The Local Langlands Correspondence for tamely ramified groups

David Roe

Department of Mathematics Harvard University

Harvard Number Theory Seminar

Outline

- Introduction to Local Langlands
 - Local Langlands for GL_n
 - Beyond GL_n
 - DeBacker-Reeder
- Local Langlands for Tamely Ramified Unitary Groups
 - The Torus
 - The Character
 - Embeddings and Induction

What is the Langlands Correspondence?

- A generalization of class field theory to non-abelian extensions.
- A tool for studying L-functions.
- A correspondence between representations of Galois groups and representations of algebraic groups.

Local Class Field Theory

Irreducible 1-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

₽

Irreducible representations of $GL_1(\mathbb{Q}_p)$

The 1-dimensional case of local Langlands is local class field theory.

Conjecture

Irreducible n-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

1

Irreducible representations of $GL_n(\mathbb{Q}_p)$

In order to make this conjecture precise, we need to modify both sides a bit.

Smooth Representations

For n > 1, the representations of $GL_n(\mathbb{Q}_p)$ that appear are usually infinite dimensional.

Definition

A *smooth* \mathbb{C} -*representation* of $GL_n(\mathbb{Q}_p)$ is a pair (π, V) , where

- V is a ℂ-vector space (possibly infinite dimensional),
- π : $GL_n(\mathbb{Q}_p) \to GL(V)$ is a homomorphism,
- The stabilizer of each $v \in V$ is open in $GL_n(\mathbb{Q}_p)$.

The only finite-dimensional irreducible smooth π are

$$g \mapsto \chi(\det(g))$$

for some character $\chi \colon \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$.

Langlands Parameters

We also need to clarify what kinds of representations of $\mathcal{W}_{\mathbb{Q}_p}$ to focus on.

Definition

A *Langlands parameter* is a pair (φ, V) with

$$\varphi \colon \mathcal{W}_{\mathbb{Q}_p} \to \mathsf{GL}(V)$$

$$\dim_{\mathbb{C}} V = n$$

such that φ is continuous and semisimple.

Parabolic Subgroups

Given a number of Langlands parameters $\varphi_i \colon \mathbf{W}_{\mathbb{Q}_p} \to \mathrm{GL}(V_i)$, one can form their direct sum. There should be a corresponding operation on the $\mathrm{GL}_n(\mathbb{Q}_p)$ side.

Definition

A parabolic subgroup of GL_n is a subgroup P conjugate to one consisting of block triangular matrices of a given pattern. For example:

$$\begin{pmatrix} * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Such a subgroup has a Levi decomposition $P = M \ltimes N$, where M is conjugate to the corresponding subgroup of block diagonal matrices, and N consists of the subgroup of P with identity blocks on the diagonal.

Parabolic Induction

Since each Levi subgroup M is just a direct product of GL_{n_i} , a collection of representations π_i : $GL_{n_i}(\mathbb{Q}_p) \to GL(V_i)$ yields a representation $\boxtimes_i \pi_i$ of M. We can pull this back to P and then induce to obtain

$$\pi = \operatorname{Ind}_{P}^{\operatorname{GL}_{n}(\mathbb{Q}_{p})} \left[\times \right] \pi_{i}.$$

Definition

We say that π is the *parabolic induction* of the π_i . We say that π is supercuspidal if π is not parabolically induced from any proper parabolic subgroup of $GL_n(\mathbb{Q}_p)$.

The Weil-Deligne Group

There is a natural bijection

Supercuspidal representations of $\mathrm{GL}_n(\mathbb{Q}_p)$

n-dimensional irreducible representations of $\mathcal{W}_{\mathbb{Q}_p}$.

