{LC}_c(\mathbb{Q}_p, k_L)$.
- π (2.1, pg. 11) a uniformizer for F.
- Π (2.3, pg. 13) For a ring Λ , a Λ -representation Π of G is a Λ -module equipped with a left, Λ -linear action of G. We often implicitly set $\Lambda = \mathscr{O}_L$.

- Π^{\vee} (2.7, pg. 21) If Π is an \mathscr{O}_L -representation of G, define the dual of Π by $\Pi^{\vee} = \operatorname{Hom}(\Pi, L/\mathscr{O}_L)$. It is given the structure of a G module by $(g \cdot \mu)(v) = \mu(g^{-1} \cdot v)$. Π^{\vee} is given the weak convergence topology, making it a compact \mathscr{O}_L -module.
- Π_c^{\vee} (2.7, pg. 22) The set of elements of Π^{\vee} compactly supported in F^* . See compact support.
- $\Pi(r, \lambda, \chi)$ (3.1, pg. 26) For $\lambda \in k_L$, $0 \le r \le p-1$ and $\chi : \mathbb{Q}_p^* \to k_L^*$ define $\Pi(r, \lambda, \chi) = I(W_{r,\chi})/(T_p \lambda) \cdot (I(W_{r,\chi}))$.
- ω (3.3, pg. 27) Define $\omega \colon \mathbb{Q}_p^* \to \mathbb{F}_p^*$ to be the reduction modulo p of the character $x \mapsto x|x|$.
- ω_M (2.8, pg. 24) The central character of a finite length $k_L[B]$ -module M.
- [s, s'] (2.2, pg. 12) When $s, s' \in \mathcal{T}$, this is an oriented edge or oriented segment of the tree \mathcal{T} .
- [g,v] (2.4, pg. 14) If $W\in \mathcal{W}(\Pi),\ v\in W$ and $g\in G$ let [g,v] be the element of I(W) defined by

$$[g,v](h) = \begin{cases} hg \cdot v & \text{if } hg \in KZ, \\ 0 & \text{if } hg \notin KZ. \end{cases}$$

- [g, W] (2.4, pg. 14) If $W \in \mathcal{W}(\Pi)$ and $g \in G$, set $[g, W] = \{[g, v] : v \in W\}$. This is a submodule of I(W) depending only on the class of g in $G/KZ \cong \mathcal{F}$. It's image under the map to Π is the translate $g \cdot W$.
- [s, W] (2.4, pg. 14) Since [g, W] depends only on the class of g in $G/KZ \cong \mathscr{T}$ we can define [s, W] in the natural way.
- $\langle \mu, v \rangle$ (2.7, pg. 21) If $\mu \in \Pi^{\vee}$ and $v \in \Pi$ then $\langle \mu, v \rangle$ is the result of applying μ to v.
- $\cdot_{\delta_1 \otimes \delta_2}$ (3.2, pg. 26) see $LC_c(\delta_1 \otimes \delta_2)$ and $B(\delta_1, \delta_2)$.
- $\star_{\delta_1 \otimes \delta_2}$ (3.2, pg. 27) see LC_c($\delta_1 \otimes \delta_2$)and $B(\delta_1, \delta_2)$.