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Hyperelliptic Curves

p-adic point counting

Kedlaya [Ked01] gives an algorithm for computing the number of
Fq-rational points on a hyperelliptic curve using p-adic cohomology.
Suppose that X is a hyperelliptic curve of genus g, whose affine locus
is defined by the equation

y2 = f (x)

for some f (x) ∈ Fq[x ]. Kedlaya’s key idea is that we can determine the
size of X (Fq) from the action of Frobenius on a Weil cohomology
theory applied to X .
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Hyperelliptic Curves

Notation

We first work with a more general smooth projective X . Let U be an
affine open in X (for hyperelliptic curves we will set U as the subset of
the standard affine chart with y 6= 0). Set Ā as the coordinate ring of
U, and choose a smooth Zq-algebra A with A⊗Zq Fq = Ā. In the curve
case

A = Zq[x , y , y−1]/(y2 − f (x)).

David Roe ( Harvard University / University of Calgary )Zeta functions with p-adic cohomology 4 / 28



Hyperelliptic Curves

Monsky-Washnitzer cohomology

Unfortunately, we cannot lift Frobenius to an endomorphism of A: we
need to p-adically complete A somehow. The full completion is too big,
so instead we use the weak completion A†. Fix x1, . . . , xn ∈ A whose
images in Ā generate it over Fq. Then

A† =
{ ∞∑

n=0

anPn(x1, . . . , xn) : vp(an) ≥ n,

and ∃c > 0 with deg(Pn) < c(n + 1) for all n
}

The Monsky-Washnitzer cohomology of U is the cohomology of the
algebraic de Rham complex over A† ⊗Zq Qq.

David Roe ( Harvard University / University of Calgary )Zeta functions with p-adic cohomology 5 / 28



Hyperelliptic Curves

A† for hyperelliptic curves

We can be more explicit for hyperelliptic curves. For P(x) ∈ Zq[x ], let
vp(P) be the minimum valuation of any coefficient. Then

A† =
{ ∞∑

n=−∞
Pn(x)yn : lim inf

n→∞

vp(Pn(x))

n
> 0, lim inf

n→∞

vp(P−n(x))

n
> 0

}
.
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Hyperelliptic Curves

Lifting Frobenius

We define a lift of Frobenius σ : A† → A† by setting
σ is the standard Frobenius on coefficients in Zq,
σ(x) = xp,
and defining σ(y) by

σ(y) = yp
(

1 +
σ(f (x))− f (x)p

y2p

)1/2

= yp
∞∑

i=0

(
1/2

i

)
(σ(f (x))− f (x)p)i

ypi
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Hyperelliptic Curves

Lefschetz fixed-point theorem

The key theorem which will allow us to use this cohomology theory to
count rational points is the following.

Theorem

Suppose that Ā is smooth and integral of dimension n over Fq, and that
the weak completion A† of Ā admits a Frobenius F lifting the
q-Frobenius on Ā. Then the number of homomorphisms Ā→ Fq is
given by

n∑
i=0

(−1)i Tr(qnF−1|Hi(A; Qq).
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Hyperelliptic Curves

Kedlaya’s Algorithm

The plan:

1 Write down a basis for H1(A; Qq) and apply Frobenius to each
basis element.

2 Subtract coboundaries in order to write these images in terms of
the original basis, obtaining a matrix M for the p-power Frobenius.

3 Determine a matrix M ′ for the q-power Frobenius by taking a
product of conjugates of M. Recover the zeta function (or the
cardinality of X (Fq)) from the characteristic polynomial of M ′ and
the Weil conjectures.
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Hyperelliptic Curves

A basis for H1(A; Qq)

A priori, our one-forms have the shape

∞∑
n=−∞

dn∑
i=0

ai,nx idx/yn.

In fact, we can determine that{
x i dx

y

}2g−1

i=0
∪
{

x i dx
y2

}2g−1

i=0

is a basis for H1(A; Qq) using the following reduction formulas.