But the parabolic induction of irreducible representations does not always remain irreducible. To extend this bijection from supercuspidal representations of $GL_n(\mathbb{Q}_p)$ to all smooth irreducible representations of $GL_n(\mathbb{Q}_p)$, one enlarges the right hand side using the following group:

 \leftrightarrow

$$WD_{\mathbb{Q}_p} := \mathcal{W}_{\mathbb{Q}_p} \times SL_2(\mathbb{C}).$$

Theorem (Local Langlands for GL_n: Harris-Taylor, Henniart)

There is a unique system of bijections

Irreducible representations of $\operatorname{GL}_n(\mathbb{Q}_p)$

 $\xrightarrow{\operatorname{rec}_n}$

n-dimensional irreducible representations of $WD_{\mathbb{Q}_p}$

- rec₁ is induced by the Artin map of local class field theory.
- rec_n is compatible with 1-dimensional characters: $\operatorname{rec}_n(\pi \otimes \chi \circ \operatorname{det}) = \operatorname{rec}_n(\pi) \otimes \operatorname{rec}_1(\chi)$.
- The central character ω_{π} of π corresponds to $\det \circ \operatorname{rec}_n$: $\operatorname{rec}_1(\omega_{\pi}) = \det(\operatorname{rec}_n(\pi))$.
- $\operatorname{rec}_n(\pi^{\vee}) = \operatorname{rec}_n(\pi)^{\vee}$
- rec_n respects natural invariants associated to each side, namely L-factors and ε-factors of pairs.

A First Guess

Now suppose **G** is some other connected reductive group defined over \mathbb{Q}_p , such as SO_n , Sp_n or U_n . We'd like to use a Langlands correspondence to understand representations of $\mathbf{G}(\mathbb{Q}_p)$ in terms of Galois representations. Something like

 \leftrightarrow

Homomorphisms
$$\varphi \colon \mathsf{WD}_{\mathbb{Q}_p} \to \mathbf{G}(\mathbb{C})$$

Irreducible representations of $\mathbf{G}(\mathbb{Q}_p)$.

We need to modify this guess in two ways:

- change $\mathbf{G}(\mathbb{C})$ to a related group, ${}^{L}\mathbf{G}(\mathbb{C})$,
- and account for the fact that our correspondence is no longer a bijection.

Root Data

Reductive groups over algebraically closed fields are classified by root data

$$(X^*(S), \Phi(G, S), X_*(S), \Phi^{\vee}(G, S)),$$

where

- S ⊂ G is a maximal torus,
- $X^*(S)$ is the lattice of characters $\chi: S \to \mathbb{G}_m$,
- $X_*(S)$ is the lattice of cocharacters $\lambda \colon \mathbb{G}_m \to S$,
- Φ(G,S) is the set of roots (eigenvalues of the adjoint action of S on g),
- $\Phi^{\vee}(\mathbf{G}, \mathbf{S})$ is the set of coroots $(\langle \alpha, \alpha^{\vee} \rangle = 2)$.

Connected Langlands Dual

Given $\mathbf{G}\supset \mathbf{S}$, the connected Langlands dual group $\hat{\mathbf{G}}$ is defined to be the algebraic group over $\mathbb C$ with root datum

$$(X_*(S), \Phi^{\vee}(G, S), X^*(S), \Phi(G, S)).$$

For semisimple groups, this has the effect of exchanging the long and short roots (as well as interchanging the simply connected and adjoint forms).

G	GL_n	SL _n	PGL_n	Sp _{2n}	SO _{2n}	Un
Ĝ	GL_n	PGL_n	SL_n	SO _{2n+1}	SO _{2n}	GL_n

Langlands Dual Group

For non-split \mathbf{G} , such as U_n , we need to work a little harder. Suppose that \mathbf{G} is quasi-split with Borel $\mathbf{B} \supset \mathbf{S}$, splitting over a finite extension E/\mathbb{Q}_p . The fact that \mathbf{B} is defined over \mathbb{Q}_p implies that $\mathrm{Gal}(E/\mathbb{Q}_p)$ acts on the root datum. The connected dual group $\hat{\mathbf{G}}$ comes equipped with maximal torus $\hat{\mathbf{S}}$ canonically dual to \mathbf{S} . By choosing basis vectors for each (1-dimensional) root space in the Lie algebra of $\hat{\mathbf{G}}$, we can extend the action of $\mathrm{Gal}(E/\mathbb{Q}_p)$ from the root datum to an action on $\hat{\mathbf{G}}$. Define

$$^{L}\mathbf{G}:=\hat{\mathbf{G}}\rtimes\mathrm{Gal}(E/\mathbb{Q}_{p}),$$

the L-group of G.

Unitary Groups

A unitary group over \mathbb{Q}_p is specified by the following data:

- E/Q_p a quadratic extension (so for p ≠ 2 there are three possibilities),
- set $\tau \in Gal(E/\mathbb{Q}_p)$ the nontrivial element,
- V an n-dimensional E-vector space,
- Non-degenerate Hermitian form \langle , \rangle (so $\langle x, y \rangle = \tau \langle y, x \rangle$).

Then U(V) is the group of automorphisms of V preserving \langle , \rangle . Over $\bar{\mathbb{Q}}_p$, U becomes isomorphic to GL_n , so $\hat{\mathbb{Q}}_n$ is GL_n , but $^L\mathbf{G}$ is non-connected: τ acts on $GL_n(\mathbb{C})$ by the outer automorphism

$$g \mapsto (g^{-1})^{\mathsf{T}}$$
.

Langlands Parameters

A Langlands parameter is now an equivalence class of homomorphisms

$$\varphi \colon \mathsf{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G}.$$

- We require that the composition of φ with the projection ${}^L\mathbf{G} \to \operatorname{Gal}(E/\mathbb{Q}_p)$ agrees with the standard projection $\mathcal{W}_{\mathbb{Q}_p} \to \operatorname{Gal}(E/\mathbb{Q}_p)$.
- We consider two parameters to be equivalent they are conjugate by an element of $\hat{\mathbf{G}}$. This definition of equivalence is chosen to match up with the notion of isomorphic representations on the $\mathbf{G}(\mathbb{Q}_p)$ side.

A Map

Conjecture

There is a natural map

Irreducible representations of **G**

 \rightarrow

Langlands parameters

 $\varphi \colon \mathsf{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G}$

It is surjective and finite-to-one; the fibers are called *L-packets*.

L-packets

Moreover, we can naturally parameterize these fibers. Given a Langlands parameter φ , let $Z_{\hat{\mathbf{G}}}(\varphi)$ be the centralizer in $\hat{\mathbf{G}}$ of φ , and let LZ be the center of $^L\mathbf{G}$. Define

$$A_{\varphi} = \pi_0(\mathbf{Z}_{\hat{\mathbf{G}}}(\varphi)/^L \mathbf{Z}).$$

The fibers should be in bijection with

$${\it A}_{\!arphi}^{\scriptscriptstyleee}=\{{\it irreducible representations of }{\it A}_{\!arphi}\}.$$

So we get a natural bijection

Irreducible representations of ${\bf G}$

$$\leftrightarrow$$

$$(\varphi,\rho) \text{ with } \varphi \colon \operatorname{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G}$$
 and $\rho \in A_\varphi^\vee$

Approaches to Local Langlands

- One approach to proving the local Langlands correspondence for general G is to try to reduce to the GL_n case: the recent book of Jim Arthur for example.
- Another approach is that of Stephen DeBacker and Mark Reeder, outlined below.

Assumptions

- Let **G** be a connected reductive group defined over \mathbb{Q}_p , and assume that **G** splits over an unramified extension E/\mathbb{Q}_p .
- Let φ be a Langlands parameter vanishing on $SL_2(\mathbb{C})$.
- Assume that φ is *tame*: it vanishes on wild inertia.
- Assume that φ is *discrete*: the centralizer of φ in $\hat{\mathbf{G}}$ is finite modulo the center of ${}^{L}\mathbf{G}$.
- Assume that φ is regular. the image of inertia is generated by a semisimple element of G whose centralizer is a maximal torus S.