David Roe ( Harvard University / University of Calgary )Zeta functions with p-adic cohomology 10 / 28



Hyperelliptic Curves

Reduction in cohomology

Suppose B(x) ∈ Zq[x ]. Then we can write
B(x) = R(x)f (x) + S(x)f ′(x) and this gives

B(x)dx
ys ≡ R(x)dx

ys−2 +
2S′(x)dx

(s − 2)ys−2

allowing us to collect terms in the n = 1 and n = 2 components.
Moreover, the relation

[S(x)f ′(x) + 2S′(x)f (x)]dx/y ≡ 0

with S(x) = xm−2g then allows us to reduce the degree of the
coefficient of dx/y and dx/y2.
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Beyond dimension 1

Zeta functions

X ⊂ Pn
Fq

smooth, given by f ∈ Fq[x0, . . . , xn], deg(f ) = d .

ZX (T ) = exp

( ∞∑
n=1

#X (Fqn )
T n

n

)
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Beyond dimension 1

Zeta functions

X ⊂ Pn
Fq

smooth, given by f ∈ Fq[x0, . . . , xn], deg(f ) = d .

ZX (T ) = exp

( ∞∑
n=1

#X (Fqn )
T n

n

)

ZX (T ) =
2n−2∏
i=0

Pi(T )(−1)i+1
,

where Pi(T ) = det(1− TFi |H i(X )).
This works when H∗ is a Weil cohomology theory, where each H i(X )
comes equipped with a Frobenius.
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Beyond dimension 1

Weil cohomology

Contravariant functors H i from smooth proper varieties over Fq to
finite dimensional K -vector spaces

equipped with endomorphisms Fi with Pi(T ) = det(1−TFi |H i(X )).

Lefschetz: for any m, #X (Fqm ) =
∑2 dim(X)

i=0 (−1)i Tr(F m
i |H i(X )).

Write H i(X )(k) for H i(X ) with Frobenius q−kFi . If n = dim(X ), one
has functorial, F -equivariant TrX : H2n(X )(n)→ K , isomorphisms
if X is geometrically irreducible.
Associative, functorial, F -equivariant cup products so that
H i(X )× H2n−i(X )(n)

∪−→ H2n(X )(n)
TrX−−→ K is perfect.

Rigid cohomology is an example of a Weil cohomology.
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Beyond dimension 1

Notation

Let
U = Pn

Fq
\X ,

f ∈ Zq[x0, . . . , xn] a lift of f ,
X the zero locus of f,
U = Pn

Zq
\X

X̃ = XQq , Ũ = UQq .
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Beyond dimension 1

Relating the cohomology of X and U

By the Lefschetz hyperplane theorem, H i
rig(X ) ∼= H i

rig(Pn
Fq

) for
i ≤ n − 2.
By Poincare duality and a computation with projective space,
H i

rig(X ) is zero for i 6= n − 1 odd and is one dimensional for
i 6= n − 1 even, with q-Frobenius acting by multiplication by qi/2.

The Gysin sequence yields Frobenius-equivariant exact
sequences

0→ Hn
rig(U)→ Hn−1

rig (X )(−1)→ 0 if n even,

0→ Hn
rig(U)→ Hn−1

rig (X )(−1)→ Hn+1
rig (Pn

Fq
)→ 0 if n odd.
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Beyond dimension 1

Zeta functions in terms of a Weil cohomology theory

Thus

ZX (T ) = Pn−1(T )(−1)n
n−1∏
i=0

1
1− qiT

,

where
Pn−1(T ) = det(1− q−1Fq|Hn

rig(U)).
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Algorithm for hypersurfaces

Algorithm Summary

To find an approx. matrix for Frobenius on Hn
rig(U) (modulo pr ):

Compute a basis for Hn
rig(U) = Hn

dR(Ũ/Qq).
Apply absolute Frobenius to each basis element, truncating the
result modulo ps for some s ≥ r .
Apply a reduction process to write each result as a linear
combination of basis elements plus a coboundary.
Obtain q-power Frobenius as the product of conjugates of the
resulting matrix.
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Algorithm for hypersurfaces

Rigid cohomology of U

Berthelot gives a description of H i
rig(U) in terms of Monsky-Washnitzer

cohomology:
Since U is affine, we can find some A ∼= Zq[x1, . . . , xm]/I with
U = Spec A.
Let Zq〈x1, . . . , xm〉† be the ring of power series in ZqJx1, . . . , xmK
converging on an open polydisk of radius greater than 1. Set
A† = Zq〈x1, . . . , xm〉†/IZq〈x1, . . . , xm〉†.