DeBacker-Reeder produce an L-packet that satisfies many of the properties expected of the local Langlands correspondence.

DeBacker and Reeder's approach

For each $\lambda \in X^*(\hat{\mathbf{S}})$ they construct

- F_{λ} , a twisted action of Frobenius on **G**, and
- π_λ, a representation of G^{F_λ}, the Q_p-points of the pure inner form of G determined by F_λ.

They define an equivalence relation on such pairs, and prove that the equivalence class of $(\pi_{\lambda}, \mathsf{F}_{\lambda})$ depends only on the class of λ in

$$X^*(\hat{\mathbf{S}})/(1-w\theta)X^*(\hat{\mathbf{S}})\cong A_{\varphi}^{\vee}$$

where $w\theta$ is the automorphism of $X^*(\hat{\mathbf{S}})$ induced by $\varphi(\mathsf{F})$. They thus obtain an L-packet as the set of such equivalence classes for a fixed φ .

The Construction of π_{λ}

- Let t_{λ} be translation by λ in the apartment \mathcal{A} associated to **S** in the Bruhat-Tits building of **G**. By the discreteness of φ , the automorphism $t_{\lambda}w\theta$ has a unique fixed point x_{λ} in \mathcal{A} .
- Find another decomposition

$$t_{\lambda} \mathbf{w} \theta = \mathbf{w}_{\lambda} \mathbf{y}_{\lambda} \theta,$$

where w_{λ} lies in the "parahoric subgroup" of the affine Weyl group at x_{λ} , and $y_{\lambda}\theta$ fixes an alcove with closure containing x_{λ} .

- From y_λ define a 1-cocycle u_λ, from which
 F_λ = Ad(u_λ) ∘ F. Note that x_λ is a vertex of B(G^{F_λ}).
- From w_λ define an anisotropic torus T_λ of G with T^{F_λ}_λ ⊂ G_λ.

The Construction of π_{λ} (cont.)

- Apply a canonical modification to φ so that the image lies in a group isomorphic to ^LT_λ.
- Obtain a character of $\mathbf{T}_{\lambda}(\mathbb{F}_p)$ using the (depth-preserving) local Langlands correspondence for tori.
- Use Deligne-Lusztig theory to produce an irreducible representation of \mathbf{G}_{λ} .
- Compactly induce to $\mathbf{G}(\mathbb{Q}_p)$, yielding a depth zero supercuspidal representation π_{λ} .

L-packets

They then prove that $\mathbf{G}(\mathbb{Q}_p)$ acts on the pairs $(\mathsf{F}_\lambda,\pi_\lambda)$, and the orbit of a given pair is independent of all choices. Moreover, two such pairs are equivalent if and only if the two λ s represent the same class in A_φ^\vee . Much of their paper is then devoted to proving that this construction yields L-packets with desirable properties:

- The ratio of formal degrees deg(π_λ)/deg(St_λ) is independent of λ.
- Generic representations in the L-packet correspond to hyperspecial vertices in the building.
- Their L-packet yields a stable class function on the set of strongly regular semisimple elements of G(ℚ_p).

Restrictions on φ

From now on we fix a totally ramified quadratic extension E/\mathbb{Q}_p and set $\mathbf{G} = \mathsf{U}(V)$ for V a quasi-split Hermitian space over E. We say that a Langlands parameter φ is

- discrete if $Z_{\hat{G}}(\varphi)$ is finite,
- tame if φ factors through the maximal tame quotient (and thus $p \neq 2$).
- regular if $Z_{\hat{G}}(\varphi(\tilde{\tau}))$ is connected and minimum dimensional (here $\tilde{\tau}$ is a procyclic generator of tame inertia).

We will construct an L-packet of supercuspidal representations of pure inner forms of $\mathbf{G}(\mathbb{Q}_p)$ given a tame, discrete regular parameter.

Filtrations

 $\mathbf{G}(\mathbb{Q}_p)$ acts on the Bruhat-Tits building $\mathcal{B}(\mathbf{G})$, and we can classify the compact subgroups of $\mathbf{G}(\mathbb{Q}_p)$ as stabilizers of convex subsets of $\mathcal{B}(\mathbf{G})$

- Each such compact **H** has the structure of a \mathbb{Z}_p -scheme.
- There is a decreasing filtration on each H.
- \mathbf{H}^0 is just the connected component of the identity (as a \mathbb{Z}_p -scheme) and is of finite index in \mathbf{H} .
- The special fiber $\mathbf{H}(\mathbb{F}_p)$ is given by $\mathbf{H}/\mathbf{H}^{0+}$.
- The filtration on T is the one given by Moy and Prasad, coming from the filtration on Q_p[×].

We can thus obtain representations of compact subgroups of **G** by pulling back representations of reductive groups over finite fields.

Outline

Our plan for constructing an L-packet from φ is as follows. We construct:

- A maximal unramified anisotropic torus T, which embeds into G in various ways,
- A character χ_{φ} on \mathbf{T}^0 that vanishes on \mathbf{T}^{0+} ,
- For each ρ∈ A[∨]_φ, an embedding of T into a maximal compact subgroup H ⊂ G.
- We get a Deligne-Lusztig representation of $\mathbf{H}^0(\mathbb{F}_p) = \mathbf{H}^0/\mathbf{H}^{0+}$ associated to the torus $\mathbf{T}^0(\mathbb{F}_p) = \mathbf{T}^0/\mathbf{T}^{0+}$ and the character χ_{φ} .
- We induce this representation up to a representation of G.

Structure of a Tame Parameter

The tame Weil group is topologically generated by two elements: an (arithmetic) Frobenius F and a generator $\tilde{\tau}$ of the procyclic group

$$\mathcal{I}_{\mathbb{Q}_p} = \operatorname{\mathsf{Gal}}(\lim_{\longrightarrow} \tilde{K}(p^{1/m})/\tilde{K}) \cong \prod_{\ell \neq p} \mathbb{Z}_{\ell}.$$

- The assumption that E/\mathbb{Q}_p is totally ramified implies that $\varphi(\mathsf{F}) \in \hat{\mathbf{G}}$, while $\varphi(\tilde{\tau}) \in {}^L\mathbf{G}$ projects to $\tau \in \mathsf{Gal}(E/\mathbb{Q}_p)$.
- Recall that we have a specified maximal torus $\hat{\mathbf{S}}$ in $^L\mathbf{G}$. As Langlands parameters are defined only up to conjugacy, we may conjugate so that $\varphi(\tilde{\tau}) \in \hat{\mathbf{S}}^{\tau} \rtimes \mathrm{Gal}(E/\mathbb{Q}_p)$.

The equality

$$F \tilde{\tau} F = \tilde{\tau}^p$$

The Torus

implies that $\varphi(F)$ lies in the normalizer of $\varphi(\tilde{\tau})$, and thus in the normalizer of S.

 Composing with the projection onto the Weyl group, we get a cocycle in

$$\mathsf{H}^1(\langle \mathsf{F} \rangle, W^{\mathcal{I}}) \hookrightarrow \mathsf{H}^1(\mathbb{Q}_p, W).$$

 Such a cocycle is precisely the data needed to define a torus over \mathbb{Q}_p as a twist of **S**: here we've identified the Weyl groups of **S** and **S**. Write **T** for this torus.