H i
rig(U) is isomorphic to the i th cohomology of the complex

Ω•A/Zq
⊗A A† ⊗Zq Qq.
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Algorithm for hypersurfaces

Description of Hn
dR(Ũ/Qq), after Griffiths

Let Ω =
∑n

i=0(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

A† is the ring of formal sums
∑∞

i=0 gi f
−i , where gi ∈ Zq[x0, . . . , xn]

is homogenous of degree di , and

lim inf
i→∞

v(gi)/i > 0,

where v(
∑

cIx I) = minI v(cI).

Hn
dR(Ũ/Qq) is the quotient of the group of n-forms generated by

gΩ/fm (m ∈ Z,g ∈ Qq[x0, . . . , xn] homogeneous degree
md − n − 1) by the subgroup generated by those of the form

(∂ig)Ω

fm
−m

(∂i f)gΩ

fm+1 .
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Algorithm for hypersurfaces

Reduction

(∂ig)Ω

fm
−m

(∂i f)gΩ

fm+1 .

Since X is smooth, a theorem of Macauly implies

(∂0f, . . . , ∂nf) ⊃ (x0, . . . , xn)α,

where α = (n + 1)(d − 2) + 1.
We now have a reduction algorithm: if

deg(g) = md − n − 1 ≥ α,

then g =
∑n

i=0 gi(∂i f), and

gΩ

fm+1 ≡
1

mfm

n∑
i=0

(∂igi)Ω.
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Algorithm for hypersurfaces

Basis for Hn
rig(U)

(∂ig)Ω

fm
−m

(∂i f)gΩ

fm+1 .

Define Mh to be a set of monomials that generate the degree
hd − n − 1 part of Fq[x0, . . . , xn]/(∂0f, . . . , ∂nf).
Then we can choose a basis for Hn

rig(U) to be{
µΩ

fh
| 1 ≤ h ≤ n, µ ∈ Mh

}
.
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Algorithm for hypersurfaces

Frobenius

Lift absolute frobenius to F : A† → A† by F (xi) = xp
i (acting via

Frobenius on the coefficients) and

F (f−1) = f−p
(

1 + p
F (f)− fp

pfp

)−1

= f−p
∑
j≥0

(F (f)− fp)j f−pj

This extends to Hn
dR(Ũ/Qq) by setting F (dxi/xi) = pdxi/xi and

F (Ω) = F (x0 · · · xn)F (x−1
0 · · · x−1

n Ω).
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Algorithm for hypersurfaces

Precision

We must truncate the power series expansion for the image of each
basis element under Frobenius. The level at which we truncate needs
to be larger than our desired final precision, since the reduction step

gΩ

fm+1 ≡
1

mfm

n∑
i=0

(∂igi)Ω

can lose precision when m is a multiple of p. Figuring out exactly how
much precision is lost is tricky.
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Algorithm for hypersurfaces

Runtime

In our implementation, we use Gröbner bases for some of the
reduction steps, and this makes the analysis of the runtime difficult.

David Harvey’s improvements [Har10] to the algorithm improve the
runtime and make the analysis simpler. Using some additional tricks
(sparse power series and an algorithm of Chudnovsky for factorials),
he manages to reduce the computation of the zeta function to time

p0.5+εdn2+O(n)an+O(1),

where q = pa and d is the degree of X ⊂ Pn.
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Timings

We computed the zeta function of the quartic surface over F3 defined
by the polynomial

x4 − xy3 + xy2w + xyzw + xyw2 − xzw2 + y4 + y3w − y2zw + z4 + w4.

On a dual Opteron 246 running at 2 GHz with 2GB of RAM, we have
the following timings:

Final Precision Initial Precision CPU sec MB
32 36 227 37
33 37 731 53
— 38 907 64
— 39 4705 124
34 310 13844 906
35 311 15040 1103
36 312 40144 1795
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Timings

In fact, in this case

Pn−1(T ) =
1
3

(3T 21 + 5T 20 + 6T 19 + 7T 18 + 5T 17 + 4T 16

+ 2T 15 − T 14 − 3T 13 − 5T 12 − 5T 11 − 5T 10 − 5T 9

− 3T 8 − T 7 + 2T 6 + 4T 5 + 5T 4 + 7T 3 + 6T 2 + 5T + 3)
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Timings

Questions?
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Timings
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Computing zeta functions of projective hypersurfaces in large
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