Unramified and Anisotropic

- T cannot literally be unramified, since no torus in G splits over an unramified extension. But it does become isomorphic to the canonical torus S after an unramified extension: we will call such tori in G unramified.
- A torus \mathbf{T} is called *anisotropic* if $X_*(\mathbf{T})^{\operatorname{Gal}(\mathbb{Q}_p/\mathbb{Q}_p)}=0$, or equivalently if $\mathbf{T}(\mathbb{Q}_p)$ is compact. The action of inertia on \mathbf{T} is the same as on $\hat{\mathbf{S}}$, so any invariants in $X_*(\mathbf{T})$ would yield invariants in $X_*(\mathbf{S}^\tau)$ under the action of $\varphi(\mathbf{F})$. But any such invariants would contradict our assumption that φ is discrete, since

$$(\hat{\mathfrak{g}}^{\mathcal{I}})^{\mathsf{F}}=0.$$

Thus **T** is anisotropic.

Image of a Parameter

- Since the tame Weil group is topologically generated by F and $\tilde{\tau}$, the image of φ is contained in $N_{\hat{\mathbf{G}}}(\hat{\mathbf{S}}) \rtimes \mathrm{Gal}(E/\mathbb{Q}_p)$. In fact, it is contained in the subgroup D of ${}^L\mathbf{G}$ generated by $\hat{\mathbf{S}} \rtimes \mathrm{Gal}(E/\mathbb{Q}_p)$ and $\varphi(\mathsf{F})$.
- The minimal splitting field $M = \mathbb{Q}_{p^s} \cdot E$ of **T** has Galois group

$$\operatorname{Gal}(M/\mathbb{Q}_p) \cong \operatorname{Gal}(E/\mathbb{Q}_p) \times \langle w \rangle,$$

where $w \in \mathbf{W}^{\mathcal{I}}$ is the image of $\varphi(\mathsf{F})$. Thus D fits into an exact sequence

$$1 \to \hat{\mathbf{S}} \to D \to \operatorname{Gal}(M/\mathbb{Q}_p) \to 1.$$

A Character

• Suppose that this sequence split and $D \cong \hat{\mathbf{T}} \rtimes \operatorname{Gal}(M/\mathbb{Q}_p)$. Then φ would yield an element of $H^1(\mathbb{Q}_p, \hat{\mathbf{T}})$, and the local Langlands correspondence for tori would give us a character of $\mathbf{T}(\mathbb{Q}_p)$:

$$\mathsf{H}^1(\mathbb{Q}_p, \hat{\mathbf{T}}) \cong \mathsf{Hom}(\mathbf{T}(\mathbb{Q}_p), \mathbb{C}^{\times}).$$

• In general the sequence for D does not split. So our next task is to modify the Langlands correspondence for tori to obtain a character in the non-split case. We will obtain a character χ_{φ} of $\mathbf{T}^0(\mathbb{Q}_p)$, where \mathbf{T}^0 is the connected component in the Néron model of \mathbf{T} .

Restriction to $Gal(\mathbb{Q}_{p^s}/\mathbb{Q}_p)$

- Let $P_K(D, \mathbf{T})$ be the set of homomorphisms from $\operatorname{Gal}(\bar{K}/K)$ to D that project correctly onto $\operatorname{Gal}(M/\mathbb{Q}_p)$, modulo conjugacy by $\hat{\mathbf{T}}$. If D were a semidirect product then we would have $P_K(D, \mathbf{T}) \cong \operatorname{H}^1(\mathbb{Q}_p, \hat{\mathbf{T}})$.
- Set D_s as the preimage in D of Gal(M/Q_ps) and let
 Γ = Gal(Q_ps/Q_p). The splitting of ^LG = G
 A Gal(E/Q_p)
 yields a splitting of

$$1 \to \hat{\mathbf{S}} \to D_s \to \operatorname{Gal}(M/\mathbb{Q}_{p^s}) \to 1.$$

The restriction map of group cohomology

$$H^1(\mathbb{Q}_{\rho},\hat{T})\to H^1(\mathbb{Q}_{\rho^s},\hat{T})^{\Gamma}$$

generalizes to a map

$$P_{\mathbb{Q}_p}(D,\mathbf{T}) \to P_{\mathbb{Q}_{p^s}}(D_s,\mathbf{T})^{\Gamma}$$

Descending back to \mathbb{Q}_p

• We can now obtain a character χ_{φ} as the image of φ under the composition

$$\begin{split} P_{\mathbb{Q}_p}(D,\mathbf{T}) &\xrightarrow{\mathsf{res}} P_{\mathbb{Q}_{p^s}}(D_s,\mathbf{T})^{\Gamma} \cong \mathsf{H}^1(\mathbb{Q}_{p^s},\hat{\mathbf{T}})^{\Gamma} \\ &\cong \mathsf{Hom}(\mathbf{T}(\mathbb{Q}_{p^s})_{\Gamma},\mathbb{C}^{\times}). \end{split}$$

From Tate cohomology we have

$$1 \to \hat{H}^{-1}(\Gamma, \boldsymbol{T}) \to \boldsymbol{T}(\mathbb{Q}_{\rho^s})_{\Gamma} \to \boldsymbol{T}(\mathbb{Q}_{\rho}) \to \hat{H}^0(\Gamma, \boldsymbol{T}) \to 1$$

When the Néron model of **T** is not connected, these outer groups can be nontrivial. We get around this issue by restricting χ_{φ} to $\mathbf{T}^0(\mathbb{Q}_p)$, a finite index subgroup of $\mathbf{T}(\mathbb{Q}_p)$.

Depth of Character

- Using Lang's theorem on the cohomology of connected algebraic groups over finite fields, the corresponding outer terms for \mathbf{T}^0 vanish. The isomorphism $\mathbf{T}^0(\mathbb{Q}_{p^s})_{\Gamma} \cong \mathbf{T}^0(\mathbb{Q}_p)$ associates to φ a character of $\mathbf{T}^0(\mathbb{Q}_p)$, which we will also denote by χ_{φ} .
- Since φ vanished on wild inertia, the depth-preservation properties of the local Langlands correspondence for tori imply that χ_{φ} vanishes on $\mathbf{T}^{0+}(\mathbb{Q}_p)$, and thus induces a character of $\mathbf{T}^{0}(\mathbb{F}_p)$.
- The regularity of φ implies that χ_{φ} is not fixed by any element of $\mathbf{W}^{\mathcal{I}}$: it is in "general position."

Summary

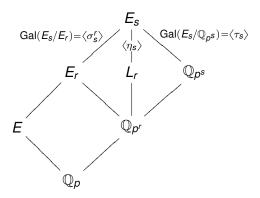
From a Langlands parameter φ we've produced:

- An anisotropic unramified torus T. Note that T is not yet provided with an embedding into G.
- A character χ_{φ} of $\mathbf{T}^0(\mathbb{F}_p)$.

In order to produce representations of $\mathbf{G}(\mathbb{Q}_p)$ we need to understand the embeddings of \mathbf{T} into \mathbf{G} .

Basic Tori

We classify unramified anisotropic twists of the "quasi-split" torus **S**. For each s = 2r, define $T_s = \{x \in E_s : Nm_{E_s/L_r} x = 1\}$,



Every anisotropic unramified torus in $\bf G$ is a product of such basic tori, together with at most one copy of U_1 .

Embeddings of Basic Tori

In order to get Deligne-Lustig representations, we need to embed ${\bf T}$ into maximal compacts of ${\bf G}$. We do so by building a Hermitian space around each basic torus in the product decomposition of ${\bf T}$.

For each $\kappa \in L_r^{\times}$, we define a Hermitian product on E_s

$$\phi_{\kappa}(\mathbf{x}, \mathbf{y}) = \text{Tr}_{\mathbf{E}_{\mathbf{s}}/\mathbf{E}}(\frac{\kappa}{\pi_{L}}\mathbf{x} \cdot \eta_{\mathbf{s}}(\mathbf{y}))$$

This Hermitian space is quasi-split if and only if $v_L(\kappa)$ is even. By the definition of \mathbf{T}_s we have an embedding of \mathbf{T}_s into $\mathsf{U}(\mathcal{E}_s,\phi_\kappa)$.

Embeddings of General Tori

In general, we choose a κ_i for each basic torus in the decomposition of **T**. This choice corresponds to a choice of $\rho \in A_{\varphi}^{\vee}$ as long as the sum of the valuations of the κ_i is even.

We prove **T** fixes a unique point on the building $\mathcal{B}(\mathbf{G})$ and thus embeds in a unique maximal compact $\mathbf{H} \subset \mathbf{G}$. The reduction of **H** is

$$O(m) \times Sp(m')$$
,

where m is the sum of the dimensions of basic tori whose κ_i has even valuation and m' is the sum of those with $v(\kappa_i)$ odd.

Constructing a representation of $G(\mathbb{Q}_p)$

Modulo p, we have a maximal torus $\mathbf{T}^0(\mathbb{F}_p)$ sitting in a connected reductive group $\mathbf{H}^0(\mathbb{F}_p)$ and a character χ_{φ} of $\mathbf{T}^0(\mathbb{F}_p)$. This situation was studied by Deligne and Lusztig, and they produce a representation of $\mathbf{H}^0(\mathbb{F}_p)$ using étale cohomology. The irreducibility of this representation follows from the regularity condition on φ .

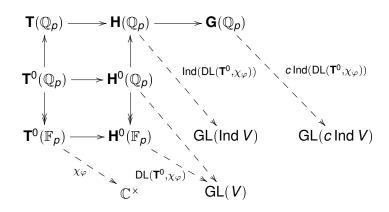
We pull back to \mathbf{H}^0 and the only wrinkle in the induction process occurs between \mathbf{H}^0 and \mathbf{H} . Once we have a representation of \mathbf{H} , we define a representation on all of $\mathbf{G}(\mathbb{Q}_p)$ by compact induction.

A Finite Induction

There are three cases for the induction from \mathbf{H}^0 to \mathbf{H} .

- n even, $\mathbf{H}(\mathbb{F}_p) = \operatorname{Sp}(n)$. Here $\mathbf{H} = \mathbf{H}^0$ and there is no induction.
- n even, otherwise. The fact that the normalizer of $\mathbf{T}^0(\mathbb{F}_p)$ in $\mathbf{H}(\mathbb{F}_p)$ contains the normalizer in $\mathbf{H}^0(\mathbb{F}_p)$ with index 2 implies that the induction remains irreducible.
- n odd. Now the induction from H⁰ to H splits into two irreducible components. We can pick one using a recipe for the central character, together with the fact that in the case that n is odd the center of O(m) is not contained in SO(m).

Summary of Induction Process



Further Work

- Moving beyond $\mathbf{G} = \mathsf{U}(V)$ to other tamely ramified groups.
- Checking that these L-packets satisfy the desired properties, as DeBacker and Reeder do.
- Building a computational framework within Sage to experiment with these L-packets.
- Geometrizing the induction process (in progress with Clifton Cunningham).

References

- Stephen DeBacker and Mark Reeder. Depth-zero supercuspidal L-packets and their stability. *Annals of Math*, 169(3):795-901, 2009.
- Stephen Gelbart. An elementary introduction to the Langlands program. *Bull. Amer. Math. Soc. (N.S.)*, 10(2):177-219.
- Michael Harris and Richard Taylor. *The geometry and cohomology of some simple Shimura varieties*. Princeton U.P., Princeton, 2001.
- David Roe. The Local Langlands Correspondence for Tamely Ramified Groups. PhD thesis, Harvard University, 2011.